Solutions Manual for Thermodynamics and Chemistry Second Edition by Howard DeVoe AssociateProfessorofChemistryEmeritus UniversityofMaryland,CollegePark,Maryland [email protected] Copyright2020byHowardDeVoe ThisworkislicensedunderaCreativeCommonsAttribution4.0InternationalLicense: https://creativecommons.org/licenses/by/4.0/ Contents Preface 3 1 Introduction 4 2 SystemsandTheirProperties 5 3 TheFirstLaw 8 4 TheSecondLaw 16 5 ThermodynamicPotentials 19 6 TheThirdLawandCryogenics 24 7 PureSubstancesinSinglePhases 26 8 PhaseTransitionsandEquilibriaofPureSubstances 36 9 Mixtures 41 10 ElectrolyteSolutions 55 11 ReactionsandOtherChemicalProcesses 58 12 EquilibriumConditionsinMulticomponentSystems 77 13 ThePhaseRuleandPhaseDiagrams 94 14 GalvanicCells 104 Preface Thismanualcontainsdetailedsolutionstotheproblemsappearingattheendofeachchapter ofthetextThermodynamicsandChemistry. Eachproblemprintedinthetextisreproducedinthismanual,followedbyaworked-out solution. If a figure or table accompanies a problem in the text, it is also reproduced here. Included within a solution may be an additional figure or table that does not appear in the text. Allfigures,tables,andfootnotesinthismanualarenumberedconsecutively(Figure1, Figure2,etc.) andsodonotagreewiththenumberinginthetext. Inmostcasesofanumericalcalculationinvolvingphysicalquantities,thesetupinthis manual shows the values of given individual physical quantities expressed in SI base units andSIderivedunits, withoutprefixes. TheresultofthecalculationisthenexpressedinSI base units and SI derived units appropriate to the physical quantity being evaluated. Since the factors needed to convert the units of the given quantities to the units of the calculated quantityallhavenumericalvaluesofunitywhenthisprocedureisfollowed,theconversion factorsarenotshown. Ofcourse, thesolutiongiveninthismanualforanyparticularproblemisprobablynot theonlywaytheproblemcanbesolved;othersolutionsmaybeequallyvalid. 4 Chapter 1 Introduction 1.1 Consider the following equations for the pressure of a real gas. For each equation, find the dimensionsoftheconstantsaandbandexpressthesedimensionsinSIunits. (a) TheDietericiequation: RTe .an=VRT/ p (cid:0) D .V=n/ b (cid:0) Solution: Sincean=VRT isapower,itisdimensionlessandahasthesamedimensionsas VRT=n. Thesedimensionsarevolume energy/amount2,expressedinm3Jmol 2. bhas (cid:0) (cid:1) thesamedimensionsasV=n,whicharevolume/amountexpressedinm3mol 1. (cid:0) (b) TheRedlich–Kwongequation: RT an2 p D .V=n/ b (cid:0) T1=2V.V nb/ (cid:0) C Solution: Theterman2=T1=2V.V nb/hasthesamedimensionsasp,soahasthesame C dimensionsasT1=2V2pn 2. TheSIunitsareK1=2m6Pamol 2. bhasthesame (cid:0) (cid:0) dimensionsasV=n,whicharevolume/amountexpressedinm3mol 1. (cid:0) 5 Chapter 2 Systems and Their Properties 2.1 LetX representthequantityV2 withdimensions.length/6. GiveareasonthatX isorisnot anextensiveproperty. GiveareasonthatX isorisnotanintensiveproperty. Solution: X isnotanextensivepropertybecauseitisnotadditive: .V(cid:146)/2 .V(cid:147)/2 .V(cid:146) V(cid:147)/2(e.g., C ⁄ C 12 12 22). C ⁄ X isnotanintensivepropertybecauseitisdependentonvolume. 