ebook img

Solutions Manuals for Calculus Early Transcendentals PDF

1213 Pages·2020·24.012 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solutions Manuals for Calculus Early Transcendentals

1 FUNCTIONS AND MODELS 1.1 FourWaystoRepresentaFunction 1. Thefunctions()=+√2 and()=+√2 giveexactlythesameoutputvaluesforeveryinputvalue,so − − andareequal. 2  ( 1) 2. ()= − = − =for 1=0,so and[where()=]arenotequalbecause(1)isundefinedand  1  1 − 6 − − (1)=1. 3. (a)Thepoint( 22)liesonthegraphof,so( 2)=2.Similarly,(0)= 2,(2)=1,and(3)25. − − − (b)Onlythepoint( 43)onthegraphhasa­valueof3,sotheonlyvalueofforwhich()=3is 4. − − (c)Thefunctionoutputs()arenevergreaterthan3,so() 3fortheentiredomainofthefunction.Thus,() 3for ≤ ≤ 4  4(or,equivalently,ontheinterval[ 44]). − ≤ ≤ − (d)Thedomainconsistsofall­valuesonthegraphof:  4  4 =[ 44].Therangeofconsistsofallthe { |− ≤ ≤ } − ­valuesonthegraphof:  2  3 =[ 23]. { |− ≤ ≤ } − (e)Forany  intheinterval[02],wehave( )( ).[Thegraphrisesfrom(0 2)to(21).]Thus,()is 1 2 1 2 − increasingon[02]. 4. (a)Fromthegraph,wehave( 4)= 2and(3)=4. − − (b)Since( 3)= 1and( 3)=2,orbyobservingthatthegraphofisabovethegraphof at= 3,( 3)islarger − − − − − than( 3). − (c)Thegraphsof andintersectat= 2and=2,so()=()atthesetwovaluesof. − (d)Thegraphof liesbeloworonthegraphoffor 4  2andfor2  3.Thus,theintervalsonwhich − ≤ ≤− ≤ ≤ () ()are[ 4 2]and[23]. ≤ − − (e)()= 1isequivalentto= 1,andthepointsonthegraphof with­valuesof 1are( 3 1)and(4 1),so − − − − − − thesolutionoftheequation()= 1is= 3or=4. − − (f)Forany  intheinterval[ 40],wehave( )( ).Thus,()isdecreasingon[ 40]. 1 2 1 2 − − (g)Thedomainof is  4  4 =[ 44].Therangeof is  2  3 =[ 23]. { |− ≤ ≤ } − { |− ≤ ≤ } − (h)Thedomainofis  4  3 =[ 43].Estimatingthelowestpointofthegraphofashavingcoordinates { |− ≤ ≤ } − (005),therangeofisapproximately  05  4 =[054]. { | ≤ ≤ } 5. FromFigure1inthetext,thelowestpointoccursatabout()=(12 85).Thehighestpointoccursatabout(17115). − Thus,therangeoftheverticalgroundaccelerationis 85  115.Writteninintervalnotation,therangeis[ 85115]. − ≤ ≤ − c 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,orduplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart. 9 ° 10 ¤ CHAPTER1 FUNCTIONSANDMODELS 6. Example1:Acarisdrivenat60mihfor2hours.Thedistance traveledbythecarisafunctionofthetime.Thedomainofthe functionis  0  2 ,whereismeasuredinhours.Therange { | ≤ ≤ } ofthefunctionis  0  120 ,whereismeasuredinmiles. { | ≤ ≤ } Example2:Atacertainuniversity,thenumberofstudents on campusatanytimeonaparticulardayisafunctionofthetimeafter midnight.Thedomainofthefunctionis  0  24 ,whereis { | ≤ ≤ } measuredinhours.Therangeofthefunctionis  0   , { | ≤ ≤ } where isanintegerandisthelargestnumberofstudentson campusatonce. Example3:Acertainemployeeispaid$800perhourandworksa pay maximumof30hoursperweek.Thenumberofhoursworkedis 240 238 roundeddowntothenearestquarterofanhour.Thisemployee’s 236 grossweeklypay isafunctionofthenumberofhoursworked. 