ebook img

Solutions Manual for Electricity and Magnetism PDF

194 Pages·1986·4.898 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solutions Manual for Electricity and Magnetism

S O L U T I O N S M A N U A L to accompany E L E C T R I C I T Y A N D MA G N E T I S M MUNIR H. NAYFEH MORTON K. BRUSSEL University of Illinois JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore Copyrigh1t9@8 b6y J ohWinl ey& SonsI,n c. Thisma. terima.ayl b er eprodfuocret eds tionrg instructpiuornpoaslbe ysp eoplues intgh et ext. 7 ISB0N 4 718 0692 Printientd h eUn iteSdt atoefsAme rica 9 7 10 8 6 5 4 3 2 1 CHAPTER 1 + + + + 1.1 Thec rossp roduAcxt B isp erpdeincultaorb otAh a ndB . Sincwee w anat univte ctowre,j usdti vibdyet he + + + magndie t:u -n- +A BX/ IXA Bl + + X y z A X B = 2 -6 -3 l5x- lO+y 3oz 4 3 -1 IAX s1= /1s2 + 102+ 302 35 3x- HencTIAe =, 1s x l-O+y 30; 72v + 6z 3'i 1. 2 Thep ositivoenc toorfst hesteh repeo inatrse + -A A + A -A rl 2x y+ z,r 2 = 3x+ 2y z,a nd + r -x+ 3y+ 2z. Thep ositivoenc toofra na rbitrpaoriynits 3 + A A A r = xx +y y+ zz. Ifa llv ectolrasyi nt hep lanet,he tnh e followtirnigp clreo spsr oduvcatn is.h es whicghi velsl +x Sy+ 13z- 30 O. 1. 3 Thep oistiovne ctoorfst hespeo inatnsd a na rbitrpaoriyn t + A + A -,,- A arerl Jx+ y+ 2z, r2 = X ,._y 4z, and - t = xx yy+ zz. Thee quatiooftn h ep lanies g overnbeytd h e condit(ito nt )•(r-r) =w h0i cghi vetsh ee quation 2 2 1 2x +3 +y 6z+ 28 =f o0rt hep lane. r dtnltl=/ rd/rr V(l/r)= r d(l/r)/d=r - ;/2r 1.5C onsitdheesr u rfadceef inbeyfd where f(x,y=, 2zx)z2 -3xy- 4x =- O7. Recatlhla Vtf i sn ormtaol surfafc(ex ,y=, Oz,)t hen afA afA afA Vf - x+- y+- z ax ay az At( 1,,-2)1 weh aveVf: = (8+ 3 -)x 43-y +8 z A A 7x- 3y +8 z.T heu nivte ctnoorr mtaolt hes urfaactte h si point is: n= Vf = 7i- 3i+ s:£ 7;_- 3i+ 8:i "fvTT /22 2 2 ✓122 + 3+ 8 1.6B yd efiniwteih oanv He/ ds = IV t1 -NowV t=2xy3z; + max x2z3y+ 3x2yz2;,t huast X 2, y = l, z = -1w eh ave A A A Vt= -4x - 42yz . H+e n1ce, idstm /adxsi maulmo ng 2 2 2 (-4i- 4y+ 12�)//+4 4 + 12 direction and 2 2 2 IVtl/ 4+4 +12 =✓176 2 1.7U sinEgq .1 .57 + 3 +3 3+ -3 + 03 V•(r/)r = V(lr/ )•r+V •r/r rA• r + = 0 4 r 1.8U sintgh ev ectiodre ntgiitvyei nnE q.( l.6w0e)h ave = + + + + + + + + t+ V•(xA B =) B•(xV A ) -•A(Vx B) O, sincex =�V V x o. + 1 .A9 i si rortatniaoli fV X wAh icghi ves - x(c+ 1 ) -y(a- )4 +� (b 2)= 0. Therefa=o r4,e b 2, C= -1. HencA+=e (x +2 y 4+z )x( 2x +3 -y -z)y + + (4X - y 2 )+ Nzo wA z--."v�w-- � xA� + YA�+ Az . Thus ax ay �z ar,, + + - = X 2y 4z Partiailnltye grwaittrehe spetcoxt : ax 2 + <I>=�+ 2xy 4xz+ f,(zy). Now�=2 x 3-y - zt,h us 2 ;)y partiailnltye grawtiitnrhge spetcoyt gives 2 + <I>= 2xy - 3y2 -/yz +g (xz),. No�w = 4x - y 2z, thus az partiailnltyea gtrinwgi trhe spte tcoz gives: + 2 <I>= 4xz- yz z +h (xy,).Co mparitnhge3 <!