ebook img

Solutions manual to accompany Atkins physical Chemistry-11th-ed PDF

675 Pages·2018·3.82 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solutions manual to accompany Atkins physical Chemistry-11th-ed

Instructor Solutions Manual to Accompany Atkins’ Physical Chemistry ELEVENTHEDITION Peter Bolgar Haydn Lloyd Aimee North Vladimiras Oleinikovas Stephanie Smith and James Keeler DepartmentofChemistry UniversityofCambridge UK OUPlegalpage Table of contents Preface vii 1 Thepropertiesofgases 1 1A Theperfectgas 1 1B Thekineticmodel 10 1C Realgases 19 2 Internalenergy 35 2A Internalenergy 35 2B Enthalpy 40 2C Thermochemistry 43 2D Statefunctionsandexactdifferentials 49 2E Adiabaticchanges 55 3 Thesecondandthirdlaws 63 3A Entropy 63 3B Entropychangesaccompanyingspecificprocesses 68 3C Themeasurementofentropy 80 3D Concentratingonthesystem 87 3E CombiningtheFirstandSecondLaws 92 4 Physicaltransformationsofpuresubstances 99 4A Phasediagramsofpuresubstances 99 4B Thermodynamicaspectsofphasetransitions 101 5 Simplemixtures 115 5A Thethermodynamicdescriptionofmixtures 115 5B Thepropertiesofsolutions 126 5C Phasediagramsofbinarysystems:liquids 141 5D Phasediagramsofbinarysystems:solids 148 5E Phasediagramsofternarysystems 154 5F Activities 158 6 Chemicalequilibrium 171 6A Theequilibriumconstant 171 iv TABLEOFCONTENTS 6B Theresponseofequilibriatotheconditions 179 6C Electrochemicalcells 190 6D Electrodepotentials 197 7 Quantumtheory 215 7A Theoriginsofquantummechanics 215 7B Wavefunctions 223 7C Operatorsandobservables 227 7D Translationalmotion 236 7E Vibrationalmotion 248 7F Rotationalmotion 257 8 Atomicstructureandspectra 271 8A HydrogenicAtoms 271 8B Many-electronatoms 277 8C Atomicspectra 279 9 MolecularStructure 287 9A Valence-bondtheory 287 9B Molecularorbitaltheory:thehydrogenmolecule-ion 292 9C Molecularorbitaltheory:homonucleardiatomicmolecules 298 9D Molecularorbitaltheory:heteronucleardiatomicmolecules 302 9E Molecularorbitaltheory:polyatomicmolecules 307 10 Molecularsymmetry 321 10A Shapeandsymmetry 321 10B Grouptheory 329 10C Applicationsofsymmetry 337 11 MolecularSpectroscopy 349 11A Generalfeaturesofmolecularspectroscopy 349 11B Rotationalspectroscopy 357 11C Vibrationalspectroscopyofdiatomicmolecules 371 11D Vibrationalspectroscopyofpolyatomicmolecules 384 11E Symmetryanalysisofvibrationalspectroscopy 385 11F Electronicspectra 388 11G Decayofexcitedstates 398 TABLEOFCONTENTS v 12 Magneticresonance 409 12A Generalprinciples 409 12B FeaturesofNMRspectra 412 12C PulsetechniquesinNMR 421 12D Electronparamagneticresonance 429 13 Statisticalthermodynamics 435 13A TheBoltzmanndistribution 435 13B Partitionfunctions 439 13C Molecularenergies 449 13D Thecanonicalensemble 456 13E Theinternalenergyandentropy 457 13F Derivedfunctions 473 14 MolecularInteractions 485 14A Electricpropertiesofmolecules 485 14B Interactionsbetweenmolecules 496 14C Liquids 504 14D Macromolecules 506 14E Self-assembly 517 15 Solids 523 15A Crystalstructure 523 15B Diffractiontechniques 526 15C Bondinginsolids 534 15D Themechanicalpropertiesofsolids 539 15E Theelectricalpropertiesofsolids 541 15F Themagneticpropertiesofsolids 543 15G Theopticalpropertiesofsolids 546 16 Moleculesinmotion 551 16A Transportpropertiesofaperfectgas 551 