ebook img

Solutions of Electricity & Magnetism. Lesson 20th to 25th PDF

140 Pages·2016·2.69 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solutions of Electricity & Magnetism. Lesson 20th to 25th

Solutions of Electricity & Magnetism Lesson 20 to 25 th th By DC Pandey 20 Current Electricity Introductory Exercise 20.1 q 2pr 2.0 1. i= , here q=e, t= = t v 8.43 ¥1028 ¥1.6¥10-19 ¥3.14 ev \ i= ¥(0.5¥10-3)2 2pr 1.6¥10-19 ¥2.2¥106 =1.88¥10-6 ms-1 = 2¥3.14¥5¥10-11 3. Yes. =1.12¥10-3 A As curr ent alw ays flows in the dir ect ion of elec tric field. =1.12mA 4. False. 2. No. of at oms in 63.45 g of Cu =6.023 ¥1023 In the abs ence of po tent ial diff er ence, \ No. of atoms in 1 cm3 (8.89 g) of Cu elec trons passes ran dom mot ion. 6.023 ¥1023 = ¥8.89 5. Cur rent due to both posi t ive and neg at ive 63.54 ions is from left to right, hence, there is a net =8.43 ¥1022 curr ent from left to right. As one conduction electron is present per dq atoms, 6. i=10+4t fi dt =10+4t n=8.43 ¥1022 cm-3 or 8.43 ¥1028m-3 fi Úqdq=Ú10(10+4t)dt As i=neAv 0 0 d i fi q=[10t+2t2]10 =300C fi v = 0 d neA Introductory Exercise 20.2 rL 0.49¥3.14¥(0.42¥10-3)2 1. R= = A 2.75¥10-8 35 =1.72¥10-8 ¥ Ê2.05 ˆ2 =9.87A 3.14¥Á ¥10-3˜ (b) V =EL =0.49¥12=5.88 V Ë 2 ¯ V 5.88 (c) R= = =0.6W =0.57W i 9.87 E 2. (a) J = 3. Let us con sider the con duc tor to be made up r of a numb er of ele m ent ary discs. The EA fi i=JA= con duc tor is supp osed to be ext ended to form r a comp lete cone and the ver tex O of the cone 3 rl is taken as ori g in with the cond uct or placed R= along x-axis with its two ends at x=r and pr(l+ r)tan2q x=l+ r. Let q be the semi-vert ic al ang le of But, rtanq=a the cone. (r+ l)tanq=b Consider an elementary disc of thickness dx rl at a distance x from origin. R= pab Resistance of this disc, 1 dR=rdx 4. True. r= s A 1 \ r¥ s= ¥ s=1 If y be the radius of this disc, then s A=py2 5. R = R Cu Fe But y=xtanq 4.1(1+ a DT)=3.9(1+ a DT) dx Cu Fe dR=r 4.1[1+4.0¥10-3(T -20)] px2tan2q =3.9[1+5.0¥10-3(T -20)] \ Resistance of conductor R=ÚdR=Úl+r rdx 4.1+16.4¥10-3(T -20) r px2tan2q =3.9+19.5¥10-3(T -20) r È 1˘l+r 3.1¥10-3(T -20)=0.2 R= - ptan2qÎÍ x˚˙r T -20= 0.2 3.1¥10-3 r È1 1 ˘ = Í - ˙ =64.5∞C ptan2 qÎr l+ r˚ T =84.5∞C Introductory Exercise 20.3 1. Potential difference across both the res ist ors V =V +2=2V B A is 10V. V =V +5=5V C A i1 i2 VD =VC+10=15 V V -V \ i = C B =3 A 1 1 2W 10 