Solutions to A First Course in Abstract Algebra John B. Fraleigh sixth edition ISBN 0-201-33596-4 Addison Wesley Longman by Ben Hekster PO Box 391852 Mountain View, CA 94039-1852 [email protected] http://www.hekster.org/Academic/Mathematics/ These are completely unofficial and unverified worked solutions by me. Corrections welcome. Typeset in Galliard and Gill Sans using AppleWorks 5 on Apple Macintosh. Copyright © 1999-2005 All Rights Reserved by: Ben Hekster. 1 Abstract Algebras set + binary operation binary algebraic structure + associative binary operation semigroup + identity monoid + inverse group + finite order + commutative operation finite group commutative group + prime order + generator symmetric group cyclic group + prime order alternating group prime order group Glossary : reads as “so that” + , ⋅ summation, multiplication over i i i ( { ordered, unordered set over i i i ∧,∨,<,> scalar operators ∩,∪,⊂,⊃ set operators = congruent modulo n n < is normal to, is ideal to ( ) fx function application f x commutative group abelian group maximal p-group Sylow p-group 1 §0.1 Preliminaries 1. proving theorems 2. set 3. precision? 4. definition 5. A triangle with vertices P, Q, R is the collection of points X such that • X is in the line segment PQ, or • X is in the line segment QR, or • X is in the line segment RP. 6. An equilateral triangle is a triangle with vertices P, Q, R such that the length of the line segment PQ equals both the length of the line segment QR and the length of the line segment RP. 7. A right triangle is a triangle with vertices P, Q, R in which the two line segments through one of its vertices (say PQ and PR) are such, that for any point X on PQ there is no point Y on PR such that the length of the line segment XY is less than the length of the line segment XP. 8. The interior of a triangle is the collection of points X such that the line segments XP, XQ, XR from X to its vertices P, Q, R have only the vertices in common with the triangle. 9. A circle with center C and radius r is the collection of points X such that the length of the line segment XC equals r. 10. A disk with center C and radius r is the collection of points X such that the length of the line segment XC is less than or equal to r. 11. Define the relationship between PQ and PR in 7. to be a right angle. Then, a rectangle with vertices P, Q, R, S is the collection of points formed by the four line segments PQ, QR, RS, SP, where PQ is at a right angle to QR, QR to RS, RS to SP, and SP to PQ. 12. Let n and m be even integers. Then by (2), there are integers p, q such that n = 2p, m = 2q. Then n + m = 2p + 2q = 2(p + q), so n + m is even. 13. Let n, m, p, q as in 12. Then nm = 2p · 2q = 4pq. Since pq is an integer, 4pq is an integral multiple of 4. 