Instructor’s Manual with Sample Tests for Elementary Linear Algebra Fourth Edition Stephen Andrilli and David Hecker Dedication To all the instructors who have used the various editions of our book over the years Table of Contents Preface ........................................................................iii Answers to Exercises………………………………….1 Chapter 1 Answer Key ……………………………….1 Chapter 2 Answer Key ……………………………...21 Chapter 3 Answer Key ……………………………...37 Chapter 4 Answer Key ……………………………...58 Chapter 5 Answer Key ……………………………...94 Chapter 6 Answer Key …………………………….127 Chapter 7 Answer Key …………………………….139 Chapter 8 Answer Key …………………………….156 Chapter 9 Answer Key …………………………….186 Appendix B Answer Key ………………………….203 Appendix C Answer Key ………………………….204 Chapter Tests ……..……………………………….206 Chapter 1 – Chapter Tests …………………………207 Chapter 2 – Chapter Tests …………………………211 Chapter 3 – Chapter Tests …………………………217 Chapter 4 – Chapter Tests …………………………221 Chapter 5 – Chapter Tests …………………………224 Chapter 6 – Chapter Tests …………………………230 Chapter 7 – Chapter Tests …………………………233 Answers to Chapter Tests ………………………….239 Chapter 1 – Answers for Chapter Tests …………...239 Chapter 2 – Answers for Chapter Tests …………...242 Chapter 3 – Answers for Chapter Tests …………...244 Chapter 4 – Answers for Chapter Tests …………...247 Chapter 5 – Answers for Chapter Tests …………...251 Chapter 6 – Answers for Chapter Tests …………...257 Chapter 7 – Answers for Chapter Tests …………...261 ii Preface This Instructor’s Manual with Sample Tests is designed to accompany Elementary Linear Algebra, 4th edition, by Stephen Andrilli and David Hecker. This manual contains answers for all the computational exercises in the textbook and detailed solutions for virtually all of the problems that ask students for proofs. The exceptions are typically those exercises that ask students to verify a particular computation, or that ask for a proof for which detailed hints have already been supplied in the textbook. A few proofs that are extremely trivial in nature have also been omitted. This manual also contains sample Chapter Tests for the material in Chapters 1 through 7, as well as answer keys for these tests. Additional information regarding the textbook, this manual, the Student Solutions Manual, and linear algebra in general can be found at the web site for the textbook, where you found this manual. Thank you for using our textbook. Stephen Andrilli David Hecker August 2009 iii Andrilli/Hecker - Answers to Exercises Section 1.1 Answers to Exercises Chapter 1 Section 1.1 (1) (a) [9; 4], distance = p97 (c) [ 1; 1;2; 3; 4], distance = (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (b) [ 5;1; 2], distance = p30 p31 (cid:0) (cid:0) (2) (a) (3;4;2) (see Figure 1) (c) (1; 