ebook img

Solutions Manual for ANALYSIS AND PERFORMANCE OF FIBER COMPOSITES PDF

147 Pages·2017·2.836 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solutions Manual for ANALYSIS AND PERFORMANCE OF FIBER COMPOSITES

Solutions Manual for ANALYSIS AND PERFORMANCE OF FIBER COMPOSITES FOURTH EDITION Bhagwan D. Agarwal Consultant Lombard, Illinois, USA Lawrence J. Broutman Consultant Chicago, Illinois, USA K. Chandrashekhara Missouri University of Science and Technology Rolla, Missouri, USA 1 C ONTENTS Chapter 1. Introduction 3 Chapter 3. Micromechanics of Unidirectional Composites 6 Chapter 4. Short-Fiber Composites 26 Chapter 5. Macromechanics Analysis of an Orthotropic Lamina 33 Chapter 6. Analysis of Laminated Composites 46 Chapter 7. Analysis of Laminated Plates and Beams 109 Chapter 8. Advanced Topics in Fiber Composites 124 Chapter 9. Performance of Fiber Composites: Fatigue, Impact, and Environmental Effects 135 Chapter 10. Experimental Characterization of Composites 137 2 Chapter 1 Introduction 1.3 3 1.4 My 1 M h 6M , I bh3, x I 12 max I 2 bh2 1 (a-1) “EI” of steel beam 210 GPa 0.1 0.0063m4 378 N m2 12 1 “EI” of 2024-T4 aluminum beam 73 GPa 0.1 h3m4 378 N m2 12 h = beam thickness for equivalent “EI” = 8.5 mm 6M (a-2) Bending moment on steel beam: ULT steel bh2 1 M 0.83 GPa 0.1 0.0062m3 498 N m 6 6M 6 498 N m Aluminum beam 0.41 GPa ULT Al 0.1h2 0.1h2m Beam thickness for equivalent strength: h 8.54 10 3m 8.54 mm (b-1) Weight of steel beam per unit length: bh 10 cm 0.6 cm 7.8 gm/cm3 46.8 gm/cm3 Weight of aluminum beam for equivalent “EI”: bh from part(a-1) 10 0.85 2.7 23.0 gm/cm Al 4 (b-2) Weight of steel beam = 46.8 gm/cm Weight of aluminum beam with equivalent strength: bh from part(a-2) 10 0.854 2.7 23.1 gm/cm Al (c-1) Weight of steel beam = 46.8 gm/cm Weight of aluminum beam = 46.8gm/cm bh Al 46.8 h 1.73 cm 10 2.7 “EI” of aluminum beam with same weight as steel beam: 1 EI 73 GPa 0.1 0.01733m4 299 N m2 12 (c-2) Steel beam: 1 1 Bending moment = M bh2 0.83 GPa 0.1 0.0062m3 498 N m 6 ULT 6 Bending moment for aluminum beam with same weight as steel beam 1 M b h from part(c-1) 6 ULT Al 1 0.41 0.1 0.0172 GN m 6 1,970 N m (b-1) ( b -2 ) wt/unit wt/unit (a-1) (a-2) length le n g t h (c - 1 ) ( c-2) h(mm) h(mm) (Normalized) (Normalized) EI Moment Material Stiffness Strength Stiffness S trength Normalized Normalized Steel 6 6 1 1 1.0 1.0 Al-2024-T4 8.5 8.5 0.49 0.49 7.9 4.0 Al-6061-T6 8.7 10.7 0.50 0.62 7.5 2.5 E-glass epoxy 12.8 7.2 0.54 0.30 6.6 11.0 (V = 0.57) f Kevlar-49/epoxy 10.4 6.8 0.31 0.20 31.7 23.7 (V = 0.6) f Carbon fiber/epoxy 8.2 8.9 0.27 0.29 49.5 11.4 (V = 0.58) f Boron fiber/epoxy 7.5 8.9 0.32 0.38 28.3 6.73 (V = 0.60) f 