ebook img

Solution of Fundamentals of Electric Circuits PDF

1117 Pages·2008·17.305 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solution of Fundamentals of Electric Circuits

Chapter 1, Solution 1 (a) q = 6.482x1017x [-1.602x10-19C] = -0.10384 C (b) q = 1. 24x1018x [-1.602x10-19C] = -0.19865 C (c) q = 2.46x1019x [-1.602x10-19C] = -3.941 C (d) q = 1.628x1020x [-1.602x10-19C] = -26.08 C Chapter 1, Solution 2 (a) i = dq/dt = 3 mA (b) i = dq/dt = (16t + 4) A (c) i = dq/dt = (-3e-t + 10e-2t) nA (d) i=dq/dt = 1200πcos120πt pA (e) i =dq/dt = −e−4t(80cos50t+1000sin50t) µA Chapter 1, Solution 3 (a) q(t) = ∫i(t)dt+q(0) =(3t +1) C (b) q(t) = ∫(2t+s) dt+q(v) = (t2 +5t) mC (c) q(t)= ∫20 cos (10t+π/6)+q(0)=(2sin(10t+π/6)+1)µC 10e-30t q(t) = ∫10e-30t sin40t+q(0) = (−30sin40t-40 cos t) (d) 900+1600 = −e-30t(0.16cos40t +0.12 sin 40t) C Chapter 1, Solution 4 10 −5 q = ∫idt = ∫ 5sin 6 π t dt = cos6π t 6π 0 5 = (1−cos0.06π)= 4.698 mC 6π Chapter 1, Solution 5 2 1 q = ∫idt = ∫ e-2tdt mC= - e-2t 2 0 1 = (1−e4) mC= 490 µC 2 Chapter 1, Solution 6 dq 80 (a) At t = 1ms, i = = = 40 mA dt 2 dq (b) At t = 6ms, i = = 0 mA dt dq 80 (c) At t = 10ms, i = = =-20 mA dt 4 Chapter 1, Solution 7 25A, 0< t < 2 dq  i = = -25A, 2< t < 6 dt  25A, 6< t <8  which is sketched below: Chapter 1, Solution 8 10×1 q = ∫idt = +10×1=15 µC 2 Chapter 1, Solution 9 1 (a) q = ∫idt = ∫10 dt =10 C 0 3  5×1 q = ∫ idt =10×1+10− +5×1 (b) 0  2  =15+10−25=22.5 C 5 (c) q = ∫ idt =10+10+10= 30 C 0 Chapter 1, Solution 10 q = ixt = 8x103x15x10−6 = 120 µC Chapter 1, Solution 11 q = it = 85 x10-3 x 12 x 60 x 60 = 3,672 C E = pt = ivt = qv = 3672 x1.2 = 4406.4 J Chapter 1, Solution 12 For 0 < t < 6s, assuming q(0) = 0, t t q(t)=∫idt+q(0)=∫3tdt+0=1.5t2 0 0 At t=6, q(6) = 1.5(6)2 = 54 For 6 < t < 10s, t t q(t)=∫idt+q(6)=∫18dt+54=18t−54 6 6 At t=10, q(10) = 180 – 54 = 126 For 10<t<15s, t t q(t)= ∫idt+q(10)=∫(−12)dt+126 =−12t+246 10 10 At t=15, q(15) = -12x15 + 246 = 66 For 15<t<20s, t q(t)= ∫0dt+q(15)=66 15 Thus,  1.5t2 C, 0 < t < 6s   18t−54 C, 6 < t < 10s q(t)= −12t+246 C, 10 < t < 15s  66 C, 15 <t <20s The plot of the charge is shown below. 140 120 100 80 ) t ( q 60 40 20 0 0 5 10 15 20 t Chapter 1, Solution 13 2 2 w = ∫vidt = ∫ 1200cos2 4t dt 0 0 2 =1200∫ (2cos8t-1)dt (since, cos2x = 2 cos 2x-1) 0 2 2  1  =1200 sin8t −t =1200 sin16−2 8  4  0 =-2.486 kJ Chapter 1, Solution 14 1 ( ) ( )1 q = ∫idt = ∫ 101-e-0.5t dt =10 t+2e-0.5t (a) 0 0 ( ) =101+2e-0.5 −2 = 2.131 C (b) p(t) = v(t)i(t) p(1) = 5cos2 ⋅ 10(1- e-0.5) = (-2.081)(3.935) = -8.188 W Chapter 1, Solution 15 2 2 −3 q = ∫idt = ∫ 3e-2tdt = e2t (a) 0 2 0 ( ) = −1.5e-2 −1 =1.297 C 5di v = = −6e2t(5) = −30e-2t (b) dt p = vi = −90e−4tW 3 3 −90 (c) w = ∫pdt = -90∫ e-4t dt = e-4t = −22.5 J 0 −4 0 Chapter 1, Solution 16  10t V 0< t <1 25t mA 0< t < 2  i(t) = , v(t) = 10 V 1< t < 3 100-25t mA 2< t < 4   40-10t V 3< t < 4 1 2 3 4 w = ∫v(t)i(t)dt = ∫10+(25t)dt+∫10(25t)dt+∫10(100−25t)dt+∫(40−10t)(100-25t)mJ 0 1 2 3 250 1 250 2  t2 3 4 = t3 + +2504t-  + ∫ 250(4−t)2dt   3 2  2  3 0 1 2 4 250 250  9   t2  = + (3)+25012− −8+2+25016t-4t2 +  3 2  2   3  3 = 916.7 mJ Chapter 1, Solution 17 Σ p = 0 → -205 + 60 + 45 + 30 + p = 0 3 p = 205 – 135 = 70 W 3 Thus element 3 receives 70 W. Chapter 1, Solution 18 p = 30(-10) = -300 W 1 p = 10(10) = 100 W 2 p = 20(14) = 280 W 3 p = 8(-4) = -32 W 4 p = 12(-4) = -48 W 5 Chapter 1, Solution 19 ∑ p =0 → −4I −2x6 −13x2+5x10 =0 → I = 3 A s s Chapter 1, Solution 20 Since Σ p = 0 -30×6 + 6×12 + 3V + 28 + 28×2 - 3×10 = 0 0 72 + 84 + 3V = 210 or 3V = 54 0 0 V = 18 V 0 Chapter 1, Solution 21 ∆ q photon 1electron i = = 4×1011 ⋅  ⋅1.6×1019(C / electron) ∆ t  sec  8 photon  4 = ×1011×1.6×10−19C/s = 0.8×10-8C/s = 8nA 8 Chapter 1, Solution 22 It should be noted that these are only typical answers. (a) Light bulb 60 W, 100 W (b) Radio set 4 W (c) TV set 110 W (d) Refrigerator 700 W (e) PC 120 W (f) PC printer 18 W (g) Microwave oven 1000 W (h) Blender 350 W Chapter 1, Solution 23 p 1500 (a) i = = =12.5 W v 120 45 (b) w = pt =1.5×103 ×45×60⋅J =1.5× kWh =1.125 kWh 60 (c) Cost = 1.125 × 10 = 11.25 cents Chapter 1, Solution 24 p = vi = 110 x 8 = 880 W Chapter 1, Solution 25 4 Cost = 1.2 kW × hr ×30×9 cents/kWh = 21.6 cents 6 Chapter 1, Solution 26 0.8A⋅h (a) i = =80 mA 10h (b) p = vi = 6 × 0.08 = 0.48 W (c) w = pt = 0.48 × 10 Wh = 0.0048 kWh Chapter 1, Solution 27 (a) Let T = 4h = 4 × 36005 T q = ∫idt = ∫3dt =3T = 3 ×4×3600 = 43.2 kC 0 T T  0.5t  (b) W = ∫pdt = ∫vidt = ∫ (3)10+ dt 0 0  3600 4×3600  0.25t2  = 310t +  = 3[40×3600+0.25×16×3600]    3600  0 = 475.2 kJ (c) W = 475.2 kWs, (J =Ws) 475.2 Cost = kWh×9 cent =1.188 cents 3600 Chapter 1, Solution 28 P 30 (a) i = = = 0.25 A V 120 (b) W = pt =30×365×24 Wh= 262.8 kWh Cost =$0.12 ×262.8=$31.54 Chapter 1, Solution 29 (20+40+15+45) 30 w = pt =1.2kW hr +1.8 kW hr 60 60 = 2.4+0.9 = 3.3 kWh Cost =12 cents × 3.3= 39.6 cents Chapter 1, Solution 30 Energy = (52.75 – 5.23)/0.11 = 432 kWh Chapter 1, Solution 31 Total energy consumed = 365(4 +8) W Cost = $0.12 x 365 x 12 = $526.60 Chapter 1, Solution 32 (20+40+15+45) 30 w = pt =1.2kW hr +1.8 kW hr 60 60 = 2.4+0.9 = 3.3 kWh Cost =12 cents × 3.3= 39.6 cents Chapter 1, Solution 33 dq i = → q = ∫idt = 2000×3×103 = 6 C dt Chapter 1, Solution 34 (b) Energy = ∑pt = 200 x 6 + 800 x 2 + 200 x 10 + 1200 x 4 + 200 x 2 = 10,000 kWh (c) Average power = 10,000/24 = 416.67 W Chapter 1, Solution 35 (a) W = ∫ p(t)dt = 400×6+1000×2+200×12×1200×2+400×2 = 7200+2800=10.4 kWh 10.4 kW (b) = 433.3 W/h 24 h Chapter 1, Solution 36 160A⋅h (a) i = = 4 A 40 160Ah 160,000h (b) t = = = 6,667 days 0.001A 24h / day Chapter 1, Solution 37 ( ) q =5×1020 −1.602×10−19 = −80.1 C W = qv = −80.1×12 = −901.2 J

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.