2;0) (see Figure 3) (cid:0) (b) (0;5;3) (see Figure 2) (d) (3;0;0) (see Figure 4) (3) (a) (7; 13) (b) ( 6;3;2) (c) ( 1;3; 1;4;6) (cid:0) (cid:0) (cid:0) (cid:0) (4) (a) 16; 13;8 (b) 26;0; 6;6 3 (cid:0) 3 (cid:0) 3 (cid:0) (cid:0) (cid:1) (cid:2) (cid:3) (5) (a) 3 ; 5 ; 6 ; shorter, since length of original vector is > 1 p70 (cid:0)p70 p70 h i (b) 4 ; 1 ;0; 2 ; shorter, since length of original vector is > 1 p21 p21 (cid:0)p21 (c) [h0:6; 0:8]; neither,isince given vector is a unit vector (cid:0) (d) 1 ; 2 ; 1 ; 1 ; 2 ; longer, since length of original vector p11 (cid:0)p11 (cid:0)p11 p11 p11 h=p11 <1 i 5 (6) (a) Parallel (c) Not parallel (b) Parallel (d) Not parallel (7) (a) [ 6;12;15] (c) [ 3;4;8] (e) [6; 20; 13] (cid:0) (cid:0) (cid:0) (cid:0) (b) [2;0; 6] (d) [ 5;1;1] (f) [ 23;12;11] (cid:0) (cid:0) (cid:0) (8) (a) x+y=[1;1], x y=[ 3;9], y x=[3; 9] (see Figure 5) (cid:0) (cid:0) (cid:0) (cid:0) (b) x+y=[3; 5], x y=[17;1], y x=[ 17; 1] (see Figure 6) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (c) x+y=[1;8; 5],x y=[3;2; 1],y x=[ 3; 2;1](seeFigure7) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (d) x+y=[ 2; 4;4],x y=[4;0;6],y x=[ 4;0; 6](seeFigure8) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (9) With A = (7; 3;6), B = (11; 5;3), and C = (10; 7;8), the length of (cid:0) (cid:0) (cid:0) side AB = length of side AC = p29. The triangle is isosceles, but not equilateral, since the length of side BC is p30. 1 Andrilli/Hecker - Answers to Exercises Section 1.1 2 Andrilli/Hecker - Answers to Exercises Section 1.1 3 Andrilli/Hecker - Answers to Exercises Section 1.1 (10) (a) [10; 10] (b) [ 5p3; 15] (c) [0;0]=0 (cid:0) (cid:0) (cid:0) (11) See Figures 1.7 and 1.8 in Section 1.1 of the textbook. (12) See Figure 9. Both represent the same diagonal vector by the associative law of addition for vectors. Figure 9: x+(y+z) (13) [0:5 0:6p2; 0:4p2] [ 0:3485; 0:5657] (cid:0) (cid:0) (cid:25) (cid:0) (cid:0) (14) (a) If x = [a ;a ] is a unit vector, then cos(cid:18) = a1 = a1 = a . Simi- 1 2 1 x 1 1 larly, cos(cid:18) =a . k k 2 2 (b) Analogous to part (a). (15) Net velocity = [ 2p2; 3+2p2], resultant speed 2.83 km/hr (cid:0) (cid:0) (cid:25) (16) Net velocity = 3p2;8 3p2 ; speed 2.83 km/hr (cid:0) 2 (cid:0)2 (cid:25) h i (17) [ 8 p2; p2] (cid:0) (cid:0) (cid:0) (18) Acceleration = 1 [12; 344;392] [0:0462; 0:2646;0:3015] 20 13 (cid:0) 65 65 (cid:25) (cid:0) (19) Acceleration = 13;0;4 2 3 (20) 180[ 2;3;1] [(cid:2) 96:22;(cid:3)144:32;48:11] p14 (cid:0) (cid:25) (cid:0) (21) a=[ mg ; mg ]; b=[ mg ;mgp3] (cid:0) 1+p3 1+p3 1+p3 1+p3 (22) Leta=[a ;:::;a ]. Then, a 2 =a2+ +a2 isasumofsquares,which 1 n k k 1 (cid:1)(cid:1)(cid:1) n must be nonnegative. The square root of a nonnegative real number is a nonnegative real number. The sum can only be zero if every a =0. i 4 Andrilli/Hecker - Answers to Exercises Section 1.2 (23) Let x=[x ;x ;:::;x ]. Then cx = (cx )2+ +(cx )2 = 1 2 n 1 n k k (cid:1)(cid:1)(cid:1) c2(x2+ +x2) = c x2+ +x2 = c x : 1 (cid:1)(cid:1)(cid:1) n j j 1 (cid:1)(cid:1)(cid:1) pn j jk k (24) Ipn each part, suppose thapt x=[x ;:::;x ], y=[y ;:::;y ], and 1 n 1 n z=[z ;:::;z ]. 