> ',s wes eet haitf f(y,z)= -32/y2 + 2 z-yz, g(,xz)= 2x/2 +4 xz + 2,z h(,xy) x2/2 + 2xy- 3y2/2 thewne g eta w<I>h erVe<I> A=+. Thaits <I>= x2/2 +2 xy +4 xz- 3y2/2 + 2 z-yz + cao ntsatn. + + + 1.10V •A l 1 a 2 + 0a w hicghi veas= -2. + + 2A E= r/r= r/ri sc onserv(astpihveer ciocoarld inaartee s + + E impeldi)i fV Ex = O.Notteh at= E; r 3 r re rsinei + + a a a VX E 2 ar TI � r sine 0 + + V X E (rileE /a�- rsini8il E /38=) Q. Wec anq uicyk l 2 r r rsin8 seet hat�s pheriyc syamlmlet(r8i,c�i ndepe)n rdaednital fielidsc onservatTihvuVes X. ( r/=r )o . + A A il<I> A lil <I> A l il<I> E =r /=r -V<I>= (- r - + e ----.+-- )�• ar ra e rsrnae� - Thu1s/r -il<I>/ar= -d<I>/drO.r- d<I>= dr/wrh icihn tegrates to <I>= -tnr+ c. Appyilng<l>( r a)=0 givecs =t nat;h us <I>= tna- tn=r -tn(r/)a. 1.12N otitchea itf w ec an finad s calfaurn ct<I>i(oxn), syuch thaAt= V<I>a sr equiirnet dh es ecopnadr otf t hipsr oblem, then + itw oulbdea necesys aanrds ufficcioenndtii otnt haAt be conservatiHvoew.e vweerw ,i lglo a heaadn de xpliyc sihtolw + + thaVt Ax= 0 tos hotwh aAt i sc onservative: A 2 2 VX A +x[il(3-xyz) /il-yil (3x- z)/ilz) 2 3 -y[il(3-xyz)/xil -il(6yx z+) /ilz] 2 3 +�[il(-3zx)a/x il-(6yx -)z/il]y 2 2 �(--1( -1)-)y (3z-(3z))+ ;(6-x( 6)x)= o.T herefore + + Vx A= 0 + A isc onservatNiovwwe ef. i nd <I> such that + A V<I>. 4 + 3 A 2 A 2 A A (6x+y z )(x3 x+ z)y+ (3xz- y)z 3 2 3 Integrga at�ia/nx 6xy z+ give�s = 3xy +XZ + g(y,z), 2 - 2 Integraat�ia/ny g 3x z give�s =3xy z-y+ h(x),.z 2 3- IntegirnagHt /az 3xz- ygive�s x= z zy+ f(x,y). Byi nspectoifto hne set hreree altiso nwec ane asislhy ow 2 3 + tha�t( x,y,z3)xy xz -zy+ C, + ax ay+ -az 3, V•r= -+ - = Thes urfaicnet egral ax lly az +A I= (! r•ndcaa nb ew rittiennt ermosf a voluimnet egral using S thed ivergetnhceeo rIe =m rv•dtv = fd3v= 3Vw herVe i st he V V voulme oft hes urf,a ce aA aA aA 1.14a ) V•=A � + __:j_ + __z = 4 4-y+ 2z, ax ay az b)Fromh eroen ,i ti se asietsots wittcohc ylindrical + cooirndatweshe reV •A= 4 -ps4i¢n + 2z, Inc ylinrdical coorndaitexs2, + y2 = 4i st hes amaes p = 2, From ftihgeu re A A theu nivte cotrsn ormtaols isp , normtaols isz ,a nd 1 2 s .!� normatlo 3 is-_z. t Thed i vergetnhcoeer esmt ates o 1 -rl!is; + f V• Adv= A• d = (4- 4psi¢n 2z)pd pd¢dz (,·. V :....__- �. 