4 Thedomainofthefunctionis[030]andtherangeofthefunctionis 2 02004002380024000 . 0 0.25 0.50 0.75 29.5029.75 30 hours { } 7. Wesolve3 5=7for:3 5=7 5= 3+7 = 3 7.Sincetheequationdeterminesexactly − − ⇔ − − ⇔ 5 −5 onevalueofforeachvalueof,theequationdefinesasafunctionof. 8. Wesolve32 2=5for: 32 2=5 2= 32+5 = 32 5.Sincetheequationdetermines − − ⇔ − − ⇔ 2 − 2 exactlyonevalueofforeachvalueof,theequationdefinesasafunctionof. 9. Wesolve2+( 3)2 =5for: 2+( 3)2 =5 ( 3)2 =5 2  3= √5 2 − − ⇔ − − ⇔ − ± − ⇔ =3 √5 2.Someinputvaluescorrespondtomorethanoneoutput.(Forinstance,=1correspondsto=1and ± − to=5.)Thus,theequationdoesnotdefineasafunctionof. 10. Wesolve2+52 =4for: 2+52 =4 52+(2) 4=0 ⇔ − ⇔ 2 (2)2 4(5)( 4) 2 √42+80  √2+20 = − ± − − = − ± = − ± (usingthequadraticformula).Someinput  2(5) 10 5 valuescorrespondtomorethanoneoutput.(Forinstance,=4correspondsto= 2andto=25.)Thus,the − equationdoesnotdefineasafunctionof. 11. Wesolve(+3)3+1=2for: (+3)3+1=2 (+3)3 =2 1 +3= √32 1 ⇔ − ⇔ − ⇔ = 3+√32 1.Sincetheequationdeterminesexactlyonevalueofforeachvalueof,theequationdefinesasa − − functionof. c 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,orduplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart. ° SECTION1.1 FOURWAYSTOREPRESENTAFUNCTION ¤ 11 12. Wesolve2  =0for: 2  =0  =2 = 2.Someinputvaluescorrespondtomorethan −| | −| | ⇔ | | ⇔ ± oneoutput.(Forinstance,=1correspondsto= 2andto=2.)Thus,theequationdoesnotdefineasafunction − of. 13. Theheight60in(=60)correspondstoshoesizes7and8(=7and=8).Sinceaninputvaluecorrespondstomore thanoutputvalue,thetabledoesnotdefineasafunctionof. 14. Eachyearcorrespondstoexactlyonetuitioncost.Thus,thetabledefinesasafunctionof. 15. No,thecurveisnotthegraphofafunctionbecauseaverticallineintersectsthecurvemorethanonce.Hence,thecurvefails theVerticalLineTest. 16. Yes,thecurveisthegraphofafunctionbecauseitpassestheVerticalLineTest.Thedomainis[ 22]andtherange − is[ 12]. − 17. Yes,thecurveisthegraphofafunctionbecauseitpassestheVerticalLineTest.Thedomainis[ 32]andtherange − is [ 3 2) [ 13]. − − ∪ − 18. No,thecurveisnotthegraphofafunctionsincefor=0, 1,and 2,thereareinfinitelymanypointsonthecurve. ± ± 19. (a)When=1950, 138◦C,sotheglobalaveragetemperaturein1950wasabout138◦C. ≈ (b)When =142 C, 1990. ◦ ≈ (c)Theglobalaveragetemperaturewassmallestin1910(theyearcorrespondingtothelowestpointonthegraph)andlargest in2000(theyearcorrespondingtothehighestpointonthegraph). (d)When=1910, 135 C,andwhen=2000, 144 C.Thus,therangeof isabout[135,144]. ◦ ◦ ≈ ≈ 20. (a)Theringwidthvariesfromnear0mmtoabout16mm,sotherangeoftheringwidthfunctionisapproximately[016]. (b)Accordingtothegraph,theearthgraduallycooledfrom1550to1700,warmedintothelate1700s,cooledagainintothe late1800s,andhasbeensteadilywarmingsincethen.Inthemid­19thcentury,therewasvariationthatcouldhavebeen associatedwithvolcaniceruptions. 21. Thewaterwillcooldownalmosttofreezingastheicemelts.Then,when theicehasmelted,thewaterwillslowlywarmuptoroomtemperature. 