ebook img

solutions (Acrobat; 948 kB) PDF

141 Pages·2005·0.92 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview solutions (Acrobat; 948 kB)

Solutions to A First Course in Abstract Algebra John B. Fraleigh sixth edition ISBN 0-201-33596-4 Addison Wesley Longman by Ben Hekster PO Box 391852 Mountain View, CA 94039-1852 [email protected] http://www.hekster.org/Academic/Mathematics/ These are completely unofficial and unverified worked solutions by me. Corrections welcome. Typeset in Galliard and Gill Sans using AppleWorks 5 on Apple Macintosh. Copyright © 1999-2005 All Rights Reserved by: Ben Hekster. 1 Abstract Algebras set + binary operation binary algebraic structure + associative binary operation semigroup + identity monoid + inverse group + finite order + commutative operation finite group commutative group + prime order + generator symmetric group cyclic group + prime order alternating group prime order group Glossary : reads as “so that” + , ⋅ summation, multiplication over i i i ( { ordered, unordered set over i i i ∧,∨,<,> scalar operators ∩,∪,⊂,⊃ set operators = congruent modulo n n < is normal to, is ideal to ( ) fx function application f x commutative group abelian group maximal p-group Sylow p-group 1 §0.1 Preliminaries 1. proving theorems 2. set 3. precision? 4. definition 5. A triangle with vertices P, Q, R is the collection of points X such that • X is in the line segment PQ, or • X is in the line segment QR, or • X is in the line segment RP. 6. An equilateral triangle is a triangle with vertices P, Q, R such that the length of the line segment PQ equals both the length of the line segment QR and the length of the line segment RP. 7. A right triangle is a triangle with vertices P, Q, R in which the two line segments through one of its vertices (say PQ and PR) are such, that for any point X on PQ there is no point Y on PR such that the length of the line segment XY is less than the length of the line segment XP. 8. The interior of a triangle is the collection of points X such that the line segments XP, XQ, XR from X to its vertices P, Q, R have only the vertices in common with the triangle. 