ebook img

Solutions for: Digital communications, 4ed PDF

322 Pages·1.35 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solutions for: Digital communications, 4ed

Corrections to Digital Communications, 4th Edition 1. Page 31, Equation (2.1-54) First line: y instead of y l 2 Second line: g instead of g n 1 2. Page 163, Equation (4.2-30) ∞ Σ s hou ld be: s(t) = ao/2 + k=1 3. Page 163, Equation (4.2-31) T should be: a = (2/T) ∫ s(t) cos 2πkt/T dt , k>0 k 0 T b = (2/T) ∫ s(t) sin 2πkt/T dt , k>1 k 0 4. Page 178, 7 lines from the top ε) ε should be: sqrt (2 instead of sqrt (2) 5. Page 238, Equation (5.1-19) should be: h(T-τ ) instead of h(t-τ ) 6. Page 238, two lines below Equation (5.1-20) should be: y2 (T) instead of y2(t) n n 7. Page 244, Equation (5.1 (cid:150) 45) should be: m = 1,2,(cid:133)M 8. Page 245, Equation (5.1-48) ε ε should be: : sqrt ( ) instead of sqrt ( ) b n 9. Page 309, Equation (5.4-39) R1 sqrt (2εs/N0) instead of sqrt (2εsR1/N0) 10. Page 318, Equation (5.5-17) add the term: (cid:150) (N ) 0 dBW/Hz 11. Page 366, Equation (6.4-3) Replace + sign with (cid:150) sign in the second term of the summation 12. Page 367, Equation (6.4-6) Replace + sign with (cid:150) sign in the second term of the summation 13. Page 367, Equations (6.4-8) and (6.4-9) add the subscript L to the log-likelihood function 14. Page 422, lines 2 and 3 above Equation (8.1-14) delete the phrase (cid:147)no more than(cid:148) 15. Page 468, 12 lines from the top and 5 lines from the bottom should be: b < instead of b < 16. Page 491, Figure 8.2-15 solid line corresponds to soft-decision decoding broken line corresponds to hard-decision decoding 17. Page 500, Equation (8.2-41) In the denominator, M should be M and M should be M k j j J 18. Page 591, Figure P9.9 The lower shaping filter in the modulator and demodulator, q(t) should have a (cid:147)hat(cid:148) on it 19. Page 609, 6 lines above Equation (10.1-34) ε should be ε k+1(cid:150) L-1 k+l (cid:150) L-1 20. Page 646, Figure 10.3-5 delete the (cid:147)hat(cid:148) from I(z) 21. Page 651, 4 lines from the top replace (cid:147)over(cid:148) with (cid:147)about(cid:148) 22. Page 651, 2 lines above Section 10.6 (cid:147)Turob(cid:148) should be (cid:147)Turbo(cid:148) 23. Page 673, Figure 11.1-6 Lower delay line elements: z1 should be z-1 24. Page 750, Figure 13.2-8 Replace (cid:147)adders(cid:148) with (cid:147)multipliers(cid:148) 25. Page 752, Figure 13.2-9 Replace (cid:147)adders(cid:148) with multipliers(cid:148) 26. Page 856, Equation (14.6-5) Replace K with k 27. Page 885, Figure 14.7-7 The (cid:147)Input(cid:148) should be 02310 28. Page 894, Problem 14.16 r = h s + h s + n 1 1 1 2 2 1 r = h s * + h s * + n 2 1 2 2 1 2 29. Page 895 Delete 2k from the expression on the error probability 30. Page 915, top of page (15.47) should be (15.3-47) 31. Page 925, 6 lines