14. Define an odd integer m to be an integer such that there exists another integer n such that m = 2n + 1. Let r be an even integer and s an odd integer. Then there are integers p, q such that r = 2p, s = 2q + 1. So r + s = 2p + 2q + 1 = 2(p + q) + 1, so r + s is odd. 15. counterexample 16. A B F G M, C D J, E H K N, I, L, O. 17. 1, 2, 4, 8, 16, 31 (the conjecture is false). 18. Suppose that i is the square of an odd integer k. Then ∃ i∈(cid:2):k =2l +1⇒i =k2 =(2l +1)2 =4l2+4l +1 Since i is also even, ∃j ∈(cid:2): i =2j ⇒ 4l2+4l +1=2j ⇒ 2l2+2l + 1 = j ∉(cid:2) 2 which is a contradiction, so k cannot be odd. Since k must be even, ∃l∈(cid:3): k =2l⇒ i =k2 =(2l)2 = 4l2 so i is indeed an integral multiple of 4. 19. Let n = 0, then (n+3)2 =32 =9>/ 9. 20. Let n2+2=3⇒ n2 =1⇒ n=−1∨n=+1, so n is not unique. 21. Let n=2⇒ n2+4=22+4=8. 22. Let n=3⇒ n2+5=32+5=14. 23. Let n=−3⇒ n2+5=(−3)2+5=14. With 22., n is not unique. 24. Let n=0: n2 >n⇐ 02 >0, which is a contradiction. 25. Let n ∈(cid:3),n <0⇒ n2 > 0⇒ n2 >0 >n. ( ) 2 26. Let x = 1 ⇒ x2 <x ⇐ 1 < 1 ⇐ 1 < 1, which is a contradiction. 2 2 2 4 2 2 27. Let n=2: n2 >n⇐ 22 >2⇐ 4>2. n=0: n2 =n⇐ 02 =0⇐ 0=0 28. Let , so x is not unique. n=1: n2 =n⇐ 12 =1⇐ 1=1 29. Let j be an odd integer, so ∃k∈(cid:2): j =2k+1 ⇒ j 2 =(2k+1)2 =4k2 +4k+1 = k2 +k∈(cid:3) ( ) 30. ∃m∈(cid:3): n =3m+1, so n2 =(3m+1)2 =9m2+6m+1=33m2+2m +1, and 3 m2+2m is integral. 31. Let n=−2: n3 <n⇐ (−2)3 <−2⇐ −8<−2. ( ) ( ) 2 2 32. Let n=−2,m =1: n = −2 =(−2)2 =4</1. m 1 ( ) 2 33. n < n ⇒(m =0) n2 <nm⇒(n<0) n≥m⇒ n</m. m m ( )3 ( )2 m ≥0: n3 ≤mn2 ⇒(n≠0) n≤m⇒ n<m 34. n ≤ n ⇒ . So let m = –1 and n = –2: m m m ≤0: n3≥mn2 ⇒(n≠0) n≥m⇒ n</m ( ) ( ) ( ) ( ) 3 2 3 2 n ≤ n ⇒ −2 ≤ −2 ⇒ 8≤4, which is a contradiction. m m −1 −1 §0.2 Sets and Relations ♥ 17. An equivalence relation ∼ extracts a property from the whole identity of its arguments and asserts the equality of just this property: equivalence is property equality. For example, ‘congruence modulo’ ≡ asserts equality of the remainder under division. 