9. A circle with center C and radius r is the collection of points X such that the length of the line segment XC equals r. 10. A disk with center C and radius r is the collection of points X such that the length of the line segment XC is less than or equal to r. 11. Define the relationship between PQ and PR in 7. to be a right angle. Then, a rectangle with vertices P, Q, R, S is the collection of points formed by the four line segments PQ, QR, RS, SP, where PQ is at a right angle to QR, QR to RS, RS to SP, and SP to PQ. 12. Let n and m be even integers. Then by (2), there are integers p, q such that n = 2p, m = 2q. Then n + m = 2p + 2q = 2(p + q), so n + m is even. 13. Let n, m, p, q as in 12. Then nm = 2p · 2q = 4pq. Since pq is an integer, 4pq is an integral multiple of 4. 14. Define an odd integer m to be an integer such that there exists another integer n such that m = 2n + 1. Let r be an even integer and s an odd integer. Then there are integers p, q such that r = 2p, s = 2q + 1. So r + s = 2p + 2q + 1 = 2(p + q) + 1, so r + s is odd. 15. counterexample 16. A B F G M, C D J, E H K N, I, L, O. 17. 1, 2, 4, 8, 16, 31 (the conjecture is false). 18. Suppose that i is the square of an odd integer k. Then ∃ i∈(cid:2):k =2l +1⇒i =k2 =(2l +1)2 =4l2+4l +1 Since i is also even, ∃j ∈(cid:2): i =2j ⇒ 4l2+4l +1=2j ⇒ 2l2+2l + 1 = j ∉(cid:2) 2 which is a contradiction, so k cannot be odd. Since k must be even, ∃l∈(cid:3): k =2l⇒ i =k2 =(2l)2 = 4l2 so i is indeed an integral multiple of 4. 19. Let n = 0, then (n+3)2 =32 =9>/ 9. 20. Let n2+2=3⇒ n2 =1⇒ n=−1∨n=+1, so n is not unique. 21. Let n=2⇒ n2+4=22+4=8. 22. Let n=3⇒ n2+5=32+5=14. 23. Let n=−3⇒ n2+5=(−3)2+5=14. With 22., n is not unique. 24. Let n=0: n2 >n⇐ 02 >0, which is a contradiction. 25. Let n ∈(cid:3),n <0⇒ n2 > 0⇒ n2 >0 >n. ( ) 2 26. Let x = 1 ⇒ x2 <x ⇐ 1 < 1 ⇐ 1 < 1, which is a contradiction. 2 2 2 4 2 2 27. Let n=2: n2 >n⇐ 22 >2⇐ 4>2. n=0: n2 =n⇐ 02 =0⇐ 0=0 28. Let , so x is not unique. n=1: n2 =n⇐ 12 =1⇐ 1=1 29. Let j be an odd integer, so ∃k∈(cid:2): j =2k+1 ⇒ j 2 =(2k+1)2 =4k2 +4k+1 = k2 +k∈(cid:3) ( ) 30. ∃m∈(cid:3): n =3m+1, so n2 =(3m+1)2 =9m2+6m+1=33m2+2m +1, and 3 m2+2m is integral. 31. Let n=−2: n3 <n⇐ (−2)3 <−2⇐ −8<−2. ( ) ( ) 2 2 32. Let n=−2,m =1: n = −2 =(−2)2 =4</1. m 1 ( ) 2 33. n < n ⇒(m =0) n2 <nm⇒(n<0) n≥m⇒ n</m. m m ( )3 ( )2 m ≥0: n3 ≤mn2 ⇒(n≠0) n≤m⇒ n<m 34. n ≤ n ⇒ . So let m = –1 and n = –2: m m m ≤0: n3≥mn2 ⇒(n≠0) n≥m⇒ n</m ( ) ( ) ( ) ( ) 3 2 3 2 n ≤ n ⇒ −2 ≤ −2 ⇒ 8≤4, which is a contradiction. m m −1 −1 §0.2 Sets and Relations ♥ 17. An equivalence relation ∼ extracts a property from the whole identity of its arguments and asserts the equality of just this property: equivalence is property equality. For example, ‘congruence modulo’ ≡ asserts equality of the remainder under division. 