22. Thetemperatureofthepiewouldincreaserapidly,levelofftooven temperature,decreaserapidly,andthenlevelofftoroomtemperature. c 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,orduplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart. ° 12 ¤ CHAPTER1 FUNCTIONSANDMODELS 23. (a)Thepowerconsumptionat6AMis500 MWwhichisobtainedbyreadingthevalueofpower when=6fromthe graph.At6PMwereadthevalueof when=18obtainingapproximately730 MW (b)Theminimumpowerconsumptionisdeterminedbyfindingthetimeforthelowestpointonthegraph,=4or4AM.The maximumpowerconsumptioncorrespondstothehighestpointonthegraph,whichoccursjustbefore=12orright beforenoon.Thesetimesarereasonable,consideringthepowerconsumptionschedulesofmostindividualsand businesses. 24. RunnerAwontherace,reachingthefinishlineat100metersinabout15seconds,followedbyrunnerBwithatimeofabout 19seconds,andthenbyrunnerCwhofinishedinaround23seconds.Binitiallyledtherace,followedbyC,andthenA. CthenpassedBtoleadforawhile.ThenApassedfirstB,andthenpassedCtotaketheleadandfinishfirst.Finally, BpassedCtofinishinsecondplace.Allthreerunnerscompletedtherace. 25. Ofcourse,thisgraphdependsstronglyonthe 26.Thesummersolstice(thelongestdayoftheyear)is geographicallocation! aroundJune21,andthewintersolstice(theshortestday) isaroundDecember22.(Exchangethedatesforthe southernhemisphere.) 27. Asthepriceincreases,theamountsolddecreases. 28.Thevalueofthecardecreasesfairlyrapidlyinitially,then somewhatlessrapidly. 29. c 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,orduplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart. ° SECTION1.1 FOURWAYSTOREPRESENTAFUNCTION ¤ 13 30. (a) (b) (c) (d) 31. (a) (b)9:00AMcorrespondsto=9.When=9,the temperature isabout74 F. ◦ 32. (a) (b)Thebloodalcoholconcentrationrisesrapidly,thenslowly decreasestonearzero. 33. ()=32 +2. − (2)=3(2)2 2+2=12 2+2=12. − − ( 2)=3( 2)2 ( 2)+2=12+2+2=16. − − − − ()=32 +2. − ( )=3( )2 ( )+2=32++2. − − − − (+1)=3(+1)2 (+1)+2=3(2+2+1)  1+2=32+6+3 +1=32+5+4. − − − − 2()=2 ()=2(32 +2)=62 2+4. · − − (2)=3(2)2 (2)+2=3(42) 2+2=122 2+2. − − − [continued] c 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,orduplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart. ° 14 ¤ CHAPTER1 FUNCTIONSANDMODELS (2)=3(2)2 (2)+2=3(4) 2+2=34 2+2. − − − [()]2= 32 +2 2 = 32 +2 32 +2 − − − =94 33+62 33+2 2+62 2+4=94 63+132 4+4 − − − − − − (+)=3(+)2 (+)+2=3(2+2+2)  +2=32+6+32  +2. − − − − −  34. ()= . √+1 0 (0)= =0. √0+1 3 3 (3)= = . √3+1 2  5 5()=5 = . · √+1 √+1 1 1 1 4 2 (4)= (4)= = . 2 2 · 2 · √4+1 √4+1 2  2 2 (2)= ;[()]2 = = . √2+1 √+1 +1   (+) + (+)= = . (+)+1 √++1  ( )   ( )= − = − . − ( )+1 √ +1 − −  35. ()=4+3 2,so(3+)=4+3(3+) (3+)2 =4+9+3 (9+6+2)=4 3 2, − − − − − (3+) (3) (4 3 2) 4 ( 3 ) and − = − − − = − − = 3 .    − − 36. () = 3,so(+) = (+)3 = 3+32+32+3, (+) () (3+32+32+3) 3 (32+3+2) and − = − = =32+3+2.    1 1   37. ()= 1,so ()−() =  −  = − = − = −1(−) = 1 .        ( ) ( ) − − − − − − () (1) √+2 √3 38. ()=√+2,so − = − .Dependinguponthecontext,thismaybeconsideredsimplified.  