5 Chapter 3 Micromechanics of Unidirectional Composites 3.1 A V f f A Square array: 1 d2 d2 d2 A 4 ,A s2, V f 4 4 4 f 4s2 Hexagonal array: d2 1 d2 d2 d2 3 d2 A 6 f 4 3 4 4 2 4 1 3s 3s2 3 3 A 6 s 6 s2 2 2 4 2 d2 V f 2 3s2 6 Alternatively, consider triangular array: 1 d2 d2 A 3 f 6 4 8 1 3s 3 d2 A s s2 V 2 2 4 f 2 3s2 When adjacent fibers touch each other, s = d V for square array=78.5% max 4 = for hexagonal array=90.7% 2 3 3.2 49.4476 47.6504 W 0.71 f 50.1817 47.6504 W 1 0.71 0.29 m 1 1 1.902 g/cm3 c W W 0.71 0.29 f m 2.5 1.2 f m 7 ρ 1.902 V = c W = ×0.71=0.54 f ρ f 2.5 f 1.902 V = ×0.29=0.46 m 1.2 3.3 w v =v +v +v = c (1) c f m v ρ ce w v +v = c (2) f m ρ ct (1)-(2) gives: w w w  ρ  v = c − c = c 1− ce  v ρ ρ ρ ρ   ce ct ce ct ρ −ρ  =v  ct ce  c ρ   ct v ρ −ρ V = v = ct ce v v ρ c ct 3.4 From Problem 3.3, ρ =1.902 ct 1.902−1.86 From Problem 3.3, V = =0.0221 or 2.21% v 1.902 3.5 (a) Weight of composite: w =9.301 g c Weight of carbon fibers: w =6.428 g f Weight of epoxy: w =w −w =9.301−6.428=2.873 g m c f w 6.428 Weight fraction of carbon fibers: W = f = =69.11% f w 9.301 c 8 w 2.873 Weight fraction of epoxy: W m 30.89% m w 9.301 c 1 1 Density of the composite: 1.559 g/cm3 c W W 0.6911 0.3089 f m 1.8 1.2 f m W 0.6911 1.559 Volume fraction of carbon fibers: V f c 59.87% f 1.8 f W 0.3089 1.559 Volume fraction of epoxy: V m c 40.13% m 1.2 m (b) Theoretical density of the composite: 1.559 g/cm3 ct c Experimental density of the composite: 9.301 1.546 1 1.546 g/cm3 ce 9.301 3.285 water The volume fraction of voids in the composite: 1.559 1.546 V ct ce 0.834% v 1.559 ct 3.6 E 400 f f 125 for all V. f E 3.2 m m E V E (GPa) f f f c E c c 10 42.88 9.33 25 102.40 3.91 50 201.60 1.98 75 300.80 1.33 3.7 The following values are obtained by using rule of mixtures for E and and L νLT the Halpin-Tsai equations for E and G : T LT 9 V Property f System (%) E (GPa) E (GPa) G (GPa) L T LT LT Glass/Epoxy 25 20.13 6.39 2.07 0.313 50 36.75 11.46 3.48 0.275 75 53.38 22.81 6.96 0.238 Graphite/Epoxy 25 65.13 6.81 2.13 0.313 50 126.75 13.18 3.76 0.275 75 188.38 30.41 8.36 0.238 Kevlar/Epoxy 25 37.63 6.67 2.11 0.313 50 71.75 12.60 3.67 0.275 75 105.88 27.59 7.88 0.238 Boron/Aluminum 25 140.00 105.00 37.37 0.298 50 210.00 154.00 54.3 0.265 75 280.00 275.50 83.49 0.233 3.8 1 1.74 c 0.35 0.45 0.20 1.3 2.5 1.6 Volume fractions: 1.74 V 0.35 0.47 m 1.3 1.74 V 0.45 0.31 fA 2.5 1.74 V 0.20 0.22 fB 1.6 Fracture stains: 0.06 100 1.71% m 3.5 1.4 100 2.0% fA 70 0.45 100 7.5% fB 6 Failure sequence will be binder, fiber A, fiber B. (a) Composite stress at fracture strain of binder: 0.0171(3.5 0.47 70 0.31 6 0.22) 0.422 GPa c 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.