1. {x ∈(cid:4)|x2 =3}={− 3, + 3} 2. {m ∈(cid:2)|m2 =3}=∅ { } { } 3. m ∈(cid:2)|mn =60 for some n ∈(cid:2) = ±1, 2,3,4,5,6,10,12,15, 20,30 { } 4. m ∈(cid:2)|m2 −m <115 . Solve the inequality: m2−m =115⇒ m2−m−115=0⇒ +1± (−1)2−4⋅1⋅−115 1± 1+460 m = = 2⋅1 2 = 1(1± 461)≈−10.2,11.2 1(1− 461) 0 1(1+ 461) 2 2 2 so m∈{−10,−9,…,10,11}. 5. not a set 6. ∅ 7. ∅ 8. (cid:5) 9. (cid:5) { } 10. m |m ∈(cid:2) 2 11. {(a,1), (a,2), (a,c), (b,1), (b,2), (b,c), (c,1), (c,2), (c,c)} 12. function one-to-one onto a. yes no no b. yes no no c. no 3 d. yes yes yes e. yes no no f. no 13. Map x to y(x). P A B x C D y(x) 14 a. f :[0,1]→[0,2]:x a2x b. f:[1,3]→[5,25]:x a(x −1)20+5 2 d−c c. f:[a,b]→[c,d]:x a(x −a) +c b−a ( ) 15. f : S→ (cid:4): x a tanxπ− 1π 2 16. a. P(∅)=∅, P(∅)=1 { } b. P({a})= ∅,{a}, P({a}) =2 { } c. P({a,b})= ∅,{a},{b},{a,b}, P({a,b}) =4 { } d. P({a,b,c})= ∅,{a},{b},{a,b},{c},{a,c},{b,c},{a,b,c}, P({a,b,c}) =8 17. Conjecture P(A) =2A. Let A be a series of sets such that |A | = n, and A ⊂A . n n n n+1 • P(A ) = P(∅) =1. 0 • Let P(A ) =2An . n There is s ∉A such that A =A ∪s . Consider the set n+1 n n+1 n n+1 U ( ) A′ = P∪ P∪{s } n P⊆A n+1 n Since every element of A n′ is a subset of A n+1, A n′ ⊆P(An+1). Every subset P of A either does or does not contain s : n+1 n+1 s ∉P ⇒ P ⊆A ⇒ P ∈A′ n+1 n n s ∈P ⇒ P \{s }⊆A ⇒ P ∈A′ n+1 n+1 n n so P (An+1)⊆An′. So P (An+1)=An′, and P(An+1) =2⋅P(An) =2⋅2An =2An +1=2An+1 . ( ) 18. Let f:A→B ∈BA. • For each subset P ⊆A, there is a corresponding function a∉P:0 f :A→B:aa P a∈P:1 Let there be two such subsets P,P′⊆A such that f = f . Then ∀a∈A: P P′ a ∈P ⇒ fP(a)= fP′(a)=1⇒ a∈P′; a ∉P ⇒…⇒a∉P′ so P =P′. 4 • Conversely, for each function f ∈BA there is a corresponding subset P ⊆A: f { } P = a∈A| f (a)=1 . f Let there be two functions f ,f ′∈BA such that P f =Pf′. Then ∀ a∈A: f (a)=0 a∉P f ′(a)=0 ∨ ⇒ ∨ f ⇒ ∨ f (a)=1 a∈Pf f ′(a)=1 so f = f ′. So, P :BA →P(A) is a bijection, and BA = P(A). f 19. For every element of A there is a distinct singleton subset containing just that element, which is an element of P(A) . ∅ is not such a singleton set, yet is an element of P(A). So P(A) > A . ( ) Let A be such that A =ℵ. Then the power set of A has P(A) >ℵ, and P P(A) > P(A), ad infinitum. 20. a. It is possible to define addition in (cid:3) in terms of the union of disjoint sets, so 2+3=5⇐ A =2, B =3, A∪B =5. i. 3+ℵ = {0}∪ (cid:2)+ (=*) (cid:2)+ =ℵ , where (*): φ:(cid:2)+ →{0}∪ (cid:2)+ :ma m−1. 0 0 ( ) (*) ( )  m odd: 1(m−1)+ 1 ii. ℵ +ℵ = (cid:2)+ − 1 ∪ (cid:2)+ = (cid:2)+ =ℵ , where (*) φ: (cid:2)+ → (cid:2)+ − 1 ∪ (cid:2)+ :m a  2 2. 