16B Motioninliquids 558 16C Diffusion 563 17 Chemicalkinetics 573 17A Theratesofchemicalreactions 573 vi TABLEOFCONTENTS 17B Integratedratelaws 579 17C Reactionsapproachingequilibrium 593 17D TheArrheniusequation 597 17E Reactionmechanisms 601 17F Examplesofreactionmechanisms 607 17G Photochemistry 614 18 Reactiondynamics 621 18A Collisiontheory 621 18B Diffusion-controlledreactions 626 18C Transition-statetheory 629 18D Thedynamicsofmolecularcollisions 639 18E Electrontransferinhomogeneoussystems 640 19 Processesatsolidsurfaces 647 19A Anintroductiontosolidsurfaces 647 19B Adsorptionanddesorption 650 19C Heterogeneouscatalysis 660 19D Processesatelectrodes 662 Preface Thismanualprovidesdetailedsolutionstothe(b)Exercisesandtheeven-numberedDiscus- sionquestionsandProblemsfromthe11theditionofAtkins’PhysicalChemistry. Conventionsusedispresentingthesolutions Wehaveincludedpage-specificreferencestoequations,sections,figuresandotherfeatures ofthemaintext.Equationreferencesaredenoted[14B.3b–595],meaningeqn14B.3blocated onpage595(thepagenumberisgiveninitalics). Otherfeaturesarereferredtobyname, withapagenumberalsogiven. Generallyspeaking,thevaluesofphysicalconstants(fromthefirstpageofthemaintext) are used to 5 significant figures except in a few cases where higher precision is required. In line with the practice in the main text, intermediate results are simply truncated (not rounded)tothreefigures,withsuchtruncationindicatedbyanellipsis,asin0.123...; the valueisusedinsubsequentcalculationstoitsfullprecision. Thefinalresultsofcalculations,generallytobefoundin abox,aregiventotheprecision warrantedbythedataprovided.Wehavebeenrigorousinincludingunitsforallquantities so that the units of the final result can be tracked carefully. The relationships given on thebackofthefrontcoverareusefulinresolvingtheunitsofmorecomplexexpressions, especiallywhereelectricalquantitiesareinvolved. Someoftheproblemseitherrequiretheuseofmathematicalsoftwareoraremucheasier withtheaidofsuchatool. InsuchcaseswehaveusedMathematica(WolframResearch, Inc.) inpreparingthesesolutions,buttherearenodoubtotheroptionsavailable. Someof theDiscussionquestionsrelatedirectlytospecificsectionofthemaintextinwhichcasewe havesimplygivenareferenceratherthanrepeatingthematerialfromthetext. Acknowledgements Inpreparingthismanualwehavedrawnontheequivalentvolumepreparedforthe10thedi- tionofAtkins’PhysicalChemistrybyCharlesTrapp,MarshallCady,andCarmenGiunta.In particular,thesolutionswhichusequantumchemicalcalculationsormolecularmodelling software,andsomeofthesolutionstotheDiscussionquestions,havebeenquoteddirectly from the solutions manual for the 10th edition, without significant modification. More generally,wehavebenefitedfromtheabilitytorefertotheearliervolumeandacknowledge, withthanks,theinfluencethatitsauthorshavehadonthepresentwork. This manual has been prepared by the authors using the LATEX typesetting system, in theimplementationprovidedbyMiKTEX(miktex.org); thevastmajorityofthefigures andgraphshavebeengeneratedusingPGFPlots. Wearegratefultothecommunitywho maintainanddeveloptheseoutstandingresources. Finally, we are grateful to the editorial team at OUP, Jonathan Crowe and Roseanna Levermore,fortheirinvaluablesupportinbringingthisprojecttoaconclusion. viii PREFACE Errorsandomissions Insuchacomplexundertakingsomeerrorswillnodoubthavecreptin,despitetheauthors’ bestefforts.Readerswhoidentifyanyerrorsoromissionsareinvitedtopassthemontous [email protected]. 