3 2'1T 2 ; f dzf d¢f pdp(4 -ps4i¢n + 2z=) 84'1T 0 0 0 I I t,/ Noww ec alcultahtese u rfaicnet egral ·,.J + + 1A •ad 'j 5 + y p icos+• y sina.n,dA 4xx - Zy2 + 2;z 2A 2A A A (4xx - 2y+ yzz )• ( xcos+• y sni•p)d� z (4pco2s• -z/si3n•)pd�z - + + 2 3 Thigsi veAs• da= 8(co•s 2sin•) d• zdatp = 2 1 + + 2A A A•da(zz )•( z)pd.dwph icihse quatlo9 pdp d.a tz = 3. 2 A+ •d+a (z2z A )• (A- pzd).pd whicihsz eraot z = u.Additnhge 3 threceo ntrtiibounwseg et 1 x.aJ = 9 2 fpd p 2lf f d .+ 2f8 (lfc o2•s - 2si2•n)d3f• d z S O 0 0 + 0 whicghi ve8s4 lft,h es amaes f V•Adv. 1.15a ) Wef irsfti ntdh e unit nTohrecm yalli.n drical surafcei sd escrbeidb yf (x,)y x2 + 2y -16= o. We n A A use = ll/flVflT.h eg raidenotf f isll f= Zxx 2+y y.T he magnitouftd hee g raedniti s lvfl Bute verywhere /2 II ont hes ufrcaew eh aev 2 + 2 y 4,t herefVofr =e 8. Hence n =( x� y+y )/4. b) + + A SubtsitutfionrgA andn inA •nw eg etA •n(xz+ yx)4/. Writitnhgii sn c ylindrcioocrdailn atweegs e t + A + A (pzcos• Thu/s•A nda= fA• npdtdz lf/4 5 f f (zcos+• 2sin.co=s 5.()5d+t<l1z) 2/. 72 0 0 6 X y z 1.16 V x A a/ax a/ ay a/ az 2 2 2x - y -yz -y z + V X A x(-2yz + 2yz) + ;(o - 0) + z(O + 1) z. Using n = r = xA sin8cos<j, + yA sin8sin<j, + zcos8, x = rsin8cos<j,, y = rsin8sin<j,, and z = rcos8, we have 2 (;)•(;sin8cos<j, + ysin8sin<j, + zA cos8)r sin8d8d<j, cos8•d<j,d8sin8 at the surface of the sphere (r = 1). There fore f V x A+ •nA da = 2Tf Tff/ 2 cos8sin8d8 = -2TT cos 2 8/2 TTI/2 'If. Now we 0 0 ,, + + dt calculate~ A•dr. In this case is along a unit circle on the C x,y plane and its direction is along <j,. Therefore spherical coordinates we have = -(2sin8cos¢ - sin8sin<j,)sin<j, - (sin8sin<j,)(cos28)cos¢ + 2 Now, 8 = Tf/2 along C, therefore A•dt = -'?. cos<j,sin<j, + sin <j, 2Tf TT f (-2cos<j,sin<j, T sin2.p)d<j, cos 2 <j, + 'If TT 0 () Thus f v x A+ •nA da s C f~ 1.17 a) <la=(). From problem l.l:\ we have fVIP dv = ¢IP :i da. Let ~ be a constant function such that 7 V4' = O, and we can take 4' outside the surface integral. Thus 0 = 4if~ da or f~ da = O. ¢t b) X n da = l) • From problem 1. Ul we have Jv X -B+ dv = ¢~ X -8+ da. Taking -8+ = r, the radius vector, then V X r-+ = 0 and we have 1t X nA da = o. + + + -+ -+ 1.18 a) (Vx8dv=(nA x8da. Let A Bx C in the -+ divergence theorem where C is a constant vector. Then -+ -+ -+ -+ JV•( B X C) ()( B X C)•n da -+ -+ -+ -+ -+ -+ Since V • ( B X C) C•( V X 8), and (8 X C) •n C-+ •( n X -B+ ) then c-Jv x B-+ dv = c• tf nA x B-+ da or 8 Jv x dv -+ -+ b) Jv4' dv Let A 4'C in the divergence theorem -+ where C is a constant vector. Then JV•4'C dv -+ -+ Now we have V•(4'C) C• V4', then -+ C• (4' n da or (V4' dv ( 4' n da 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.