1  1 − − Note:Wemayalsorationalizethenumerator: √+2 √3 √+2 √3 √+2+√3 (+2) 3 − = − = −  1  1 · √+2+√3 ( 1) √ 2+√3 − − − −  1 1 = − =   ( 1) √ 2+√3 √+2+√3 − −   39. ()=(+4)(2 9)isdefinedforallexceptwhen0=2 9 0=(+3)( 3) = 3or3,sothe − − ⇔ − ⇔ − domainis   = 33 =(  3) ( 33) (3 ). { ∈ | 6 − } −∞ − ∪ − ∪ ∞ c 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,orduplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart. ° SECTION1.1 FOURWAYSTOREPRESENTAFUNCTION ¤ 15 2+1 40. Thefunction()= isdefinedforallvaluesofexceptthoseforwhich2+4 21=0 2+4 21 − ⇔ − (+7)( 3)=0 = 7or=3.Thus,thedomainis   = 73 =(  7) ( 73) (3 ). − ⇔ − { ∈ | 6 − } −∞ − ∪ − ∪ ∞ 41. ()= √32 1isdefinedforallrealnumbers.Infact 3 (),where()isapolynomial,isdefinedforallrealnumbers. − Thus,thedomainisor(  ).  −∞ ∞ 42. ()=√3  √2+isdefinedwhen3  0  3and2+ 0  2.Thus,thedomainis − − − ≥ ⇔ ≤ ≥ ⇔ ≥− 2  3,or[ 23]. − ≤ ≤ − 43. ()=1 √42 5 isdefinedwhen2 50 ( 5)0.Notethat2 5=0sincethatwouldresultin − − ⇔ − − 6 divisionbyzero.Theexpression( 5)ispositiveif0or5.(SeeAppendixAformethodsforsolving − inequalities.)Thus,thedomainis( 0) (5 ). −∞ ∪ ∞ +1 1 1 44. ()= isdefinedwhen+1=0 [= 1] and1+ =0.Since1+ =0 1 6 6 − +1 6 +1 ⇔ 1+ +1 1 = 1 1=  1 = 2,thedomainis  = 2,= 1 =(  2) ( 2 1) ( 1 ). +1 − ⇔ − − ⇔ − { | 6 − 6 − } −∞ − ∪ − − ∪ − ∞ 45. ()= 2 √isdefinedwhen 0and2 √ 0.Since2 √ 0 2 √ √ 2 − ≥ − ≥ − ≥ ⇔ ≥ ⇔ ≤ ⇔ 0  4,thedomainis[04]. ≤ ≤ 46. Thefunction()=√2 4 5isdefinedwhen2 4 5 0 (+1)( 5) 0.Thepolynomial − − − − ≥ ⇔ − ≥ ()=2 4 5maychangesignsonlyatitszeros,sowetestvaluesofontheintervalsseparatedby= 1and − − − =5: ( 2)=70,(0)= 50,and(6)=70.Thus,thedomainof,equivalenttothesolutionintervals − − of() 0,is   1or 5 =(  1] [5 ). ≥ { | ≤− ≥ } −∞ − ∪ ∞ 47. ()=√4 2.Now=√4 2 2 =4 2 2+2=4,so − − ⇒ − ⇔ thegraphisthetophalfofacircleofradius2withcenterattheorigin.Thedomain is  4 2 0 =  4 2 =  2  =[ 22].Fromthegraph, | − ≥ | ≥ { | ≥| |} − therangeis0   2,or[02].  ≤ ≤ 2 4 48. Thefunction()= − isdefinedwhen 2=0 =2,sothe  2 − 6 ⇔ 6 − domainis  =2 =( 2) (2 ).Onitsdomain, { | 6 } −∞ ∪ ∞ 2 4 ( 2)(+2) ()= − = − =+2.Thus,thegraphof isthe  2  2 − − line=+2withaholeat(24). c 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,orduplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart. ° 16 ¤ CHAPTER1 FUNCTIONSANDMODELS 2+2 if 0 49. ()=  if  0 ≥ ( 3)=( 3)2+2=11,(0)=0,and(2)=2. − − 5 if 2 50. ()= 1 3 if  2 2 − ≥ ( 3)=5,(0)=5,and(2)= 1(2) 3= 2. − 2 − − +1 if  1 51. ()= ≤− 2 if  1 − ( 3)= 3+1= 2,(0)=02=0,and(2)=22 =4. − − − 1 if  1 52. ()= − ≤ 7 2 if 1 − ( 3)= 1,(0)= 1,and(2)=7 2(2)=3. − − − −  if  0 53.  = ≥ | |   if 0 − 2 if  0 so ()=+  = ≥ | | 0 if 0 Graphtheline=2for 0andgraph=0(the­axis)for0 ≥ c 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,orduplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart. ° SECTION1.1 FOURWAYSTOREPRESENTAFUNCTION ¤ 17 +2 if +2 0 54. ()= +2 = ≥ | |  (+2) if +20 − +2 if  2 = ≥−   2 if  2 − − − 1 3 if 1 3 0 55. ()= 1 3 = − − ≥ | − |  (1 3) if 1 30 − − − 1 3 if  1 = − ≤ 3 3 1 if  1 − 3  56. ()= | |  Thedomainof is  =0 and  =if0,  = if0. { | 6 } | | | | − Sowecanwrite  − = 1 if 0  − ()=   =1 if 0   if  1 57. Tograph()= | | | |≤ ,graph=  [Figure16] 1 if  1 | | | | for 1  1andgraph=1for1andfor 1. − ≤ ≤ − 1 if  1 −  if 1 0  Wecouldrewritef as()= − − ≤ .  if 0≤≤1 1 if 1   1 if  1 0 58. ()=  1 = | |− | |− ≥ | |−  ( 1) if  10   − | |− | |−      1 if  1 = | |− | |≥   +1 if  1 −| | | |  1 if  1and 0  1 if  1 − | |≥ ≥ − ≥  1 if  1and0  1 if  1   = − − | |≥ = − − ≤− −+1 if ||1and≥0 −+1 if 0≤1 ( )+1 if  1and0 +1 if 10 − − | |  − c 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,orduplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart. ° 18 ¤ CHAPTER1 FUNCTIONSANDMODELS   59. Recallthattheslopeofalinebetweenthetwopoints(11)and(22)is= 2−1 andanequationoftheline 2 1 − connectingthosetwopointsis  =(  ).Theslopeofthelinesegmentjoiningthepoints(1 3)and(57)is 1 1 − − − 7 ( 3) 5 − − = ,soanequationis ( 3)= 5( 1).Thefunctionis()= 5 11,1  5. 5 1 2 − − 2 − 2 − 2 ≤ ≤ − 10 10 5 60. Theslopeofthelinesegmentjoiningthepoints( 510)and(7 10)is − − = ,soanequationis − − 7 ( 5) −3 − −  10= 5[ ( 5)].Thefunctionis()= 5+ 5, 5  7. − −3 − − −3 3 − ≤ ≤ 61. Weneedtosolvethegivenequationfor. +( 1)2 =0 ( 1)2 =   1= √  − ⇔ − − ⇔ − ± − ⇔ =1 √ .Theexpressionwiththepositiveradicalrepresentsthetophalfoftheparabola,andtheonewiththenegative ± − radicalrepresentsthebottomhalf.Hence,wewant()=1 √ .Notethatthedomainis 0. − − ≤ 62. 2+( 2)2 =4 ( 2)2 =4 2  2= √4 2 =2 √4 2.Thetophalfisgivenby − ⇔ − − ⇔ − ± − ⇔ ± − thefunction()=2+√4 2, 2  2. − − ≤ ≤ 63. For0  3,thegraphisthelinewithslope 1and­intercept3,thatis,= +3.For3 5,thegraphistheline ≤ ≤ − − ≤ withslope2passingthrough(30);thatis, 0=2( 3),or=2 6.Sothefunctionis − − − +3 if 0  3 ()= − ≤ ≤ 2 6 if 3 5 − ≤ 64. For 4  2,thegraphisthelinewithslope 3 passingthrough( 20);thatis, 0= 3[ ( 2)],or − ≤ ≤− −2 − − −2 − − = 3 3.For 22,thegraphisthetophalfofthecirclewithcenter(00)andradius2.Anequationofthecircle −2 − − is2+2 =4,soanequationofthetophalfis=√4 2.For2  4,thegraphisthelinewithslope 3 passing − ≤ ≤ 2 through(20);thatis, 0= 3( 2),or= 3 3.Sothefunctionis − 2 − 2 − 3 3 if 4  2 −2 − − ≤ ≤− ()=√4 2 if 22 3−3 if −2  4 2 − ≤ ≤  65. Letthelengthandwidthoftherectanglebeand.Thentheperimeteris2+2 =20andtheareais=. 20 2 Solvingthefirstequationfor intermsofgives = − =10 .Thus,()=(10 )=10 2.Since 2 − − − lengthsarepositive,thedomainofis010.Ifwefurtherrestricttobelargerthan,then510wouldbe thedomain. 66. Letthelengthandwidthoftherectanglebeand.Thentheareais =16,sothat =16.Theperimeteris  =2+2,so()=2+2(16)=2+32,andthedomainof is0,sincelengthsmustbepositive quantities.Ifwefurtherrestricttobelargerthan,then4wouldbethedomain. c 2021CengageLearning.AllRightsReserved.Maynotbescanned,copied,orduplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart. °

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.