2.2 Calculate the relative uncertainty (the uncertainty divided by the value) for each of the mea- surementmethodslistedinTable2.2onpage38,usingthetypicalvaluesshown. Foreachof thefivephysicalquantitieslisted,whichmeasurementmethodhasthesmallestrelativeuncer- tainty? Solution: Mass: analyticalbalance,0:1 10 3g=100g 1 10 6 (cid:0) (cid:0) (cid:2) D (cid:2) microbalance,0:1 10 6g=20 10 3g 5 10 6 (cid:0) (cid:0) (cid:0) (cid:2) (cid:2) D (cid:2) Volume: pipet,0:02ml=10mL 2 10 3 (cid:0) D (cid:2) volumetricflask,0:3 10 3L=1L 3 10 4 (cid:0) (cid:0) (cid:2) D (cid:2) Density: pycnometer,2 10 3gmL 1=1gmL 1 2 10 3 (cid:0) (cid:0) (cid:0) (cid:0) (cid:2) D (cid:2) magneticfloatdensimeter,0:1 10 3gmL 1=1gmL 1 1 10 4 (cid:0) (cid:0) (cid:0) (cid:0) (cid:2) D (cid:2) Pressure: manometerorbarometer,0:001Torr=760Torr 1 10 6 (cid:0) D (cid:2) diaphragmgauge,1Torr=100Torr 1 10 2 (cid:0) D (cid:2) Temperature: gasthermometer,0:001K=10K 1 10 4 (cid:0) D (cid:2) mercurythermometer,0:01K=300K 3 10 5 (cid:0) D (cid:2) platinumresistancethermometer,0:0001K=300K 3 10 7 (cid:0) D (cid:2) opticalpyrometer,0:03K=1300K 2 10 5 (cid:0) D (cid:2) Themeasurementoftemperaturewithaplatinumresistancethermometerhastheleastrelative uncertainty,andthemeasurementofpressurewithadiaphragmgaugehasthegreatest. For eachphysicalquantity,themeasurementmethodwithsmallestrelativeuncertaintyis underlinedintheprecedinglist. 2.3 Table1onthenextpagelistsdataobtainedfromaconstant-volumegasthermometercontaining samplesofvaryingamountsofheliummaintainedatacertainfixedtemperatureT inthegas 2 bulb.1 ThemolarvolumeV ofeachsamplewasevaluatedfromitspressureinthebulbata m referencetemperatureofT 7:1992K, correctedforgasnonidealitywiththeknownvalue 1 D ofthesecondvirialcoefficientatthattemperature. UsethesedataandEq.2.2.2onpage34toevaluateT andthesecondvirialcoefficientofhe- 2 liumattemperatureT .(Youcanassumethethirdandhighervirialcoefficientsarenegligible.) 2 Solution: Withthethirdandhighervirialcoefficientssetequaltozero,Eq.2.2.2becomes (cid:18) B (cid:19) pV RT 1 m D C V m 1Ref.[13]. 6 Table1 Heliumatafixedtemperature .1=V /=102molm 3 .p V =R/=K m (cid:0) 2 m 1.0225 2.7106 1.3202 2.6994 1.5829 2.6898 1.9042 2.6781 2.4572 2.6580 2.8180 2.6447 3.4160 2.6228 3.6016 2.6162 4.1375 2.5965 4.6115 2.5790 5.1717 2.5586 2.8 2:7 bc K bc bc = bc / R = bc m bc V p2 bc bc . 2:6 bc bc bc 2:5 0 1 2 3 4 5 6 .1=Vm/=102molm�3 Figure1 Accordingtothisequation,aplotofp V =Rversus1=V shouldbelinearwithanintercept 2 m m at1=V 0equaltoT andaslopeequaltoBT . TheplotisshowninFig.1. Aleast-squares mD 2 2 fitofthedatatoafirst-orderpolynomialyieldsaninterceptof2:7478Kandaslopeof 3:659 10 4Km3mol 1. Thetemperatureandsecondvirialcoefficientthereforehavethe (cid:0) (cid:0) (cid:0) (cid:2) values T 2:7478K 2 D 3:659 10 4Km3mol 1 B (cid:0) (cid:2) (cid:0) (cid:0) 1:332 10 4m3mol 1 D 2:7478K D(cid:0) (cid:2) (cid:0) (cid:0) 2.4 Discussthepropositionthat,toacertaindegreeofapproximation,alivingorganismisasteady- statesystem. Solution: Theorganismcanbetreatedasbeinginasteadystateifweassumethatitsmassisconstant 7 andifweneglectinternalmotion. Matterenterstheorganismintheformoffood,water,and oxygen;wastematterandheatleavethesystem. 2.5 The value of (cid:129)U for the formation of one mole of crystalline potassium iodide from its el- ements at 25 C and 1bar is 327:9kJ. Calculate (cid:129)m for this process. Comment on the (cid:14) (cid:0) feasibilityofmeasuringthismasschange. Solution: (cid:129)m (cid:129)U=c2 327:9 103J=.2:998 108ms 1/2 3:648 10 12kg (cid:0) (cid:0) D D(cid:0) (cid:2) (cid:2) D(cid:0) (cid:2) Thismasschangeismuchlessthantheuncertaintyofamicrobalance(Table2.2),whichdoes notevenhavethecapacitytoweighonemoleofKI—soitishopelesstotrytomeasurethis masschange. 8 Chapter 3 The First Law 3.1 AssumeyouhaveametalspringthatobeysHooke’slaw: F c.l l /,whereF istheforce 0 D (cid:0) exertedonthespringoflengthl,l isthelengthoftheunstressedspring,andc isthespring 0 constant. Findanexpressionfortheworkdoneonthespringwhenyoureversiblycompressit fromlengthl toashorterlengthl . 0 0 Solution: l l w DZl00F dl DcZl00.l (cid:0)l0/dl D 12c.l (cid:0)l0/2(cid:12)(cid:12)ll00 D 12c.l0(cid:0)l0/2 air water Figure2 3.2 TheapparatusshowninFig.2consistsoffixedamountsofwaterandairandanincompressible solidglasssphere(amarble),allenclosedinarigidvesselrestingonalabbench. Assumethe marblehasanadiabaticouterlayersothatitstemperaturecannotchange,andthatthewallsof thevesselarealsoadiabatic. Initiallythemarbleissuspendedabovethewater. Whenreleased,itfallsthroughtheairinto the water and comes to rest at the bottom of the vessel, causing the water and air (but not the marble) to become slightly warmer. The process is complete when the system returns to anequilibriumstate. Thesystemenergychangeduringthisprocessdependsontheframeof reference and on how the system is defined. (cid:129)E is the energy change in a lab frame, and sys (cid:129)U istheenergychangeinaspecifiedlocalframe. Foreachofthefollowingdefinitionsofthesystem, givethesign(positive, negative, orzero) ofboth(cid:129)E and(cid:129)U,andstateyourreasoning. Takethelocalframeforeachsystemtobea sys center-of-massframe. Solution: Becauseqiszeroineachpartofthisproblem,(cid:129)E isequaltow and(cid:129)U isequaltow. sys lab WecanuseEq.3.1.4with(cid:129)(cid:0)v2 (cid:1)setequaltozero: (cid:129)U (cid:129)E w w mg(cid:129)z cm (cid:0) sys D lab(cid:0) D(cid:0) cm or(cid:129)E (cid:129)U mg(cid:129)z . sys D C cm (a) Thesystemisthemarble. Solution: (cid:129)U iszero,becausethestateofthesystemisunchanged. (cid:129)E isnegative,becauseinthelabframethemarbledoesworkonthewater(page83). sys Thiscanalsobededucedusing(cid:129)E (cid:129)U mg(cid:129)z andthefactthat(cid:129)U iszero sys D C cm and(cid:129)z isnegative. cm 9 (b) Thesystemisthecombinationofwaterandair. Solution: (cid:129)U ispositive,becausethesystem’stemperatureincreasesatconstantvolume. (cid:129)E ispositive,becauseboth(cid:129)U and(cid:129)z arepositive(thecenterofgravityofthe sys cm waterriseswhenthemarbleentersthewater). Thiscanalsobededucedbyconsidering thatthenetforceexertedbythesinkingmarbleonthewaterandthedisplacementofthe boundaryatthemarbleareinthesamedirection(downward). (c) Thesystemisthecombinationofwater,air,andmarble. Solution: (cid:129)E iszero,becausew iszero(thereisnodisplacementofthesystemboundaryin sys lab thelabframe). (cid:129)U ispositive,because(cid:129)E iszeroand(cid:129)z isnegative. Thiscanalsobededuced sys cm fromthefactthatU isanextensiveproperty,sothat(cid:129)U forthissystemisequaltothe sumoftheinternalenergychangeofthemarbleandtheinternalenergychangeofthe waterandair. Inparts(a)and(b)thesechangeswerefoundtobezeroandpositive, respectively. p D3:00bar porous V D0:500m3 plug piston T D300:0K gas T D300:0K ext p D1:00bar ext Figure3 3.3 Figure3showstheinitialstateofanapparatusconsistingofanidealgasinabulb,astopcock, a porous plug, and a cylinder containing a frictionless piston. The walls are diathermal, and thesurroundingsareataconstanttemperatureof300:0Kandaconstantpressureof1:00bar. Whenthestopcockisopened,thegasdiffusesslowlythroughtheporousplug,andthepiston movesslowlytotheright. Theprocessendswhenthepressuresareequalizedandthepiston stopsmoving. Thesystemisthegas. Assumethatduringtheprocessthetemperaturethrough- outthesystemdiffersonlyinfinitesimallyfrom300:0Kandthepressureonbothsidesofthe