0 0 2 0 2  m even: 1m 2 b. It is possible to define multiplication in (cid:3) in terms of a Cartesian product: 2⋅3={1,2}×{1,2,3}=6, so fig 14 ℵ ⋅ℵ = (cid:2)+ × (cid:2)+ = (cid:2)+ =ℵ . 0 0 0 21. 102 digits, 105 digits. By extrapolation, 1 0ℵ0 would equal the number of digits of the form 0.###…, where ‘#’ is { } repeated ℵ times— name this set R. Since any number in R ′ = x ∈(cid:4)|0 ≤x <1 can be expressed arbitrarily 0 precise by an element of R, R ′⊆R. Since R ⊆R′, R =R′. By Exercise 15, R′ =ℵ, so R =ℵ and 10ℵ0 =ℵ. Similar arguments can be made in terms of duodecimal and binary expansions of numbers of R′, so 1 2ℵ0 =2ℵ0 =ℵ. 22. Since P((cid:2))(1=7)2(cid:2) = 2ℵ0 (1=8)ℵ; P((cid:2))(1=9){0,1}(cid:2) The next higher cardinals after ℵ are 0 { }(cid:2) { } ℵ= 0,1 = 0,1 exp (cid:2), {0,1}{0, 1}(cid:2) ={0,1}exp {0,1} exp (cid:2) et cetera. 28. xRy ⇒∃i:x,y ∈P ⇒y,x ∈P ⇒y Rx (symmetric) i i xRx ⇔∃i:x ∈P ⇔x ∈S (reflexive) i xRy ∧y Rz ⇒∃i:x,y ∈P ∧∃j:y,z ∈P i j ⇒(P disjoint⇒i = j)∃i:x,y,z ∈P (transitive). i i ⇒y Rz 29. not reflexive because 0⋅0>/ 0⇒0R/ 0 30. not symmetric because 2≥1,1≥/ 2⇒2R1,1R/ 2. 5 31. R is a relation, because y x = x xRx R   x = y ⇒ y = x ⇒xRy ⇒y Rx   x x = y ∧ y = x ⇒ x = z xRy ∧y Rz ⇒xRz  . 0−3 =3≤3, 3−6 =3≤3, 0−6 =6≤/ 3⇒ 32. so R is not transitive. 0R3, 3R6, 0R/ 6 33. The number of digits of n ∈(cid:2)+ is base 10 notation is 1+10logn. Obviously R is reflexive and symmetric, and transitive. R 0 10 100 34. R is congruence modulo 10 on (cid:2)*. 35. a. {1, 3, 5, …}, {2, 4, 6, …} b. {1, 4, 7, …}, {2, 5, 8, …}, {3, 6, 9, …} c. {1, 6, 11, …}, {2, 7, 12, …}, {3, 8, 13, …}, {4, 9, 14, …}, {5, 10, 15, …} 36a. ∀r ∈(cid:2): r −r =0 =0⋅n ⇒r ~r ( ) ( ) ∀r,s,r ~s : ∃q∈(cid:2): r −s =qn ⇒ s −r =− qn = −q n⇒ s ~r ∀r,s,t,r ~ s,s ~t: ∃p,q ∈(cid:2): r −s =pn, s −t=qn r −s +s −t =pn +qn r −t =(p +q)n⇒ r ~t r −s r s b. ∀r,s ∈(cid:2)+,r ~s : ∃q∈(cid:2): r −s =qn ⇒(n∈(cid:2)) = − =q n n n ∃r ′ ,s ′ ∈(cid:2),r ′′ , s ′′ ∈(cid:3): r =r ′ n +r ′′ , s = s ′ n +s ′′ ,0 ≤r ′′ , s ′′ <n n n n n n n n n n n r −s =qn r ′ n +r ′′ −s ′ n −s ′′ =qn n n n n ( ) ( ) r ′ −s ′ n + r ′′ −s ′′ =qn n n n n ( ) r ′′ −s ′′ r ′′ −s ′′ r ′ −s ′ + n n =q ∧ 0 ≤ n n <1 n n n n r ′′ −s ′′ Since r ′ ,s ′ ∈(cid:3),q ∈(cid:2), n n =0 ⇒ r ′′ −s ′′ . n n n n n c. {…, –2, 1, 3, …}, {…, –2, 0, 2, …} {…, –2, 1, 4, …}, {…, –1, 2, 5, …}, {…, –3, 0, 3, …} {…, –4, 1, 6, …}, {…, –3, 2, 7, …}, {…, –2, 3, 8, …}, {…, –1, 4, 9, …}, {…, –5, 0, 