ebook img

Solutions manual for Classical mechanics PDF

682 Pages·2006·2.488 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solutions manual for Classical mechanics

CLASSICAL MECHANICS SOLUTIONS MANUAL R. Douglas Gregory November 2006 Please report any errors in these solutions by emailing cm solutions@btinternet com : : 2 Contents 1 Thealgebraandcalculusofvectors 3 2 Velocity,accelerationandscalarangularvelocity 27 3 Newton’slawsofmotionandthelawofgravitation 62 4 Problemsinparticledynamics 76 5 Linearoscillationsandnormalmodes 139 6 Energyconservation 179 7 Orbitsinacentralfield 221 8 Non-linearoscillationsandphasespace 276 9 Theenergy principle 306 10 Thelinearmomentumprinciple 335 11 Theangularmomentumprinciple 381 12 Lagrange’sequationsandconservationprinciples 429 13 ThecalculusofvariationsandHamilton’sprinciple 473 14 Hamilton’sequationsandphasespace 505 15 Thegeneraltheoryofsmalloscillations 533 16 Vectorangularvelocity 577 17 Rotatingreference frames 590 18 Tensoralgebraandtheinertiatensor 615 19 Problemsinrigidbodydynamics 646 Chapter One The algebra and calculus of vectors c Cambridge University Press,2006 Chapter1 Thealgebraandcalculusofvectors 4 Problem1.1 In terms of the standard basis set i;j;k , a 2i j 2k, b 3i 4k and f g D (cid:0) (cid:0) D (cid:0) c i 5j 3k. D (cid:0) C (i) Find3a 2b 4c and a b 2. (ii) Find a ,Cb a(cid:0)ndab. Djed(cid:0)ucejtheanglebetweenaandb. j j j j (iii) Findthecomponentofc inthedirectionofaandinthedirectionofb. (iv) Finda b,b c and.a b/ .b c/. (v) Finda.b c/and.a b/candverifythattheyareequal. Istheset a;b;c   f g right-orleft-handed? (vi) Byevaluatingeach side,verifytheidentitya .b c/ .ac/b .ab/c.   D (cid:0) Solution (i) 3a 2b 4c 3.2i j 2k/ 2.3i 4k/ 4.i 5j 3k/ C (cid:0) D (cid:0) (cid:0) C (cid:0) (cid:0) (cid:0) C 8i 17j 26k: D C (cid:0) a b 2 .a b/.a b/ j (cid:0) j D (cid:0) (cid:0) . i j 2k/. i j 2k/ D (cid:0) (cid:0) C (cid:0) (cid:0) C . 1/2 . 1/2 22 6: D (cid:0) C (cid:0) C D (ii) a 2 aa j j D .2i j 2k/.2i j 2k/ D (cid:0) (cid:0) (cid:0) (cid:0) 22 . 1/2 . 2/2 9: D C (cid:0) C (cid:0) D Hence a 3. j j D b 2 bb j j D .3i 4k/.3i 4k/ D (cid:0) (cid:0) 32 . 4/2 25: D C (cid:0) D Hence b 5. j j D ab .2i j 2k/.3i 4k/ D (cid:0) (cid:0) (cid:0) 2 3 . 1/ 0 . 2/ . 4/ D  C (cid:0)  C (cid:0)  (cid:0) 14: (cid:0)  (cid:0)  (cid:0)  D c Cambridge University Press,2006 Chapter1 Thealgebraandcalculusofvectors 5 Theangle˛ betweenaandb isthengivenby ab cos˛ D a b j jj j 14 14 : D 3 5 D 15  Thus˛ tan 1 14. D (cid:0) 15 (iii) Thecomponentofc inthedirectionofais a c a c  D a j j 2i j 2k b .i 5j 3k/ (cid:0) (cid:0) D (cid:0) C 2i j 2k j (cid:0) (cid:0) j 1 2 . 5/ . 1/ 3 . 2/  C (cid:0)  (cid:0) C  (cid:0) D 3 (cid:0)  (cid:0)  (cid:0)  1 : D 3 Thecomponentofc inthedirectionofb is b c b c  D b j j 3i 4k b .i 5j 3k/ (cid:0) D (cid:0) C 3i 4k j (cid:0) j 1 3 . 5/ 0 3 . 4/  C (cid:0)  C  (cid:0) D 5 (cid:0)  (cid:0)  (cid:0)  9 : D (cid:0)5 (iv) a b .2i j 2k/ .3i 4k/  D (cid:0) (cid:0)  (cid:0) i j k 2 1 2 D ˇ (cid:0) (cid:0) ˇ ˇ3 0 4ˇ ˇ (cid:0) ˇ ˇ ˇ 4 0 i . 8/ . 6/ j 0 . 3/ k ˇ ˇ D ˇ (cid:0) (cid:0)ˇ (cid:0) (cid:0) (cid:0) C (cid:0) (cid:0) 4i 2j 3k: (cid:0)  (cid:0)  (cid:0)  D C C c Cambridge University Press,2006 Chapter1 Thealgebraandcalculusofvectors 6 b c .3i 4k/ .i 5j 3k/  D (cid:0)  (cid:0) C i j k 3 0 4 D ˇ (cid:0) ˇ ˇ1 5 3ˇ ˇ (cid:0) ˇ ˇ ˇ 0 20 i 9 . 4/ j . 15/ 0 k ˇ ˇ D ˇ (cid:0) ˇ(cid:0) (cid:0) (cid:0) C (cid:0) (cid:0) 20i 13j 15k: (cid:0)  (cid:0)  (cid:0)  D (cid:0) (cid:0) (cid:0) Hence .a b/ .b c/ .4i 2j 3k/ . 