pistondiffersonlyinfinitesimallyfrom1:00bar. (a) Which of these terms correctly describes the process: isothermal, isobaric, isochoric, reversible,irreversible? Solution: Theprocessisisothermalandirreversible,butnotisobaric,isochoric,orreversible. Note thatthepressuregradientacrosstheporousplugpreventsintermediatestatesofthe processfrombeingequilibriumstates,andkeepstheprocessfrombeingreversible;there isnoinfinitesimalchangethatcanreversethemotionofthepiston. (b) Calculateqandw. Solution: BecauseT isconstantandthegasisideal,therelationp V p V holds,andthefinal 1 1 2 2 D volumeisfoundfrom 10 p V .3:00bar/.0:500m3/ V 1 1 1:50m3 2 D p D 1:00bar D 2 Theworkmustbecalculatedfromthepressureatthemovingportionoftheboundary (theinnersurfaceofthepiston);thisisaconstantpressureof1:00bar: w Z V2pdV p.V V / .1:00 105Pa/.1:50 0:500/m3 2 1 D(cid:0) D(cid:0) (cid:0) D(cid:0) (cid:2) (cid:0) V1 1:00 105J D(cid:0) (cid:2) q (cid:129)U w 0 w 1:00 105J D (cid:0) D (cid:0) D (cid:2) 3.4 Consider a horizontal cylinder-and-piston device similar to the one shown in Fig. 3.5 on page 72. The piston has mass m. The cylinder wall is diathermal and is in thermal contact withaheatreservoiroftemperatureT . Thesystemisanamountnofanidealgasconfined ext inthecylinderbythepiston. The initial state of the system is an equilibrium state described by p and T T . There 1 D ext is a constant external pressure p , equal to twice p , that supplies a constant external force ext 1 on the piston. When the piston is released, it begins to moveto the left to compress the gas. Maketheidealizedassumptionsthat(1)thepistonmoveswithnegligiblefriction;and(2)the gasremainspracticallyuniform(becausethepistonismassiveanditsmotionisslow)andhas apracticallyconstanttemperatureT T (becausetemperatureequilibrationisrapid). D ext (a) Describetheresultingprocess. Solution: Thepistonwilloscillate;thegasvolumewillchangebackandforthbetweentheinitial valueV andaminimumvalueV . 1 2 (b) Describehowyoucouldcalculatewandqduringtheperiodneededforthepistonvelocity tobecomezeroagain. Solution: TherelationbetweenV andV isfoundbyequatingtheworkdoneonthegasbythe 1 2 piston, nRT ln.V =V /,totheworkdoneonthepistonbytheexternalpressure, 2 1 (cid:0) p .V V /,wherep isgivenbyp 2p 2nRT=V . Theresultis (cid:0) ext 2(cid:0) 1 ext ext D 1 D 1 V 0:2032V ,w 1:5936nRT,q w 1:5936nRT. 2 1 D D D(cid:0) D(cid:0) (c) Calculatewandqduringthisperiodfor0:500molgasat300K. Solution: w .1:5936/.0:500mol/.8:3145JK 1mol 1/.300K/ 1:99 103J, (cid:0) (cid:0) D D (cid:2) q w 1:99 103J. D(cid:0) D(cid:0) (cid:2) 3.5 Thisproblemisdesignedtotesttheassertiononpage60thatfortypicalthermodynamicpro- cessesinwhichtheelevationofthecenterofmasschanges,itisusuallyagoodapproximation tosetwequaltow . ThecylindershowninFig.4onthenextpagehasaverticalorientation, lab sotheelevationofthecenterofmassofthegasconfinedbythepistonchangesasthepiston slidesupordown. Thesystemisthegas. Assumethegasisnitrogen(M 28:0gmol 1)at (cid:0) D 300K,andinitiallytheverticallengthl ofthegascolumnisonemeter. Treatthenitrogenas an ideal gas, use a center-of-mass local frame, and take the center of mass to be at the mid- point of the gas column. Find the difference between the values of w and w , expressed as lab a percentage of w, when the gas is expanded reversibly and isothermally to twice its initial volume. Solution: UseEq.3.1.4: w w 1m(cid:129)(cid:0)v2 (cid:1) mg(cid:129)z . (cid:0) lab D(cid:0)2 cm (cid:0) cm