1. {x ∈(cid:4)|x2 =3}={− 3, + 3} 2. {m ∈(cid:2)|m2 =3}=∅ { } { } 3. m ∈(cid:2)|mn =60 for some n ∈(cid:2) = ±1, 2,3,4,5,6,10,12,15, 20,30 { } 4. m ∈(cid:2)|m2 −m <115 . Solve the inequality: m2−m =115⇒ m2−m−115=0⇒ +1± (−1)2−4⋅1⋅−115 1± 1+460 m = = 2⋅1 2 = 1(1± 461)≈−10.2,11.2 1(1− 461) 0 1(1+ 461) 2 2 2 so m∈{−10,−9,…,10,11}. 5. not a set 6. ∅ 7. ∅ 8. (cid:5) 9. (cid:5) { } 10. m |m ∈(cid:2) 2 11. {(a,1), (a,2), (a,c), (b,1), (b,2), (b,c), (c,1), (c,2), (c,c)} 12. function one-to-one onto a. yes no no b. yes no no c. no 3 d. yes yes yes e. yes no no f. no 13. Map x to y(x). P A B x C D y(x) 14 a. f :[0,1]→[0,2]:x a2x b. f:[1,3]→[5,25]:x a(x −1)20+5 2 d−c c. f:[a,b]→[c,d]:x a(x −a) +c b−a ( ) 15. f : S→ (cid:4): x a tanxπ− 1π 2 16. a. P(∅)=∅, P(∅)=1 { } b. P({a})= ∅,{a}, P({a}) =2 { } c. P({a,b})= ∅,{a},{b},{a,b}, P({a,b}) =4 { } d. P({a,b,c})= ∅,{a},{b},{a,b},{c},{a,c},{b,c},{a,b,c}, P({a,b,c}) =8 17. Conjecture P(A) =2A. Let A be a series of sets such that |A | = n, and A ⊂A . n n n n+1 • P(A ) = P(∅) =1. 0 • Let P(A ) =2An . n There is s ∉A such that A =A ∪s . Consider the set n+1 n n+1 n n+1 U ( ) A′ = P∪ P∪{s } n P⊆A n+1 n Since every element of A n′ is a subset of A n+1, A n′ ⊆P(An+1). Every subset P of A either does or does not contain s : n+1 n+1 s ∉P ⇒ P ⊆A ⇒ P ∈A′ n+1 n n s ∈P ⇒ P \{s }⊆A ⇒ P ∈A′ n+1 n+1 n n so P (An+1)⊆An′. So P (An+1)=An′, and P(An+1) =2⋅P(An) =2⋅2An =2An +1=2An+1 . ( ) 18. Let f:A→B ∈BA. • For each subset P ⊆A, there is a corresponding function a∉P:0 f :A→B:aa P a∈P:1 Let there be two such subsets P,P′⊆A such that f = f . Then ∀a∈A: P P′ a ∈P ⇒ fP(a)= fP′(a)=1⇒ a∈P′; a ∉P ⇒…⇒a∉P′ so P =P′. 4 • Conversely, for each function f ∈BA there is a corresponding subset P ⊆A: f { } P = a∈A| f (a)=1 . f Let there be two functions f ,f ′∈BA such that P f =Pf′. Then ∀ a∈A: f (a)=0 a∉P f ′(a)=0 ∨ ⇒ ∨ f ⇒ ∨ f (a)=1 a∈Pf f ′(a)=1 so f = f ′. So, P :BA →P(A) is a bijection, and BA = P(A). f 19. For every element of A there is a distinct singleton subset containing just that element, which is an element of P(A) . ∅ is not such a singleton set, yet is an element of P(A). So P(A) > A . ( ) Let A be such that A =ℵ. Then the power set of A has P(A) >ℵ, and P P(A) > P(A), ad infinitum. 20. a. It is possible to define addition in (cid:3) in terms of the union of disjoint sets, so 2+3=5⇐ A =2, B =3, A∪B =5. i. 3+ℵ = {0}∪ (cid:2)+ (=*) (cid:2)+ =ℵ , where (*): φ:(cid:2)+ →{0}∪ (cid:2)+ :ma m−1. 