5, …} §0.3 Mathematical Induction ( )( ) n n+1 2n+1 1. Prove that + i2 = . i =1…n 6 ( )( ) 11+1 2⋅1+1 2⋅3 n=1: 12 = = =1 6 6 6 ( )( ) ( )( ) ( ) ( ) n n+1 2n+1 n n+1 2n+1 +6n2+2n+1 n+1: + i2 = + i2 + n+1 2 = +n2+2n+1= i…n+1 i…(n ) 6 ( )( )( ) 6 =n 2n2+3n+1 +6n2+12n+6=…= n+1 n+2 2n+3 n2(n +1)2 2. Prove that + i3 = ,n ∈(cid:2)+. i=1…n 4 ( ) 12 1+1 2 1⋅22 n=1: 13 = = =1 4 4 ( ) ( ) n2 n+1 2 ( )( ) n+1: + i3 = + i3 + n+13 = + n+1 n+1 2 1…n+1 i…n( ) ( 4)( ) n2 n2+2n+1 +4n+1 n2+2n+1 n4+2n3+n2+4n3+8n2+4n+4n2+8n+4 = = 4 4 ( ) ( ) n4+6n3+13nn2+12n+4 n+1 2 n+2 2 = =…= 4 4 ( ) 3. Prove that + 2i−1 =n2. i =1…n n=1: 1=12 ( ) ( ) ( ) ( ) n+1: + 2i−1 = + 2i−1 +2n+1 −1=n2+2n+1= n+1 2 i=1…n+1 i=i…n 4. Prove that + ( 1 ) = n ,n ∈(cid:2)+. i=1…ni i +1 n +1 1 1 n=1: ( ) = 1 = = 1 11+1 2 1+1 2 1 1 1 n 1 n+1: + ( ) = + ( ) + ( )( ) = +( )( ) i=1…n+1i i+1 i=1…ni i+1 n+1 n+2 n+1 n+1 n+2 ( ) ( ) n n+2 +1 n2+2n+1 n+1 2 nn+1 = ( )( ) = ( )( ) = ( )( ) = n+1 n+2 n+1 n+2 n+1 n+2 n+2 ( ) n a 1−rn+1 5. Prove that ∀a,r ∈(cid:4),r ≠1,n ∈(cid:4)+ : + ari = . i=0 1−r ( ) ( )( ) a 1−r2 a 1−r 1+r ( ) n=1: a+ar = = =a 1−r 1−r 1−r ( ) ( ) ( ) n+1 n a 1−rn+1 a 1−rn+1 + 1−r arn+1 n+1: + ari = + ari +arn+1= +arn+1= i=0 i=0 1−r 1−r(( ) ( ) 1−rn+1+ 1−r rn+1 1−rn+1+rn+1−rn+2 a 1−rn+2 =a =a = 1−r 1−r 1−r 6. max is only defined on (cid:2)+, so max(i−1,j −1) is undefined. 7. the concept ‘interesting property’ is not well defined §0.4 Complex and Matrix Algebra ( ) ( ) 1. 2+3i + 4+5i =6+2i. 2. i +5−3i =5−2i. 7 ( ) ( ) 3. 5+7i − 3−2i =2+5i. ( ) ( ) 4. 1−3i − −4+2i =5−5i. 5. i 3 =ii2 =−i. 6. i 4 =i2⋅i2 =−1⋅−1=+1. 7. i23 =i20i3 =(i4)5⋅i3 =15⋅i3 =−i. ( ) ( ) ( ) 8. −i 35=−i35=− i32i3 =−1⋅−i =i. ( )( ) 9. 4−i 5+3i =20+12i−5i−3i2 =23+7i. ( )( ) 10. 8+2i 3−i =24+6i−8i−2i2 =26−2i. ( )( ) ( ) 11. 2−3i 4+i + 6−5i =8+2i−12i−3i2+6−5i =17−15i. ( ) ( )( ) ( )( ) ( ) 12. 1+i 3 = 1+i 1+i 2 = 1+i 1+2i+i2 = 1+i 2i =2i+2i2 =−2+2i. ( )( ) 7−5i 7−5i 1−6i 7−42i−5i+30i2 ( ) 14. = ( )( ) = = 1 −23−47i . 1+6i 1+6i 1−6i 1−36 35 ( ) 1 i 1−i i−i2 i+1 15. = ( )( ) = = . 1+i 1+i 1−i 1−i2 2 ( ) 1−i 1−i i ( ) 16. = =− i−i2 =−1−i. i i2 ( ) ( )( ) ( )( ) i 3+i 1 i 3+i 1+2i 3i−1 1+2i ( ) ( ) 17. = ⋅( )( ) = 1 = 1 −1+3i−2i+6i2 = 1 −7+i . 2−4i 2 1−2i 1+2i 2 12−4i2 10 10 ( )( )( ) ( )( ) 3+7i 3+7i 1−i 2+3i 3−3i+7i−7i2 2+3i ( )( ) = ( )( )( )( ) = ( )( ) 1+i 2−3i 1+i 1−i 2−3i 2+3i 1−i2 4−9i2 18. . ( )( ) ( )( ) 10+4i 2+3i 5+2i 2+3i 10+15i+4i+6i2 4+19i = = = = 2⋅13 1133 13 13 ( )( ) ( )( ) ( ) ( )( ) 1−i 2+i 1−i 2 2+i 1+2i 1−2i+i2 2+4i+i+2i2 −2i⋅5i −i2 19. ( )( ) = ( )( )( )( ) = ( )( ) = = =1. 