1 n (a) x+(y+z)=[x ;:::;x ]+[(y +z );:::;(y +z )]= 1 n 1 1 n n [(x +(y +z ));:::;(x +(y +z ))] = 1 1 1 n n n [((x +y )+z );:::;((x +y )+z )]= 1 1 1 n n n [(x +y );:::;(x +y )]+[z ;:::;z ] =(x+y)+z 1 1 n n 1 n (b) x+( x)=[x ;:::;x ]+[ x ;:::; x ]= 1 n 1 n (cid:0) (cid:0) (cid:0) [(x + ( x ));:::;(x + ( x ))] = [0;:::;0]. Also, ( x) + x = 1 1 n n (cid:0) (cid:0) (cid:0) x+( x) (by part (1) of Theorem 1.3) =0, by the above. (cid:0) (c) c(x+y)=c([(x +y );:::;(x +y )])=[c(x +y );:::;c(x +y )]= 1 1 n n 1 1 n n [(cx +cy );:::;(cx +cy )]=[cx ;:::;cx ]+[cy ;:::;cy ]=cx+cy 1 1 n n 1 n 1 n (d) (cd)x=[((cd)x );:::;((cd)x )]=[(c(dx ));:::;(c(dx ))]= 1 n 1 n c[(dx );:::;(dx )] =c(d[x ;:::;x ])=c(dx) 1 n 1 n (25) If c = 0, done. Otherwise, (1)(cx) = 1(0) (1 c)x = 0 (by part (7) of c c ) c (cid:1) Theorem 1.3) x=0: Thus either c=0 or x=0. ) (26) Let x=[x ;x ;:::;x ]. Then [0;0;:::;0] = c x c x = [(c c )x ; 1 2 n 1 2 1 2 1 (cid:0) (cid:0) :::;(c c )x ]. Since c c =0, we have x =x = =x =0. 1 2 n 1 2 1 2 n (cid:0) (cid:0) 6 (cid:1)(cid:1)(cid:1) (27) (a) F (b) T (c) T (d) F (e) T (f) F (g) F Section 1.2 (1) (a) arccos( 27 ), or about 152:6 , or 2.66 radians (cid:0)5p37 (cid:14) (b) arccos( 13 ), or about 63:7 , or 1.11 radians p13p66 (cid:14) (c) arccos(0), which is 90 , or (cid:25) radians (cid:14) 2 (d) arccos( 1), which is 180 , or (cid:25) radians (since x= 2y) (cid:14) (cid:0) (cid:0) (2) The vector from A to A is [2; 7; 3], and the vector from A to A is 1 2 1 3 (cid:0) (cid:0) [5;4; 6]. These vectors are orthogonal. (cid:0) (3) (a) [a;b] [ b;a]=a( b)+ba=0: Similarly, [a; b] [b;a]=0: (cid:1) (cid:0) (cid:0) (cid:0) (cid:1) (b) A vector in the direction of the line ax+by+c=0 is [b; a], while (cid:0) a vector in the direction of bx ay+d=0 is [a;b]. (cid:0) (4) (a) 12 joules (c) 124 joules (cid:0) (b) 1040p5, or 258:4 joules 9 (5) Note that yz is a scalar, so x(yz) is not de(cid:133)ned. (cid:1) (cid:1) (cid:1) 5 Andrilli/Hecker - Answers to Exercises Section 1.2 (6) In all parts, let x=[x ;x ;:::;x ]; y=[y ;y ;:::;y ]; and 1 2 n 1 2 n z=[z ;z ;:::;z ]: 1 2 n Part (1): x y=[x ;x ;:::;x ] [y ;y ;:::;y ]=x y + +x y = 1 2 n 1 2 n 1 1 n n (cid:1) (cid:1) (cid:1)(cid:1)(cid:1) y x + +y x =[y ;y ;:::;y ] [x ;x ;:::;x ]=y x 1 1 n n 1 2 n 1 2 n (cid:1)(cid:1)(cid:1) (cid:1) (cid:1) Part (2): x x = [x ;x ;:::;x ] [x ;x ;:::;x ] = x x + +x x = 1 2 n 