V 4W and i = VD -VA =15 =7.5 A 2 2 2 3. Curr ent in the given loop is E+15 10 i= Hence, i = =5A 8 1 2 ÊE+15ˆ 10 V =E-2i=E-2◊Á ˜ =0 and i2 = 4 =2.5A AB Ë 8 ¯ fi E=5V 2. As A is grounded, V =0 A 1W i 4. Ef fec tive emf, C 1 B E=8¥1-2¥1=6V Effective resistance of circuit 5 V 10 V 2 V R1 i1 i2 i3 D i2 2W A 10 V R2 R3 10 V 4 R= Rexternal +10r =2+10¥1=12W 6. i= E E 6 R+ r \ i= = =0.5A R 12 Also, V =E-ir 5. As R2 = R3 and V1 =V2 i= E-V Potential difference across R is zero. r 1 Hence, current through R1fi i1 =0 (a) I (b) I and current through R 2 V E E fi i = 1 r r 2 R 2 10 = =1A 10 O R O E V Introductory Exercise 20.4 1. 6=1-E 12 V r E=-5 V i P Q And from V =V E 1W 1A ST QP U R 6=-ir+12 12-6 6 r= = =2W 3W i 3 T S 2A 2. Power de liv ered by the 12 V power supp ly, Applying KCL at junction R P =Vi =12¥3 =36W 1 i=1+2=3 A and power dissipated in 3W resister, V =V =V P =i2R =22 ¥3 =12W ST RU QP 3 3 3 Taking V =V ST RU Introductory Exercise 20.5 E1 + E2 + E3 10 + 4 + 6 1. E= r1 r2 r3 = 1 2 2 E r 1 1 1 1 1 1 + + + + r r r 1 2 2 1 2 3 10+2+3 = 2 R =7.5 V 1 1 1 1 Rate of dissipation of energy and = + + r r r r E2R 1 2 3 P=i2R = 1 1 1 (R+ r)2 = + + =2 1 2 2 For maximum or minimum power 1 fi r= dP =0 2 dR =0.5W È(R+ r)2 -2R(R+ r)˘ E fi E2Í ˙ =0 2. i= Î (R+ r)4 ˚ R+ r 5 (R+ r)(r- R) fi E2 =0 5. G=100W, ig =50mA, i=5mA (R+ r)4 i G 50¥10-6 ¥100 \ S= g = E2(r- R) i-i 5¥10-3 -50¥10-6 fi =0 g (R+ r)3 1 1 = = fi R=r 1-0.01 0.99 ddR2P2 =E2ÈÎÍ(R+ r)3(-1()R-3+(rr)-6 R)(R+ r)2˘˚˙ =19090W 100 -E2(4r-2R) By connecting a shunt resistance of W. = 99 (R+ r)4 V d2P 6. ig =G Clearly is negative at R=r. dR2 and R= nV -G=(n-1)G i Hence, P is maximum at R=r g E2r E2 15 and P = = 7. V = E max (r+ r)2 4r AB 16 Potential gradient 3. When the batt er ies are con nected in se ries V 15E k= AB = E =2E=4V, r =2r=2W eff eff L 16¥600 For maximum power E = V/cm R=reff =2W 640 E2 (4)2 E E and P = eff = =2W (a) =kL fi L= =320 cm max 4r 4¥2 2 2k eff E 7E 4. Ig =5mA, G=1W, V =5 V (b) V =kl =640 ¥560= 8 V 5 R= -G= -1 Also, V = E-ir I 5¥10-3 g 7E \ E-ir= =999W 8 A 999 W resistance must be connected in i= E series with the galvanometer. 