0 0 ( ) (*) ( ) m odd: 1(m−1)+ 1 ii. ℵ +ℵ = (cid:2)+ − 1 ∪ (cid:2)+ = (cid:2)+ =ℵ , where (*) φ: (cid:2)+ → (cid:2)+ − 1 ∪ (cid:2)+ :m a 2 2. 0 0 2 0 2 m even: 1m 2 b. It is possible to define multiplication in (cid:3) in terms of a Cartesian product: 2⋅3={1,2}×{1,2,3}=6, so fig 14 ℵ ⋅ℵ = (cid:2)+ × (cid:2)+ = (cid:2)+ =ℵ . 0 0 0 21. 102 digits, 105 digits. By extrapolation, 1 0ℵ0 would equal the number of digits of the form 0.###…, where ‘#’ is { } repeated ℵ times— name this set R. Since any number in R ′ = x ∈(cid:4)|0 ≤x <1 can be expressed arbitrarily 0 precise by an element of R, R ′⊆R. Since R ⊆R′, R =R′. By Exercise 15, R′ =ℵ, so R =ℵ and 10ℵ0 =ℵ. Similar arguments can be made in terms of duodecimal and binary expansions of numbers of R′, so 1 2ℵ0 =2ℵ0 =ℵ. 22. Since P((cid:2))(1=7)2(cid:2) = 2ℵ0 (1=8)ℵ; P((cid:2))(1=9){0,1}(cid:2) The next higher cardinals after ℵ are 0 { }(cid:2) { } ℵ= 0,1 = 0,1 exp (cid:2), {0,1}{0, 1}(cid:2) ={0,1}exp {0,1} exp (cid:2) et cetera. 28. xRy ⇒∃i:x,y ∈P ⇒y,x ∈P ⇒y Rx (symmetric) i i xRx ⇔∃i:x ∈P ⇔x ∈S (reflexive) i xRy ∧y Rz ⇒∃i:x,y ∈P ∧∃j:y,z ∈P i j ⇒(P disjoint⇒i = j)∃i:x,y,z ∈P (transitive). i i ⇒y Rz 29. not reflexive because 0⋅0>/ 0⇒0R/ 0 30. not symmetric because 2≥1,1≥/ 2⇒2R1,1R/ 2. 5 31. R is a relation, because y x = x xRx R x = y ⇒ y = x ⇒xRy ⇒y Rx x x = y ∧ y = x ⇒ x = z xRy ∧y Rz ⇒xRz . 0−3 =3≤3, 3−6 =3≤3, 0−6 =6≤/ 3⇒ 32. so R is not transitive. 0R3, 3R6, 0R/ 6 33. The number of digits of n ∈(cid:2)+ is base 10 notation is 1+10logn. Obviously R is reflexive and symmetric, and transitive. R 0 10 100 34. R is congruence modulo 10 on (cid:2)*. 35. a. {1, 3, 5, …}, {2, 4, 6, …} b. {1, 4, 7, …}, {2, 5, 8, …}, {3, 6, 9, …} c. {1, 6, 11, …}, {2, 7, 12, …}, {3, 8, 13, …}, {4, 9, 14, …}, {5, 10, 15, …} 36a. ∀r ∈(cid:2): r −r =0 =0⋅n ⇒r ~r ( ) ( ) ∀r,s,r ~s : ∃q∈(cid:2): r −s =qn ⇒ s −r =− qn = −q n⇒ s ~r ∀r,s,t,r ~ s,s ~t: ∃p,q ∈(cid:2): r −s =pn, s −t=qn r −s +s −t =pn +qn r −t =(p +q)n⇒ r ~t r −s r s b. ∀r,s ∈(cid:2)+,r ~s : ∃q∈(cid:2): r −s =qn ⇒(n∈(cid:2)) = − =q n n n ∃r ′ ,s ′ ∈(cid:2),r ′′ , s ′′ ∈(cid:3): r =r ′ n +r ′′ , s = s ′ n +s ′′ ,0 ≤r ′′ , s ′′ <n n n n n n n n n n n r −s =qn r ′ n +r ′′ −s ′ n −s ′′ =qn n n n n ( ) ( ) r ′ −s ′ n + r ′′ −s ′′ =qn n n n n ( ) r ′′ −s ′′ r ′′ −s ′′ r ′ −s ′ + n n =q ∧ 0 ≤ n n <1 n n n n r ′′ −s ′′ Since r ′ ,s ′ ∈(cid:3),q ∈(cid:2), n n =0 ⇒ r ′′ −s ′′ . n n n n n c. {…, –2, 1, 3, …}, {…, –2, 0, 2, …} {…, –2, 1, 4, …}, {…, –1, 2, 5, …}, {…, –3, 0, 