20i 13j 15k/    D C C  (cid:0) (cid:0) (cid:0) i j k 4 2 3 D ˇ ˇ ˇ 20 13 15ˇ ˇ(cid:0) (cid:0) (cid:0) ˇ ˇ ˇ . 30/ . 39/ i . 60/ . 60/ j . 52/ . 40/ k ˇ ˇ D ˇ (cid:0) (cid:0) (cid:0) ˇ (cid:0) (cid:0) (cid:0) (cid:0) C (cid:0) (cid:0) (cid:0) 9i 12k: (cid:0)  (cid:0)  (cid:0)  D (cid:0) (v) a.b c/ .2i j 2k/. 20i 13j 15k/  D (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) 2 . 20/ . 1/ . 13/ . 2/ . 15/ D  (cid:0) C (cid:0)  (cid:0) C (cid:0)  (cid:0) 3: (cid:0)  (cid:0)  (cid:0)  D .a b/c .4i 2j 3k/.i 5j 3k/  D C C (cid:0) C 4 1/ 2 . 5/ 3 3 D  C  (cid:0) C  3: (cid:0)  (cid:0)  (cid:0)  D Thesevaluesareequalandthisverifiestheidentity a.b c/ .a b/c:  D  Sincea.b c/ispositive,theset a;b;c mustberight-handed.  f g (vi) Theleftsideoftheidentityis a .b c/ .2i j 2k/ . 20i 13j 15k/   D (cid:0) (cid:0)  (cid:0) (cid:0) (cid:0) i j k 2 1 2 D ˇ (cid:0) (cid:0) ˇ ˇ 20 13 15ˇ ˇ(cid:0) (cid:0) (cid:0) ˇ ˇ ˇ 15 26 i . 30/ 40 j . 26/ 20 k ˇ ˇ D ˇ (cid:0) (cid:0) ˇ(cid:0) (cid:0) C (cid:0) (cid:0) 11i 70j 46k: (cid:0)  (cid:0)  (cid:0)  D (cid:0) C (cid:0) c Cambridge University Press,2006 Chapter1 Thealgebraandcalculusofvectors 7 Since .ac/b 2 1 . 1/ . 5/ . 2/ 3 b D  C (cid:0)  (cid:0) C (cid:0)  b(cid:0)  (cid:0)  (cid:0)  D 3i 4k; D (cid:0) .ab/c 2 3 . 1/ 0 . 2/ . 4/ c D  C (cid:0)  C (cid:0)  (cid:0) 14(cid:0)c 14.i(cid:0) 5j 3k/(cid:0)  D D (cid:0) C 14i 70j 42k; D (cid:0) C therightsideoftheidentityis .ac/b .ab/c .3i 4k/ .14i 70j 42k/ (cid:0) D (cid:0) (cid:0) (cid:0) C 11i 70j 46k: D (cid:0) C (cid:0) Thustherightandleftsidesareequalandthisverifiestheidentity. c Cambridge University Press,2006 Chapter1 Thealgebraandcalculusofvectors 8 Problem1.2 Findtheanglebetweenanytwodiagonalsofacube. D E C B αααα O a A FIGURE1.1 Twodiagonalsofacube. Solution Figure 1.1 shows a cube of side a; OE and AD are two of its diagonals. Let O be the origin of position vectors and suppose the points A, B and C have position vectorsai,aj,akrespectively. ThenthelinesegmentO(cid:0)!E representsthevector ai aj ak C C andthelinesegmentA(cid:0)!D representsthevector .aj ak/ ai ai aj ak: C (cid:0) D (cid:0) C C Let˛ betheanglebetweenOE andAD. Then .ai aj ak/. ai aj ak/ cos˛ C C (cid:0) C C D ai aj ak ai aj ak j C C jj (cid:0) C C j a2 a2 a2 1 (cid:0) C C : D p3a p3a D 3 (cid:0) (cid:0)  Hence the angle between the diagonalsis cos 1 1, which is approximately 70:5 . (cid:0) 3 ı c Cambridge University Press,2006 Chapter1 Thealgebraandcalculusofvectors 9 Problem1.3 ABCDEF is a regular hexagon with centre O which is also the origin of position vectors. FindthepositionvectorsoftheverticesC,D,E,F intermsoftheposition vectorsa,b ofAandB. C B b D A O a FIGURE 1.2 ABCDEF is a regular E F hexagon. Solution (i) The position vector c is represented by the line segment O(cid:0)!C which has the samemagnitudeanddirectionasthelinesegmentA(cid:0)!B. Hence c b a: D (cid:0) (ii) The position vector d is represented by the line segment O(cid:0)!D which has the samemagnitudeas,butoppositedirectionto,thelinesegmentO(cid:0)!A. Hence d a: D (cid:0) (iii) The position vector e is represented by the line segment O(cid:0)!E which has the samemagnitudeas,butoppositedirectionto,thelinesegmentO(cid:0)!B. Hence e b: D (cid:0) (iv) The positionvector f is represented by the line segment O(cid:0)!F which has the c Cambridge University Press,2006 Chapter1 Thealgebraandcalculusofvectors 10 samemagnitudeas,butoppositedirectionto,thelinesegmentA(cid:0)!B. Hence e .b a/ a b: D (cid:0) (cid:0) D (cid:0) c Cambridge University Press,2006

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.