1−2i 1+i 1−2i 1+2i 1+i 1−i 1−4i2 1−i2 5⋅2 1 20. 3−4i =5. 21. 6+4i =23+2i =2 9+4 =2 13. ( ) 22. 3−4i =5 ⇒3−4i =5 3− 4i . 5 5   1 1   23. −1+i = 2 ⇒−1+i = 2− +i  = 2−1 2+ 1i 2.   2 2 2 2 ( ) 24. 12+5i = 144+25= 169 =13 ⇒12+5i =13 12+ 5 i . 13 13 ( ) 25. −3+5i = 9+25= 36 =6 ⇒−3+5i =6 −1+ 5i . 2 6 26. z1=r1eiθ1,z2 =r2eiθ2 ⇒ z1 z2 =z1z2−1=r1eiθ1 ⋅(r2eiθ2)−1= r1 ei(θ1−θ2). So z 1 z2 is the point in the complex r 2 point at the end of a line from the origin with length r r and angle θ −θ from the positive x-axis. 1 2 1 2 8 ( )4 { } 27. z4 =1 ⇒ reiθ =1e0i ⇒r =1,4θ= 0 ⇒r =1,θ= 0 ⇒z ∈ 1,i,−1,−i . 2π 1π 2 ( ) 4 28. z4 =−1 ⇒ reiθ =1eiπ ⇒r =41,4θ= iπ ⇒r =1,θ= 1π . { 2π 12π 4 } ⇒z ∈ 1 2+ 1i 2,− 1 2+i 1 2,− 1 2− 1i 2, 1 2− 1i 2 2 2 2 2 2 2 2 2 §1.1 Binary Operations (( ) ) ( ) 1. b∗d =e,c∗c =b, a∗c ∗e ∗a = c∗e ∗a =a∗a =a. ( ) a∗b ∗c =b∗c =a 2. ( ) , so * could be, but is not necessarily, associative. a∗ b∗c =a∗a =a ( ) b∗d ∗c =e∗c =a 3. ( ) , so * is not associative. b∗ d∗c =b∗b =c 4. no, because e∗b ≠b∗e. * a b c d a a b c d b b d a c c c a d b 5. d d c b a * a b c d a a b c d b b a c d c c d c d 6. d d c c d ( ) ( ) d∗a = c∗b ∗a =c∗ b∗a =c∗b =d, ( ) ( ) d∗b = c∗b ∗b =c∗ b∗b =c∗a =c, ( ) ( ) d∗c = c∗b ∗c =c∗ b∗c =c∗c =c, ( ) ( ) d∗d = c∗b ∗d =c∗ b∗d =c∗d =d. ( ) ( ) ( ) ( ) 7. 1∗0=1−0=1, 0∗1=0−1=−1, a∗b ∗c = a−b −c =a−b−c, a∗ b∗c =a− b−c =a−b+c, so * is neither commutative nor associative. ( ) ( ) ( ) ( ) 8. Let ∀a,b ∈(cid:5): a∗b = ab+1=ba+1=b ∗a, 0∗0 ∗1= 0⋅0+1 ⋅1+1=2, 0∗ 0∗1 =0⋅ 0⋅1+1 +1=1, so * is commutative, but not associative. ( ) ( ) ( ) ( ) 9. ∀a,b ∈(cid:5): a∗b = 1ab= 1ba=b ∗a, ∀a,b,c ∈(cid:5): a∗b ∗c = 1 1abc = 1a 1bc = a∗ b ∗c , so * is 2 2 2 2 2 2 commutative and associative. ( ) ( ) 10. Let ∀a,b ∈(cid:2)+ : a∗b = 2ab = 2ba=b ∗a, then 0∗ 0∗1 =20⋅20⋅1 =20 =1 and 0∗0 ∗1=220⋅0⋅1=21=2, so * is commutative, but not associative. 11. 1∗2=12 =1; 2∗1=21=2 and 2∗(3∗2)=2(32) =29; (2∗3)∗2=(23)2 =26, so * is neither commutative nor associative. 12. 1; 222 =24 =16; 333 =39 =19683; nnn; the table defining * has n2 entries, each having n possible values. ( ) ( ) ( ) ( ) 13. 1; 212⋅22−1 =21=2; 312⋅33−1 =33 =27; n12nn−1; the table defining commutative * has 1n n−1 entries, each 2 having n possible values. 9

Description:
A First Course in. Abstract Algebra. John B. Fraleigh sixth edition. ISBN 0-201-33596-4. Addison Wesley Longman by. Ben Hekster. PO Box 391852.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.