form top T should be T 0 p 32. Page 935 a) top of page: ε ε r = b sqrt( ) + b ρ sqrt ( ) + n 1 1 1 2 2 1 ε ε r = b ρ sqrt( ) + b sqrt ( ) + n 2 1 1 2 2 2 b) Problem 15.8, last equation delete factor of l/2 c) Problem 15.9, first equation delete comma after b =1 2 33. Page 936, first equation at top of page, second term should be: l { [ ε ε ε ]/ } n cosh r sqrt ( ) (cid:150) b ρ sqrt ( ) N 2 2 1 1 2 0 34. Page 936, second equation from top of page divide each of the arguments in the cosh function by N 0 35. Page 936, Problem 15.10 2 [ ] should be η = k 36. Page 936, Problem 15.11 the last term in the equation should be: ε ε ε ε + -2׀ρ׀ sqrt ( ) (1/2) Q {sqrt[ 1 2 1 2 ]} N /2 0 CHAPTER 2 Problem 2.1 : (cid:1)3 P(A ) = P(A ,B ),i = 1,2,3,4 i i j j=1 Hence : (cid:1)3 P(A ) = P(A ,B ) = 0.1+0.08+0.13 = 0.31 1 1 j j=1 (cid:1)3 P(A ) = P(A ,B ) = 0.05+0.03+0.09 = 0.17 2 2 j j=1 (cid:1)3 P(A ) = P(A ,B ) = 0.05+0.12+0.14 = 0.31 3 3 j j=1 (cid:1)3 P(A ) = P(A ,B ) = 0.11+0.04+0.06 = 0.21 4 4 j j=1 Similarly : (cid:1)4 P(B ) = P(A ,B ) = 0.10+0.05+0.05+0.11 = 0.31 1 i 1 i=1 (cid:1)4 P(B ) = P(A ,B ) = 0.08+0.03+0.12+0.04 = 0.27 2 i 2 i=1 (cid:1)4 P(B ) = P(A ,B ) = 0.13+0.09+0.14+0.06 = 0.42 3 i 3 i=1 Problem 2.2 : The relationship holds for n = 2 (2-1-34) : p(x ,x ) = p(x |x )p(x ) 1 2 2 1 1 Suppose it holds for n = k,i.e : p(x ,x ,...,x ) = p(x |x ,...,x )p(x |x ,...,x ) ...p(x ) 1 2 k k k−1 1 k−1 k−2 1 1 Then for n = k +1 : p(x ,x ,...,x ,x ) = p(x |x ,x ,...,x )p(x ,x ...,x ) 1 2 k k+1 k+1 k k−1 1 k k−1 1 = p(x |x ,x ,...,x )p(x |x ,...,x )p(x |x ,...,x ) ...p(x ) k+1 k k−1 1 k k−1 1 k−1 k−2 1 1 Hence the relationship holds for n = k +1, and by induction it holds for any n. 1 Problem 2.3 : Following the same procedure as in example 2-1-1, we prove : (cid:2) (cid:3) 1 y −b p (y) = p Y |a| X a Problem 2.4 : Relationship (2-1-44) gives : (cid:2) (cid:3)  1 y −b 1/3 p (y) = p   Y 3a[(y −b)/a]2/3 X a X is a gaussian r.v. with zero mean and unit variance : p (x) = √1 e−x2/2 X 2π Hence : pY(y) = 3a√2π[(y1−b)/a]2/3e−12(y−ab)2/3 pdf of Y 0.5 0.45 0.4 a=2 0.35 b=3 0.3 0.25 0.2 0.15 0.1 0.05 0 −10 −8 −6 −4 −2 0 2 4 6 8 10 y Problem 2.5 : (a) Since (X ,X ) are statistically independent : r i 1 pX(xr,xi) = pX(xr)pX(xi) = 2πσ2e−(x2r+x2i)/2σ2 2 Also : Y +jY = (X +X )ejφ ⇒ r i r i X +X = (Y +jY )e−jφ = Y cosφ+Y sinφ+j(−Y sinφ+Y cosφ) ⇒ r i r i r i r i (cid:8) (cid:9) X = Y cosφ+Y sinφ r r i X = −Y sinφ+Y cosφ i r i The Jacobian of the above transformation is : (cid:10) (cid:10) (cid:10) (cid:10) (cid:10)(cid:10) ∂Xr ∂Xi (cid:10)(cid:10) (cid:10)(cid:10) cosφ −sinφ (cid:10)(cid:10) J = (cid:10) ∂Yr ∂Yr (cid:10) = (cid:10) (cid:10) = 1 (cid:10) ∂Xr ∂Xi (cid:10) (cid:10) sinφ cosφ (cid:10) ∂Y ∂Y i i Hence, by (2-1-55) : p (y ,y ) = p ((Y cosφ+Y sinφ),(−Y sinφ+Y cosφ)) Y r i X r i r i = 1 e−(yr2+yi2)/2σ2 2πσ2 (b) Y = AX and X = A−1Y Now, p (x) = 1 e−x(cid:2)x/2σ2 (the covariance matrix M of the random variables x ,...,x is X (2πσ2)n/2 1 n M = σ2I, since they are i.i.d) and J = 1/|det(A)|. Hence : 1 1 p (y) = e−y(cid:2)(A−1)(cid:2)A−1y/2σ2 Y (2πσ2)n/2|det(A)| For the pdf’s of X and Y to be identical we require that : |det(A)| = 1 and (A−1)(cid:3)A−1 = I =⇒ A−1 = A(cid:3) Hence, A must be a unitary (orthogonal) matrix . Problem 2.6 : (a) (cid:14) (cid:16) (cid:11) (cid:12) (cid:11) (cid:13) (cid:12) (cid:15)n (cid:15)n (cid:11) (cid:12) (cid:17) (cid:18) ψY(jv) = E ejvY = E ejv ni=1xi = E ejvxi = E ejvX = ψX(ejv) n i=1 i=1 But, p (x) = pδ(x−1)+(1−p)δ(x) ⇒ ψ (ejv) = 1+p+pejv X X (cid:17) (cid:18) n ⇒ ψ (jv) = 1+p+pejv Y 3 (b) dψ (jv) E(Y) = −j Y | = −jn(1−p+pejv)n−1jpejv| = np dv v=0 v=0 and d2ψ (jv) d (cid:11) (cid:12) E(Y2) = − Y | = − jn(1−p+pejv)n−1pejv = np+np(n−1)p d2v v=0 dv v=0 ⇒ E(Y2) = n2p2 +np(1−p) Problem 2.7 : (cid:11) (cid:12) ψ(jv ,jv ,jv ,jv ) = E ej(v1x1+v2x2+v3x3+v4x4) 1 2 3 4 ∂4ψ(jv ,jv ,jv ,jv ) E(X X X X ) = (−j)4 1 2 3 4 | 1 2 3 4 ∂v ∂v ∂v ∂v v1=v2=v3=v4=0 1 2 3 4 From (2-1-151) of the text, and the zero-mean property of the given rv’s : ψ(jv) = e−12v(cid:2)Mv where v = [v ,v ,v ,v ](cid:3),M = [µ ]. 1 2 3 4 ij We obtain the desired result by bringing the exponent to a scalar form and then performing quadruple differentiation. We can simplify the procedure by noting that : ∂ψ(jv) ∂v = −µ(cid:3)ive−12v(cid:2)Mv i where µ(cid:3) =[µ ,µ ,µ ,µ ] . Also note that : i i1 i2 i3 i4 ∂µ(cid:3)v j = µ = µ ∂v ij ji i Hence : ∂4ψ(jv ,jv ,jv ,jv ) 1 2 3 4 | = µ µ +µ µ +µ µ ∂v ∂v ∂v ∂v V=0 12 34 23 14 24 13 1 2 3 4 Problem 2.8 : For the central chi-square with n degress of freedom : 1 ψ(jv) = (1−j2vσ2)n/2 4 Now : dψ(jv) jnσ2 dψ(jv) = ⇒ E(Y) = −j | = nσ2 dv (1−j2vσ2)n/2+1 dv v=0 d2ψ(jv) −2nσ4(n/2+1) (cid:17) (cid:18) d2ψ(jv) = ⇒ E Y2 = − | = n(n+2)σ2 dv2 (1−j2vσ2)n/2+2 dv2 v=0 The variance is σ2 = E(Y2)−[E(Y)]2 = 2nσ4 Y For the non-central chi-square with n degrees of freedom : 1 ψ(jv) = ejvs2/(1−j2vσ2) (1−j2vσ2)n/2 (cid:13) where by definition : s2 = n m2 . i=1 i (cid:14) (cid:16) dψ(jv) jnσ2 js2 = + ejvs2/(1−j2vσ2) dv (1−j2vσ2)n/2+1 (1−j2vσ2)n/2+2 Hence, E(Y) = −jdψ(jv)| = nσ2 +s2 dv v=0 (cid:14) (cid:16) d2ψ(jv) −nσ4(n+2) −s2(n+4)σ2 −ns2σ2 −s4 = + + ejvs2/(1−j2vσ2) dv2 (1−j2vσ2)n/2+2 (1−j2vσ2)n/2+3 (1−j2vσ2)n/2+4 Hence, (cid:17) (cid:18) d2ψ(jv) (cid:17) (cid:18) E Y2 = − | = 2nσ4 +4s2σ2 + nσ2 +s2 dv2 v=0 and (cid:17) (cid:18) σ2 = E Y2 −[E(Y)]2 = 2nσ4 +4σ2s2 Y Problem 2.9 : The Cauchy r.v. has : p(x) = a/π ,−∞ < x < ∞ (a) x2+a2 (cid:19) ∞ E(X) = xp(x)dx = 0 −∞ since p(x) is an even function. (cid:17) (cid:18) (cid:19) ∞ a (cid:19) ∞ x2 E X2 = x2p(x)dx = dx −∞ π −∞ x2 +a2 Note that for large x, x2 → 1 (i.e non-zero value). Hence, x2+a2 (cid:17) (cid:18) E X2 = ∞,σ2 = ∞ 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.