8r AIEEE Corner Subjective Questions (Level 1) q ne 337.5 1. i= = = =2.11¥1021 t t 1.6¥10-19 Given, 2pr 1 v i=0.7 , t=1 s, e=1.6¥10-19C 4. T = v fi f = T =2pr it 0.7¥1 \ n= = 2.2¥106 e 1.6¥10-19 = 2¥3.14¥5.3 ¥10-11 =4.375¥108 =6.6¥1019 s-1 2. q=it=3.6¥3 ¥3600 q I = =ef =38880 C T 3. (a) q=it =7.5¥45=337.5C =1.6¥10-19 ¥6.6¥1019 q (b) q=ne fi n= =10.56A e 6 5. (a) I =55-0.65t2 =1.7¥10-8 W-m I = dq l=24.0 m dt Êdˆ2 Ê2.05 ˆ2 A=pÁ ˜ =3.14¥Á ¥10-3˜ fi dq=Idt Ë2¯ Ë 2 ¯ fi q=ÚIdt =3.29¥10-6 m2 \ q=Ú8 Idt=Ú8(55-0.65t2)dt R=1.7¥10-8 ¥ 24.0 0 0 3.29¥10-6 Èt2˘8 =55[t]08 -0.65ÎÍ2˚˙ =0L.12W 0 10. R=r =440-20.8=419.2C A rL (b) If current is constant A= q 419.2 R I = = =52.4A t 8 If D is density, then DrL2 6. iµv m=DV =DAL= d v i R \ vd2 = i2 8.9¥103 ¥1.72¥10-8 ¥(3.5)2 d1 1 = 0.125 i 6.00 fi vd2 = i2vd1 =1.20 ¥1.20¥10-4 =1.5¥10-2 kg = 15 g 1 =6.00¥10-4 ms-1 11. At 20∞C, i R1 =600W, R2 =300W 7. vd = neA At 50∞C, 1 R¢ = R(1+ a Dt) = 1 1 1 8.5¥1028 ¥1.6¥10-19 ¥1¥10-4 =600(1+0.001¥30)=600¥1.03 =0.735¥10-6 ms-1 =618W =0.735mm/s R¢ = R (1+ a Dt) 2 2 2 l 103 =300(1+0.004¥30)=336 t= = v 0.735¥10-6 \ R¢= R ¢+ R ¢=618+336 d 1 2 =1.36¥109 s =43 yr =954W R¢- R 954-900 8. Dist ance cov ered by one elec tron in 1 s a = = R¥Dt 900¥30 =1¥0.05=0.05 cm R=600+300=900W Number of electrons in 1 cm of wire =2¥1021 =0.002∞C-1 \ Number of electrons crossing a given area 12. As both the wires are conn ected in par all el, per second V =V Al Cu =Number of electrons in 0.05 cm of wire i R =i R Al Al Cu Cu =0.05¥2¥1021 =1020 L L i r Al =i r Cu i= q = ne Al Al pd2 Cu Cu pd2 Al Cu t t i r L 1020 ¥1.6¥10-19 fi d =d Cu Cu Cu = =1.6¥10 =16A Cu Al i r L 1 Al Al Al L 2¥0.017¥6 9. R=r =1¥10-3 A 3 ¥0.028¥7.5 Given, =0.569¥10-3 m r=0.017mW-m =0.569 mm. 7 V 0.938 20 13. (a) E= L = 75¥10-2 =1.25 V/m fi R2 =11W =1.82W E 1.25 and R =20- R =20-1.82W (b) J = fi r= 1 2 r 4.4¥107 =18.2W r=2.84¥10-8 W-m 17. The circ uit can be red rawn as E V 14. (a) J = = r rL Current density is maximum when L is 24 V 12W 8W minimum, ie, L=d, potential difference should be applied to faces with dimensions 2d¥3d. V 8¥12 Jmin. =rd. Reff =12+ 8 =4.8W V VA V 24 (b) i= = I = = =5 A R rL R 4.8 eff Current is maximum when L is minimum 18. Here, A and C are at same po ten tial and B and A is maximum. and D are at same po ten tial, Hence, in this case also, V should be applied 8W to faces with dimensions 2d¥3d A B V(2d¥3d) 6Vd and i = = . max r(d) r 24V 4W 6W L 15. (a) R=r RAA D 12W C r = L Hence, the circuit can be redrawn as d [r= =1.25 mm =1.25¥10-3 m] A,C 2 0.104¥3.14¥(1.25¥10-3)2 = 14.0 24V 4W W8 W12 6W =3.64¥10-7W-m V EL 1.28¥14 (b) i= = = =172.3 A R R 0.104 B,D (c) i=neAv d 1 1 1 1 1 i \ = + + + v = R 4 8 12 6 d neA 6+3 +2+4 172.3 = = 24 8.5¥1028 ¥1.6¥10-19 ¥3.14¥(1.25¥10-3)2 15 5 = = =2.58¥10-3 ms-1 24 8 8 16. For zero ther mal coe f fic ient of resistance, R= W DR=0 5 R a DT + R a DT =0 =1.6W C C Fe Fe R1 = -aFe = -5.0¥10-3 =10 i= V = 24 R a -0.5¥10-3 R 1.6 2 C =15A R =10R 1 2 19. Given cir cuit is sim i lar to that in pre vi ous Also, R + R =20 1 2 ques tion but 4W re sist or is rem oved. So the fi 10R2 + R2 =20 ef fec tive cir cuit is given by 8 V 12 A,C i= = R 36/13 13 = A 24 V 8W 2W 6W 3 1 12+6 21. (a) i= =3A 1+2+3 B,D i = 3A A 1 =1 + 1 + 1 12 V 1W R 8 12 6 1 3 +2+4 9 3 B R = 24 =24 = 8 G 2W 8 R= W=2.67W C 3 6 V 3W V 24 i= = =9A R 2.67 D V =0 20. 6W G A B V =V +12=12 V A G 4W V -V =3 V A B 12V 12W 6W V =12-3 =9 V B 3W V -V =6 V B C D 2W C VC=9-6=3 V fl V -V =6 V, V =-6V A G D D 6W 4W (b) If 6V battery is reversed 4W 12-6 12 B C 12W i= =1 A 1+2+3 3W 2W i = 1A D A Wheatstone bridge is bal anced, hence 4W 12 V re sis tance con nected be tween B and C be B re moved and the eff ec tive cir cuit becomes G A 6W 4W C 12V B C 12W 6 V 3W 2W D D fl A V =0, G V -v =12 V, V =12 V A G A 12V 9W 6W 12W V -V =1 V A B fi V =11 V B fl V -V =2 V B C fi V =9 V C 36 12V 13 W VD -VG =6 V fi V =6 V D 9 22. i= 200 =5A =42.26W 5+10+25 E i= =0.102W R 1 eff 5W Reading of voltmeter 200 V V =E-ir 2 =4.3 -0.102¥1 10W ª4.2W 0 Reading of Ammeter, 25W V 4.2 i = = =0.08A 1 R+ R 42 3 a (i) V -V =5¥25 24. Con sider the dir ec tions of cur rent as shown 3 0 in fig ure. fi V =125 V 3 (ii) V0 -V2 =5¥10 42V 5W A 4W V =-50 V 2 (iii) V -V =5¥5 2 1 V =-75 V I1 6W I2 10V (iv) V =5¥35=1175 V 8W 3-2 B (v) V1-2 =-5¥5=-25 V 1W C (vi) V1-3 =-200 V I3 23. (a) 6W i E r D 4V Applying KVL in loop 1, 2 and 3, we i R 1 A respectively get, i2 S I1 +6(I1 -I2)+5I1 =42 V fi 12I -6I =42 1 2 Reff = R||Rv + Ra + r fi 2I1 -I2 =7 …(i) 50¥200 4I +6(I -I )+ 8(I + I )=10 = +2+1 2 2 1 2 3 50+200 fi 9I -3I +4I =5 …(ii) 2 1 3 8(I + I )+16I =4 =43W 2 3 3 E 4.3 2I +6I =1 …(iii) i= = =0.1A 2 3 R 43 On solving, we get, eff \ Reading of ammeter, i=0.1A I1 =4.7A, I2 =2.4A, I3 =0.5A and reading of voltmeter =i(R||R ) Resistor 5W 1W 4W 6W 8W 16W v =0.1¥40=4V Current 4.7A 4.7A 2.4A 2.3A 2.9A 0.5A (b) i E r 25. R = 400W V400W 200W i R 1 A 100W 100W 200W fiA100W 100WD i C 2 i2 i2 B 200W V 100W 100W i i R =(R + R)||R + r 1 i 1 eff a v 52¥200 = +1 i 10 V i 10 V 52+200

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.