3, …} {…, –4, 1, 6, …}, {…, –3, 2, 7, …}, {…, –2, 3, 8, …}, {…, –1, 4, 9, …}, {…, –5, 0, 5, …} §0.3 Mathematical Induction ( )( ) n n+1 2n+1 1. Prove that + i2 = . i =1…n 6 ( )( ) 11+1 2⋅1+1 2⋅3 n=1: 12 = = =1 6 6 6 ( )( ) ( )( ) ( ) ( ) n n+1 2n+1 n n+1 2n+1 +6n2+2n+1 n+1: + i2 = + i2 + n+1 2 = +n2+2n+1= i…n+1 i…(n ) 6 ( )( )( ) 6 =n 2n2+3n+1 +6n2+12n+6=…= n+1 n+2 2n+3 n2(n +1)2 2. Prove that + i3 = ,n ∈(cid:2)+. i=1…n 4 ( ) 12 1+1 2 1⋅22 n=1: 13 = = =1 4 4 ( ) ( ) n2 n+1 2 ( )( ) n+1: + i3 = + i3 + n+13 = + n+1 n+1 2 1…n+1 i…n( ) ( 4)( ) n2 n2+2n+1 +4n+1 n2+2n+1 n4+2n3+n2+4n3+8n2+4n+4n2+8n+4 = = 4 4 ( ) ( ) n4+6n3+13nn2+12n+4 n+1 2 n+2 2 = =…= 4 4 ( ) 3. Prove that + 2i−1 =n2. i =1…n n=1: 1=12 ( ) ( ) ( ) ( ) n+1: + 2i−1 = + 2i−1 +2n+1 −1=n2+2n+1= n+1 2 i=1…n+1 i=i…n 4. Prove that + ( 1 ) = n ,n ∈(cid:2)+. i=1…ni i +1 n +1 1 1 n=1: ( ) = 1 = = 1 11+1 2 1+1 2 1 1 1 n 1 n+1: + ( ) = + ( ) + ( )( ) = +( )( ) i=1…n+1i i+1 i=1…ni i+1 n+1 n+2 n+1 n+1 n+2 ( ) ( ) n n+2 +1 n2+2n+1 n+1 2 nn+1 = ( )( ) = ( )( ) = ( )( ) = n+1 n+2 n+1 n+2 n+1 n+2 n+2 ( ) n a 1−rn+1 5. Prove that ∀a,r ∈(cid:4),r ≠1,n ∈(cid:4)+ : + ari = . i=0 1−r ( ) ( )( ) a 1−r2 a 1−r 1+r ( ) n=1: a+ar = = =a 1−r 1−r 1−r ( ) ( ) ( ) n+1 n a 1−rn+1 a 1−rn+1 + 1−r arn+1 n+1: + ari = + ari +arn+1= +arn+1= i=0 i=0 1−r 1−r(( ) ( ) 1−rn+1+ 1−r rn+1 1−rn+1+rn+1−rn+2 a 1−rn+2 =a =a = 1−r 1−r 1−r 6. max is only defined on (cid:2)+, so max(i−1,j −1) is undefined. 7. the concept ‘interesting property’ is not well defined §0.4 Complex and Matrix Algebra ( ) ( ) 1. 2+3i + 4+5i =6+2i. 2. i +5−3i =5−2i. 7 ( ) ( ) 3. 5+7i − 3−2i =2+5i. ( ) ( ) 4. 1−3i − −4+2i =5−5i. 5. i 3 =ii2 =−i. 6. i 4 =i2⋅i2 =−1⋅−1=+1. 7. i23 =i20i3 =(i4)5⋅i3 =15⋅i3 =−i. ( ) ( ) ( ) 8. −i 35=−i35=− i32i3 =−1⋅−i =i. ( )( ) 9. 4−i 5+3i =20+12i−5i−3i2 =23+7i. ( )( ) 10. 8+2i 3−i =24+6i−8i−2i2 =26−2i. ( )( ) ( ) 11. 2−3i 4+i + 6−5i =8+2i−12i−3i2+6−5i =17−15i. ( ) ( )( ) ( )( ) ( ) 12. 1+i 3 = 1+i 1+i 2 = 1+i 1+2i+i2 = 1+i 2i =2i+2i2 =−2+2i. ( )( ) 7−5i 7−5i 1−6i 7−42i−5i+30i2 ( ) 14. = ( )( ) = = 1 −23−47i . 1+6i 1+6i 1−6i 1−36 35 ( ) 1 i 1−i i−i2 i+1 15. = ( )( ) = = . 1+i 1+i 1−i 1−i2 2 ( ) 1−i 1−i i ( ) 16. = =− i−i2 =−1−i. i i2 ( ) ( )( ) ( )( ) i 3+i 1 i 3+i 1+2i 3i−1 1+2i ( ) ( ) 17. = ⋅( )( ) = 1 = 1 −1+3i−2i+6i2 = 1 −7+i . 2−4i 2 1−2i 1+2i 2 12−4i2 10 10 ( )( )( ) ( )( ) 3+7i 3+7i 1−i 2+3i 3−3i+7i−7i2 2+3i ( )( ) = ( )( )( )( ) = ( )( ) 1+i 2−3i 1+i 1−i 2−3i 2+3i 1−i2 4−9i2 18. . ( )( ) ( )( ) 10+4i 2+3i 5+2i 2+3i 10+15i+4i+6i2 4+19i = = = = 2⋅13 1133 13 13 ( )( ) ( )( ) ( ) ( )( ) 1−i 2+i 1−i 2 2+i 1+2i 1−2i+i2 2+4i+i+2i2 −2i⋅5i −i2 19. ( )( ) = ( )( )( )( ) = ( )( ) = = =1. 1−2i 1+i 1−2i 1+2i 1+i 1−i 1−4i2 1−i2 5⋅2 1 20. 3−4i =5. 21. 6+4i =23+2i =2 9+4 =2 13. ( ) 22. 3−4i =5 ⇒3−4i =5 3− 4i . 5 5 1 1 23. −1+i = 2 ⇒−1+i = 2− +i = 2−1 2+ 1i 2. 2 2 2 2 ( ) 24. 12+5i = 144+25= 169 =13 ⇒12+5i =13 12+ 5 i . 13 13 ( ) 25. −3+5i = 9+25= 36 =6 ⇒−3+5i =6 −1+ 5i . 2 6 26. z1=r1eiθ1,z2 =r2eiθ2 ⇒ z1 z2 =z1z2−1=r1eiθ1 ⋅(r2eiθ2)−1= r1 ei(θ1−θ2). So z 1 z2 is the point in the complex r 2 point at the end of a line from the origin with length r r and angle θ −θ from the positive x-axis. 1 2 1 2 8 ( )4 { } 27. z4 =1 ⇒ reiθ =1e0i ⇒r =1,4θ= 0 ⇒r =1,θ= 0 ⇒z ∈ 1,i,−1,−i . 2π 1π 2 ( ) 4 28. z4 =−1 ⇒ reiθ =1eiπ ⇒r =41,4θ= iπ ⇒r =1,θ= 1π . { 2π 12π 4 } ⇒z ∈ 1 2+ 1i 2,− 1 2+i 1 2,− 1 2− 1i 2, 1 2− 1i 2 2 2 2 2 2 2 2 2 §1.1 Binary Operations (( ) ) ( ) 1. b∗d =e,c∗c =b, a∗c ∗e ∗a = c∗e ∗a =a∗a =a. ( ) a∗b ∗c =b∗c =a 2. ( ) , so * could be, but is not necessarily, associative. a∗ b∗c =a∗a =a ( ) b∗d ∗c =e∗c =a 3. ( ) , so * is not associative. b∗ d∗c =b∗b =c 4. no, because e∗b ≠b∗e. * a b c d a a b c d b b d a c c c a d b 5. d d c b a * a b c d a a b c d b b a c d c c d c d 6. d d c c d ( ) ( ) d∗a = c∗b ∗a =c∗ b∗a =c∗b =d, ( ) ( ) d∗b = c∗b ∗b =c∗ b∗b =c∗a =c, ( ) ( ) d∗c = c∗b ∗c =c∗ b∗c =c∗c =c, ( ) ( ) d∗d = c∗b ∗d =c∗ b∗d =c∗d =d. ( ) ( ) ( ) ( ) 7. 1∗0=1−0=1, 0∗1=0−1=−1, a∗b ∗c = a−b −c =a−b−c, a∗ b∗c =a− b−c =a−b+c, so * is neither commutative nor associative. ( ) ( ) ( ) ( ) 8. Let ∀a,b ∈(cid:5): a∗b = ab+1=ba+1=b ∗a, 0∗0 ∗1= 0⋅0+1 ⋅1+1=2, 0∗ 0∗1 =0⋅ 0⋅1+1 +1=1, so * is commutative, but not associative. ( ) ( ) ( ) ( ) 9. ∀a,b ∈(cid:5): a∗b = 1ab= 1ba=b ∗a, ∀a,b,c ∈(cid:5): a∗b ∗c = 1 1abc = 1a 1bc = a∗ b ∗c , so * is 2 2 2 2 2 2 commutative and associative. ( ) ( ) 10. Let ∀a,b ∈(cid:2)+ : a∗b = 2ab = 2ba=b ∗a, then 0∗ 0∗1 =20⋅20⋅1 =20 =1 and 0∗0 ∗1=220⋅0⋅1=21=2, so * is commutative, but not associative. 11. 1∗2=12 =1; 2∗1=21=2 and 2∗(3∗2)=2(32) =29; (2∗3)∗2=(23)2 =26, so * is neither commutative nor associative. 12. 1; 222 =24 =16; 333 =39 =19683; nnn; the table defining * has n2 entries, each having n possible values. ( ) ( ) ( ) ( ) 13. 1; 212⋅22−1 =21=2; 312⋅33−1 =33 =27; n12nn−1; the table defining commutative * has 1n n−1 entries, each 2 having n possible values. 9
Description: