ebook img

Solution Sets for Differential Equations and Inclusions PDF

474 Pages·2012·4.365 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solution Sets for Differential Equations and Inclusions

De Gruyter Series in Nonlinear Analysis and Applications 18 EditorinChief JürgenAppell,Würzburg,Germany Editors CatherineBandle,Basel,Switzerland AlainBensoussan,Richardson,Texas,USA AvnerFriedman,Columbus,Ohio,USA Karl-HeinzHoffmann,Munich,Germany MikioKato,Kitakyushu,Japan UmbertoMosco,Worcester,Massachusetts,USA LouisNirenberg,NewYork,USA BorisN.Sadovsky,Voronezh,Russia AlfonsoVignoli,Rome,Italy KatrinWendland,Freiburg, Germany Smaïl Djebali Lech Górniewicz Abdelghani Ouahab Solution Sets for Differential Equations and Inclusions De Gruyter MathematicsSubjectClassification2010:26E25,34-01,34G20,34A37,34A60,34B15,34B37, 34B40,45D05,47D60,47G10,47H04,47H08,47H10,54-01,54C15,54C60,54C65,54H20, 54H25,55M15,55N05. ISBN978-3-11-029344-9 e-ISBN978-3-11-029356-2 ISSN0941-813X LibraryofCongressCataloging-in-PublicationData ACIPcatalogrecordforthisbookhasbeenappliedforattheLibraryofCongress. BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists this publicationin theDeutscheNationalbibliografie; detailedbibliographicdataareavailableintheinternetathttp://dnb.dnb.de. © 2013WalterdeGruyterGmbH,Berlin/Boston Typesetting:PTP-BerlinProtago-TEX-ProductionGmbH,www.ptp-berlin.de Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen Printedonacid-freepaper PrintedinGermany www.degruyter.com SmaïlDjebali:Tothememoryofmyparents LechGórniewicz: ToMaria,Grzegorz,andOskar AbdelghaniOuahab:ToOuahab,Nadjmi,Hidaoui,andBalikifamilies Preface In1890,Peano[392,393]showedthattheCauchyproblem x0.t/D f.t;x.t//; for t 2 Œt ;a(cid:2); 0 (1) x.t /D x ; 0 0 where f W Œ0;a(cid:2)(cid:2)Rn ! Rn iscontinuous,haslocal solutionsalthoughtheunique- nessdoesnotholdingeneral.Thisobservationbecameamotivationforstudyingthe structureofthesetS ofsolutionsto(1).Peanohimselfhadshownthat,inthemono- dimensional case n D 1, all sections S.t/ D fx.t/ W x 2 Sg are nonempty,com- pact,andconnected(i.e.,acontinuum)(thePeanofunnel)inthestandardtopologyof the real line, for t in someneighbourhoodoft .H. Kneser generalised thisresult in 0 1923[294]tothecaseofarbitrarydimensionn 2f1;2;:::g.In1928,Hukuhara[265] proved that S is a continuum in the more general framework of the Banach space ofcontinuousfunctionsendowedwiththesup-norm.In1942,N.Aronszajn[33]im- provedKneser’stheoreminfinite-dimensionalspacesbyshowingthatthePeanofun- nelis evenanR -set,i.e., itis homeomorphicto theintersection ofa decreasing se- ı quenceof compact contractible spaces (or compactabsoluteretracts), where R is a ı conceptintroducedbyN.Aronszajnhimself.Inparticular,thisimpliesthatSisacyclic whichmeans,withoutaLipschitzianityoftheright-handsidef of(1),thatthesetS of solutions of (1) may not be a singleton but, from the point of view of algebraic topology,itisequivalenttoapoint,inthesensethatithasthesamehomologygroup asone-pointspace. Since the famous Schauder fixed point theorem or more generally the Lefschetz fixedpointtheoremyieldedtheexistenceoffixedpointsforsomeclassesofmappings andthat uniquenessis notin general guaranteed, then a natural questionusuallyad- dressed is tocharacterise the set of fixedpoints.FollowingAronszajn’s theory[33], importantprogresswasmadebyF.BrowderandC.Guptain1969[86]butthetheory really received a new impetus after the publication of the Browder–Gupta theorem. In the same year, York [497, Theorem 1.3] proved that the solutionset S.F;x / of 0 theautonomousCauchyproblemx0 2 F.x/; x.0/ D x iscontractible providedF 0 isaCarathéodoryboundedmulti-valuedfunctionwithcompact,convexvalueswhich admitsaLipschitzianselection.Thistogetherwithsome(cid:3)-selectionabilityproperties provedlater byLasry–Robert[319]andGórniewicz [215]haveledtoseveralresults concerningthetopologicalstructure ofthesetofsolutionsofmanyclasses ofdiffer- entialequationsandinclusions.Inparticular,ithasbeenshownthattheboundedness viii Preface of F may be relaxed and replaced by linear growth or even by some Nagumo type conditions. In case of differential equations, many results follow immediately from the Browder–Gupta theorem and the Szufla type lemma [447–451]. Several generalisa- tions to the case of differential inclusions, integro-differential inclusions, and func- tional differential inclusions have recently been considered in the following papers andreferencestherein[19,24,26,39,42,71,72,90–92,94,105,110,115,117,123,142, 144,148,158,195,196,210,213,238,268,302,313,329,331–333,349–351,369–372, 372–385,406,428,432,440,441,451–454,471,505,506]. Evidentlythecharacterisation ofthesetoffixedpointsforsomeoperatorsimplies correspondingresults onthe structure of solutionsets for initial and boundaryvalue problems;regardingthisapproach,aconciseaccountisgivenin[156].Infact, many papershavebeenpreciselyconcernedwithfixedpointpropertiesofnonlinearalgebraic anddifferentialoperators;wequoteforinstance[132,133,157,309,310,336,347,408, 409,425,455,475].Earlier, Krasnosel’skiˇı and Perov [292] proved a connectedness principle for single-valued compact mappings in 1959. Then some extensions have beenobtainedbyGórniewicz andPruszko[223]in1980andB.D.Gel’man [195]in 1987(seealso[319]). In this monograph, we develop this theory and use it to address some questions about the solvability and the structure of solution sets of many classes of differen- tialandintegral equationsandinclusions.Further toARproperties ofsomesolution sets in connectionwith contraction mappings,we have been mainly concerned with contractibility,R -contractibilityormerelyR -structureofsolutionsetsofproblems ı ı associatedwithdifferentialinclusions.Asweshallseeinthismonograph,thisisrather relatedtotheanalyticpropertiesenjoyedbytheright-handsideoftheequationorthe inclusion. Thisbookisanattempttoofferacomprehensiveexpositionofthistheorybygiving asystematicpresentationofclassicalandrecentresultsobtainedinthelastcoupleof years. We presented a detailed descriptionof methodsspread overthe literature and concerningthetopologicalstructureoffixedpointsetsandsolutionsetsfordifferential equationsandinclusions.Ourmainmotivationandprimarygoalaretwofold:first,to providemanyofthebasictechniquesandresultsrecentlydevelopedaboutthistheory; second,toassembletheliterature thatisdisseminatedandscattered inseveralpapers of pioneering researchers who developed the functional analytic framework of this fieldoverthepastfewdecades. Wehopetorendertheseresultsmorereadilyaccessibletograduateandpost-gradu- atestudentsandalsotomoreadvancedresearchersinterestedinthistheory.Themeth- odsnowcalledBrowder–Guptamethod,Banachmethod,andinverselimitmethodare presentedandmostoftheadvancedresultsachievedtodateandconcerningtheabove threemethodsaresurveyedinthismonograph.Moreover,severalexamplesofappli- cationsrelatingtoinitialandboundaryvalueproblemsarediscussedindetail. Preface ix The presentation of the bookis reasonably self-contained since we have assumed familiarityonlywithbasicknowledgeofrealfunctionalanalysis;almostnoprofound knowledgeoftopologyisrequired.Prerequisitesarestandardgraduatecoursesingen- eraltopology.Thebookisintendedforinstructorsactiveinresearchareaswithinter- estsintopologicalpropertiesoffixedpointmappingsandapplications;itwillalsobe beneficialtoadvancedgraduateresearchers sinceitaimstoprovidestudentswiththe necessaryunderstandingofthesubjectwithnodeepbackgroundmaterialneeded.We haveintentionallyincludedarichandveryextensivebibliographyinwhichthereader canfindfurtherresults.Wehopethismonographwillfillthevacuumintheliterature regarding the topological structure of fixed point sets and its applications to differ- entialequationsandinclusions.Of course,thebibliographyisalsoenrichedbysome fundamentaltitlesdealingwithtopologyandfunctionalanalysisusedinthisbook. Essentially, the book is divided into four main chapters and two supplementary chapters. Chapters 5 and 6 give an overview of the necessary background of topol- ogyandelementarymulti-valuedanalysis,respectively;theycontainthebasicnotions forausefulbasisfortheentirebook.Indeed,basicnotionsandevenadvancedpartsof topologynecessaryforagoodreadingofChapter1areoutlinedinChapter5;thischap- ter couldbeuseful for readers moreinterested in algebraic topology.Incontainsthe maindefinitionsandproperties ofcommonnotionsofretraction, contractibility, and acyclicityfrequentlyusedtodescribethetopologicalstructureofthesetsofsolutions. InChapter6,wehavecollectedmostimportantresultsaboutmulti-valuedmappings andtheirtopology(measurability,continuity,selectionproblems,etc).However,aux- iliaryresultsfromfunctionalanalysisaregatheredtogetherseparatelyintheAppendix. In1946,S.EilenbergandD.Montgomeryobservedthat,byusingtheVietorismap- pingtheorem,theLefschetzfixedpointtheoremcouldbecarriedovertomulti-valued acyclic maps of compact ANR-spaces. Starting from the classical fixed point the- ory, Chapter 1 focuses on fundamental results recently obtained and which concern thetopologicalstructureofsingle-valuedandmulti-valuedfixedpointmappings.The caseofnonexpansivemaps,whichlackstrictcontractivity,isconsideredbutalsothe structureofsolutionsetsformulti-valuedcontractionsisinvestigated.Eventheclass of admissible mapswhich containas particular cases acyclic mapsis studied in this chapter; this abstract theory plays a key role in the investigation of solution sets of manyinitialandboundaryvalueproblems.Wehave howevertried toindicate asfar aspossibletheoriginalsourcesofthevariouslatestresultswehavelearnedabout. Most of the classical known results on the existence (and uniqueness) theory for ordinary differential equationsand inclusionsare collected in Chapter 2. This chap- ter encompassesbasicanduseful results importanttounderstandingthestudyofthe structureofthesolutionsetsforproblemsposedeitheronboundedorunboundeddo- mains. This chapter relies heavily on the fixed point theory developed in Chapter 1 anditcouldbereadindependentlyoftherestofthematerial. ThetheoryofAronszajnandBrowder–GuptaisappliedinChapter3toinvestigate thetopologicalstructureofthesolutionsetsforsomeclassesofdifferentialequations

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.