1 The properties of gases 1A Theperfectgas Answerstodiscussionquestions D1A.2 ThepartialpressureofgasJ,pJ,inamixtureofgasesisgivenby[1A.6–9],pJ = xJp,wherepisthetotalpressureandxJisthemolefractionofJ. Ifthegasesareperfect,thepartialpressureisalsothepressurethegaswould exertifitoccupiedonitsownthesamecontainerasthemixtureatthesame temperature.ThisleadstoDalton’slaw,whichisthatthepressureofamixture ofgasesisthesumofthepressuresthateachonewouldexertifitoccupiedthe containeralone. Dalton’slawisalimitinglawbecauseitholdsexactlyonlyinthelimitthatthere arenointeractionsbetweenthemolecules,whichforrealgaseswillbeinthe limitofzeropressure. Solutionstoexercises E1A.1(b) Frominsidethefrontcovertheconversionbetweenpressureunitsis: 1atm≡ 101.325kPa≡760Torr. (i) Apressureof22.5kPaisconvertedtoatmasfollows 1atm 22.5kPa× = 0.222atm 101.325kPa (ii) Apressureof770TorrisconvertedtoPaasfollows 1atm 101.325kPa 770Torr× × =103kPa= 1.03×105Pa 760Torr 1atm E1A.2(b) The perfect gas law [1A.4–8], pV = nRT, is rearranged to give the pressure, p=nRT/V.Theamountnisfoundbydividingthemassbythemolarmassof Ar,39.95gmol−1. n ‡„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„•„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„(cid:181) (25g) (8.3145×10−2dm3barK−1mol−1)×(303.15K) p= (39.95gmol−1) 1.5dm3 =10.4bar So no,thesamplewouldnotexertapressureof2.0bar,but 10.4bar ifitwere aperfectgas. 2 1THEPROPERTIESOFGASES E1A.3(b) Because the temperature is constant (isothermal) Boyle’s law applies, pV = const.ThereforetheproductpV isthesamefortheinitialandfinalstates pfVf = piVi hence pi = pfVf/Vi Theinitialvolumeis1.80dm3greaterthanthefinalvolumesoVi =2.14+1.80= 3.94dm3. pi = VVfi ×pf = 23..1944ddmm33 ×(1.97bar)=1.07bar (i) Theininitialpressureis 1.07bar (ii) Because1atmisequivalentto1.01325barandalsoto760Torr,theinitial pressureexpressedinTorris 1atm 760Torr × ×1.07bar= 803Torr 1.01325bar 1atm E1A.4(b) Ifthegasisassumedtobeperfect,theequationofstateis[1A.4–8],pV =nRT. In this case the volume and amount (in moles) of the gas are constant, so it followsthatthepressureisproportionaltothetemperature:p∝T.Theratioof thefinalandinitialpressuresisthereforeequaltotheratioofthetemperatures: pf/pi = Tf/Ti. Solving for the final pressure pf (remember to use absolute temperatures)gives pf = Tf ×pi Ti (11+273.15)K = ×(125kPa)= 120kPa (23+273.15)K E1A.5(b) TheperfectgaslawpV =nRTisrearrangedtogiven= pV/RT. pV n= RT (1.00×1.01325×105Pa)×(4.00×103m3) = = 1.66...×105mol (8.3145JK−1mol−1)×([20+273.15]K) where1J=1kgm2s−2and1Pa=1kgm−1s−2havebeenused. ThemolarmassofCH is12.01+4×1.0079=16.0416gmol−1,sothemassof 4 CH is(1.66...×105mol)×(16.0416gmol−1)=2.67×106gor 2.67×103kg. 4 E1A.6(b) Thevapourisassumedtobeaperfectgas,sothegaslawpV =nRTapplies.The taskistousethisexpressiontorelatethemeasuredmassdensitytothemolar mass. First,theamountnisexpressedasthemassmdividedbythemolarmassMto give pV = (m/M)RT;divisionofbothsidesbyV gives p = (m/V)(RT/M).

Description:
Solutions_manual_to_accompany_Atkins_physical_Chemistry-11th-ed.pdf
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.