1 2 n 1 1 n n (cid:1) (cid:1) (cid:1)(cid:1)(cid:1) x2+ +x2. Nowx2+ +x2 isasumofsquares,eachofwhichmustbe 1 (cid:1)(cid:1)(cid:1) n 1 (cid:1)(cid:1)(cid:1) n nonnegative. Hence, the sum is also nonnegative, and so its square root 2 is de(cid:133)ned. Thus, 0 x x=x2+ +x2 = x2+ +x2 = x 2. (cid:20) (cid:1) 1 (cid:1)(cid:1)(cid:1) n 1 (cid:1)(cid:1)(cid:1) n k k Part(3): Supposex x=0. Frompart(2), 0=(cid:16)px x=x2+ (cid:17)+x2 x2, (cid:1) (cid:1) 1 (cid:1)(cid:1)(cid:1) n (cid:21) i for each i, since the sum of the remaining squares (without x2), which is i nonnegative. Hence, 0 x2 for each i. But x2 0, because it is a square. (cid:21) i i (cid:21) Hence each x =0. Therefore, x=0. i Next, suppose x=0. Then x x=[0;:::;0] [0;:::;0] (cid:1) (cid:1) =(0)(0)+ +(0)(0)=0. (cid:1)(cid:1)(cid:1) Part (4): c(x y)=c([x ;x ;:::;x ] [y ;y ;:::;y ]) 1 2 n 1 2 n (cid:1) (cid:1) =c(x y + +x y ) =cx y + +cx y = 1 1 n n 1 1 n n (cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1) [cx ;cx ;:::;cx ] [y ;y ;:::;y ]=(cx) y. 1 2 n 1 2 n (cid:1) (cid:1) Next, c(x y)=c(y x) (by part (1)) =(cy) x (by the above) =x (cy), (cid:1) (cid:1) (cid:1) (cid:1) by part (1): Part (6): (x+y) z=([x ;x ;:::;x ]+[y ;y ;:::;y ]) [z ;z ;:::;z ] 1 2 n 1 2 n 1 2 n (cid:1) (cid:1) =[x +y ;x +y ;:::;x +y ] [z ;z ;:::;z ] 1 1 2 2 n n 1 2 n (cid:1) =(x +y )z +(x +y )z + +(x +y )z 1 1 1 2 2 2 n n n (cid:1)(cid:1)(cid:1) =(x z +x z + +x z )+(y z +y z + +y z ): 1 1 2 2 n n 1 1 2 2 n n (cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1) Also, (x z)+(y z)=([x ;x ;:::;x ] [z ;z ;:::;z ]) 1 2 n 1 2 n (cid:1) (cid:1) (cid:1) +([y ;y ;:::;y ] [z ;z ;:::;z ]) 1 2 n 1 2 n (cid:1) =(x z +x z + +x z )+(y z +y z + +y z ). 1 1 2 2 n n 1 1 2 2 n n (cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1) Hence, (x+y) z=(x z)+(y z). (cid:1) (cid:1) (cid:1) (7) No; consider x=[1;0], y= [0;1], and z= [1;1]. (8) A method similar to the (cid:133)rst part of the proof of Theorem 1.6 in the textbook yields: a b 2 0 (a a) (b a) (a b)+(b b) 0 k (cid:0) k (cid:21) ) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:1) (cid:21) 1 2(a b)+1 0 a b 1. ) (cid:0) (cid:1) (cid:21) ) (cid:1) (cid:20) (9) Note that (x+y)(x y) = (xx)+(yx) (xy) (yy) = x 2 y 2. (cid:1) (cid:0) (cid:1) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) k k (cid:0)k k (10) Note that x+y 2 = x 2+2(xy)+ y 2, while k k k k (cid:1) k k x y 2 = x 2 2(xy)+ y 2. k (cid:0) k k k (cid:0) (cid:1) k k (11) (a) This follows immediately from the solution to Exercise 10 above. (b) Note that x+y+z 2 = (x+y)+z 2 k k k k = x+y 2 + 2((x+y)z)+ z 2 k k (cid:1) k k = x 2+2(xy)+ y 2+2(xz)+2(yz)+ z 2. k k (cid:1) k k (cid:1) (cid:1) k k (c) This follows immediately from the solution to Exercise 10 above. 6
Description: