ebook img

Solution of Constraints in Theory of Relativistic String PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solution of Constraints in Theory of Relativistic String

Solution of Constraints in Theory of Relativisti String 1 1 B.M. Barbashov and V.N. Pervushin 1 Joint Institute for Nu lear Resear h, 141980, Dubna, Russia 6 0 0 2 n Abstra t a J The Hamiltonian theory of a relativisti string is onsidered in a spe ifi referen e frame in 7 terms the diffeo-invariant variables. 1 Theevolutionparameterandenergyinvariantwithrespe ttothetime- oordinatetrans- formationsare onstru ted,sothatthedimensionofthekinemetri groupofdiffeomorphisms 1 oin ideswiththedimensionofasetofvariableswhosevelo itiesareremovedbytheGauss- v 5 type onstraints in a ordan e with the se ond No(cid:4)ther theorem. This oin iden e allows us 1 to solve the energy onstraint, and fulfil Dira 's Hamiltonian redu tion. 1 1 0 6 0 / h t - Invited Talk at INTAS Summer S hool and Conferen e p (cid:16)New trends in High-Energy Physi s(cid:17) e h Yalta, Crimea, Ukraine, September 10 - 17, 2005 : v i X r a 1 1. Introdu tion The main diffi ulty of the theory of a relativisti string is the group of diffeomorphisms, i.e. general oordinate transformations [1℄. There is an essential differen e between the frame group of the Lorentz (cid:21) Poin ar(cid:1)e-type leadingtoasetofinitialdataandthediffeomorphismgroupofgeneral oordinatetransformations restri tingtheseinitialdataby onstraints. Thisdifferen ewasrevealedbytwoN(cid:4)othertheorems 1 [5℄ . Starting position of the paper is the group of diffeomorphisms of this (cid:16)Hamiltonian frame(cid:17) known as the kinemetri one in general relativity [6℄. This kinemetri group ontains global reparametrizations of the oordinate time and lo al transformations of a spatial oordinate, and it requires to distinguish a set of variables with the same dimension, velo ities (or momenta) of whi h are removed by the Gauss-type onstraints from the phase spa e of physi al variables in a ordan e with the se ond N(cid:4)other theorem. A similar Hilbert-type [2, 3℄ geometro-dynami formulation of spe ial relativity (SR) [7℄ with reparameterizations of the oordinate evolution parameter showsthattheenergy onstraintfixes a velo ity of one of the dynami variables that be omes a evolution parameter. In parti ular, in SR su h a dynami evolution parameter is well known, it is the fourth omponent of the Minkowskian spa e-time ve tor. In order torealize a similar onstru tion of theDira (cid:21)ADMHamiltonian GR [8℄, one should point out in GR a homogeneous variable that an be a diffeo-invariant evolution parameter in the field spa e of events [9℄ in a ordan e with the kinemetri diffeomorphism group of GR in the (cid:16)Hamiltonian frame(cid:17) [6℄. Thus, inthestandard approa h toarelativisti string thishomogeneous evolution parameter is not split, so that the dimension of the Hamiltonian onstraints does not oin ide with the dimension of the diffeomorphism group. In the present paper, a evolution parameter is identified with the homogeneous omponent of the time-like variable [10℄ in a ordan e with the se ond N(cid:4)other theorem. 2. Diffeo-Invariant Content of a Relativisti String To illustrate the invariant Hamiltonian redu tion let us onsider the a tion for a relativisti string [1℄ in the form whi h has been done by L. Brink, P. Di Ve hia, P. Howe [11℄ γ S = d2u√ ggαβ∂αxµ(u0,u1)∂βxµ(u0,u1), (u0,u1) = (τ,σ), −2 − (1) Z Z xµ(τ,σ) (µ = 0,1,2,...,d 1) where (cid:21) string oordinates given in d-dimension spa e-time − , gαβ(u0,u1) (cid:21) is a se ond-rank metri tensor on the string surfa e (two dimensional Riemannian u0,u1 spa e ). Now let us onsider the Hamiltonian s heme whi h is based on the Arnowitt(cid:21)Deser(cid:21)Misner g αβ parametrization of metri tensor [12℄ gαβ = Ω2(cid:18)N02N−1N12 −N11(cid:19), gαβ = Ω21N02 (cid:18)N11 N12N−1N02(cid:19), √−g = Ω2N0 (2) with the onformal invariant interval ds2 =gαβduαduβ = Ω2[N02dτ2 (dσ+N1dτ)2], − (3) 1 One of these theorems (the se ond) was formulated by Hilbert in his famous paper [2℄ (see also its revised version [3℄). We should like to thankV.V. Nesterenko who draw our attentionto this fa t [4℄. 2 N0 N1(τ,σ) where and are known in GR as the lapse fun tion and (cid:16)shift ve tor(cid:17), respe tively. Ω Thea tion (1) after thesubstitution(2)doesnot depend onthe onformal fa tor andtakes the form S = γ τ2dτ ldσ (x˙µ−N1x′µ)2 N0x′2 , −2 Zτ1 Z0 " N0 − # (4) x˙µ = ∂τxµ x′µ = ∂σxµ x˙µ N1x′µ = Dxµ where , and − is the ovariant derivative with respe t to Dx µ the metri (3). The a tion (4), the metri (3) and the ovariant derivative are invariant τ τ˜= f1(τ), σ σ˜ = f2(τ,σ) under the (cid:16)kinemetdriτ˜ (cid:17)=trfa˙1n(sτf)odrτmadtσ˜io=n f˙2→(τ,σ)dτ +f2′(τ,→σ)dσ . These transformations of the differentials , orrespond to transformations of the string oordinates xµ′(τ,σ) = x˜µ′(τ˜,σ˜)f2′(τ,σ), x˙µ(τ,σ) = x˜˙µ(τ˜,σ˜)f˙1(τ)+x˜µ′(τ˜,σ˜)f˙2(τ,σ), (5) N0(τ,σ) = N˜0(τ˜,σ˜) f˙1(τ) , N1(τ,σ) = N˜1(τ˜,σ˜)f˙1 + f˙2, f2′(τ,σ) f˜2′ f˜2′ Dτxµ(τ,σ) = f˙1(τ)Dτ˜x˜µ(τ˜,σ˜) (6) S N0 N1 N0,N1 The variation with respe t to and leads to equation for determination δS (Dx )2 (x˙x′)2 x˙2x′2 δN0 = N02µ +x′2 = 0 ⇒ N02 = (x′−2)2 , (7) δS (x′ Dxµ) (x˙x′) µ δN1 = N0 ⇒ N1 = x′2 , (8) Thesubstitutionoftheseequationina tion(4) onvertsitintothestandardNambu(cid:21)Gotoa tion of the relativisti string [1℄ τ2 l S = γ dτ dσ (x˙x′)2 x˙2x′2. − Zτ1 Z0 − (9) p S One an onstru t the Hamiltonian form of . The onjugate momenta are determined by pµ = δδx˙Sµ = γx˙µ−NN01xµ′ ⇒ x˙µ = N0pγµ +N1xµ′ (10) and density of Hamiltonian is obtained by the Legendre transformation p2+γ2x′2 H = pµx˙µ L = N0 +N1(px′), − 2γ (11) then τ2 l S = dτ dσ[p x˙µ H]. µ −Zτ1 Z0 − (12) S N0,N1 The se ondary lass onstraints arises by varying with respe t to δS p2+γ2x′2 δS = = 0, = (px′)= 0. δN0 2γ δN1 (13) 3 The equations of motion take the form δS ∂ δxµ = p˙µ− ∂σ(γN0x′µ+N1pµ) = 0, (14) δS p δpµ = x˙µ−N0 γµ +N1x′µ = 0. The standard gauge-fixing method is to fix the se ond lass onstraints (orthonormal gauge) N0 = 1,N1 = 0. xµ In this ase the equations of motion (14) redu e to d'Alambert ones for p p˙ = γx ′′, x˙ = µ x¨ x ′′ = 0, µ µ µ µ µ γ ⇒ − (15) the onformal interval (3) takes the usual form 2 2 2 2 ds = Ω [dτ dσ ], − (H = 0) but the Hamiltonian (11) in view of the onstraint (13) is equal to zero . There is another way to introdu e evolution parameter as the obje t reparameterizations in the theory being adequate to the initial (cid:16)kinemetri (cid:17) invariant system and to onstru t the non-zero Hamiltonian. We identify this evolution parameter with the time-like variable of the (cid:16) enter of mass(cid:17) (CM) of a string defined as the total oordinate 1 l X (τ) = x (τ,σ)dσ = x . µ µ µ l 0 h i (16) Z The redu tion requires to separate the (cid:16) enter of mass(cid:17) variables before variation of the a tion (4) whi h after substitution x = X (τ)+ξ (τ,σ), x′ (τ,σ) = ξ′(τ,σ), µ µ µ µ µ (17) l ξ (τ,σ) = 0 µ 0 (18) Z takes the form S = γ τ2dτ X˙2(τ) l dσ +2X˙µ(τ) ldσ ξ˙µ−N1ξµ′ + 2 Zτ1 ( Z0 N0(τ,σ) Z0 N0 ! + ldσ (ξ˙µ−N1ξµ′)2 N0ξ′2(τ,σ) . 0 " N0 − #) (19) Z The usual determination of the onjugate momenta P (τ) = δS = γX˙ (τ) l dσ +γ ldσ ξ˙µ(τ,σ)−N1ξµ′(τ,σ) , µ δX˙µ(τ) µ 0 N0(τ,σ) 0 N0(τ,σ) ! (20) Z Z π (τ,σ) = δS = γX˙ (τ) 1 +γξ˙µ(τ,σ)−N1ξµ′(τ,σ) µ δξ˙µ(τ,σ) µ N0(τ,σ) N0(τ,σ) (21) l P (τ) π (τ,σ) π (τ,σ)dσ = µ µ 0 µ leadstothe ontradi tionbe ause and arenotindependent,namely P (τ) µ . R 4 P (τ) µ Thus for the onsistent definition of the momentum of (cid:16) enter-mass(cid:17) and momentum π (τ,σ) µ of intrinsi variables we have to put strong onstraint in a tion (19) ξ˙µ(τ,σ) N1ξµ′(τ,σ) dσ − = 0. N0 ! (22) Z Then we obtain the following form of the redu ed a tion: Sred = γ2 dτ (X˙2(τ)N(lτ) + 0ldσ"[ξ˙µ(τ,σ)N−0(Nτ,1σξ)µ′(τ,σ)]2 −N0(τ,σ)ξν′2(τ,σ)#), (23) Z Z N(τ) where is the global lapse fun tion 1 1 l dσ = = N−1 . 0 N(τ) l 0 N0(τ,σ) h i (24) Z For global momenta we get P (τ) = ∂Sred = γX˙ (τ) l µ ∂X˙µ(τ) µ N(τ) (25) and for the lo al (intrinsi ) momenta ∂Sred ξ˙µ(τ,σ) N1(τ,σ)ξµ′(τ,σ) π (τ,σ) = = γ − µ ∂ξ˙µ(τ,σ) N0(τ,σ) (26) with two strong onstraints (18) and (22) l l ξ (τ,σ)dσ = 0, π (τ,σ)dσ = 0. µ µ 0 0 (27) Z Z This separation onserves the group of the (cid:16)kinemetri (cid:17) transformation (5) and leads to Hamil- tonian form of redu ed a tion, in view of X˙µ(τ) = N(lτ)Pµγ(τ); ξ˙µ(τ,σ) = N0(γτ,σ)πµ(τ,σ)+N1(τ,σ)ξµ′(τ,σ), (28) we get H = PµX˙µ(τ)+πµξ˙µ L = 1 N0(τ,σ)P2(τ)+N0(τ,σ)[π2 +γ2ξ′2]+2γN1(πξ′) , − 2γ l (29) (cid:26) (cid:27) τ2 P2(τ) l π2+γ2ξ′2 S = dτ Pµ(τ)X˙µ(τ) N(τ) + dσ (πξ˙) N0 N1(πξ′) . Zτ1 (cid:26) − 2γl Z0 (cid:20) − 2γ − (cid:21)(cid:27) (30) The equation of motion is split into global one δS δS P = P˙ (τ) = 0, = X˙ (τ) N(τ) µ = 0 δX˙µ(τ) µ δPµ(τ) µ − γl and lo al one δπµδ(Sτ,σ) = ξ˙µ(τ,σ)− Nγ0πµ−N1ξµ′ = 0, − δξµδ(Sτ,σ) = π˙µ− ∂∂σ(N1πµ+γN0ξµ′) = 0. (31) 5 N0(τ) The variation of the a tion (30) with respe t to results in the onstraint δS N2(τ) P2(τ) π2(τ,σ)+γ2ξ′2(τ,σ) = + = 0, δN0(τ,σ) N02(τ,σ) 2γl2 2γ (32) here it is ne essary to take into a ount that the variation over the global lapse fun tion (24) leads to δN(τ) N2(τ) = . 2 δN0(τ,σ) N0(τ,σ) (33) N1(τ,σ) The variation of the (30) with respe t to results in the onstraint for lo al variables δS = (πξ′(τ,σ)) = 0. δN1(τ,σ) (34) Now we introdu e the Hamiltonian density for lo al ex itations π2(τ,σ)+γ2ξ′2(τ,σ) (τ,σ) = H − 2γ (35) and rewrite (32) in the form N(τ) P2(τ) = 2γ (τ,σ). N0(τ,σ)l µ H (36) q q σ One integrates (36) over and taking into a ount the normalization equality (24) 1 l N(τ) dσ = 1, l 0 N(τ,σ) (37) Z it leads to global onstraint l Mst = Pµ2(τ) = 2γ (τ,σ)dσ = l 2γ , 0 H h Hi (38) q Z p p Mst where is mass of the string. The lo al part of the onstraint (36) an be obtained by substitution (38) into (36) N(τ) (τ,σ) = H . N0(τ,σ) √ (39) p h Hi Finally, after substitution (382), (39) into a tion (30) we an derive the onstraint-shell a tion, N(τ)P (τ)/2γl = N0(τ,σ) (τ,σ)dσ whereas the equation H τ2 l R Sconst−shell = dτ PµX˙µ(τ)+ dσ πµ(τ,σ)ξ˙µ(τ,σ) N1(τ,σ)πµ(τ,σ)ξµ′(τ,σ) . Zτ1 (cid:26) Z0 h − i(cid:27) (40) N1(τ,σ) (πµ(τ,σ)ξ′µ(τ,σ)) = 0. Againthevariationwithrespe tto resultsinsubsidiary ondition l Pi(τ) = 0, P0(τ) = 0dσ 2γ (τ,σ) Now in the (cid:16) enter-mass(cid:17) oordinate system H the a tion (40) takes the form R p τ2 l Sconst−shell = dτ dσ 2γ (τ,σ)X˙0(τ)+πµ(τ,σ)ξ˙µ(τ,σ) , Zτ1 Z0 np H o (41) 6 whi h des ribes the dynami s of a lo al (intrinsi ) anoni al variables of a string with non-zero Hamiltonian be ause (41) an be rewritten in the form x2 l ∂ξµ(X0,σ) Sconst−shell = dX0 dσ πµ(X0,σ) + 2γ (X0,σ) , Zx1 Z0 (cid:26) ∂X0 H (cid:27) (42) p where 2γ (X0,σ) = [π2(X0,σ)+γ2ξ′2(X0,σ)] H − dX0 = X˙0(τ)dτ dτ˜ = f1dτ. and time is invariant with respe t to N0(τ,σ) = 1, Inthegauge-fixingmethod,byusingthekinemetri transformation,wehavetoput N1(τ,σ) = 0 (this requirement does not ontradi t to Eq. (37) in view of Eqs. (38), (39)). Then a ording to [10℄ 1 l Mst (τ,σ) = dσ (τ,σ) = H l 0 H √2γ l (43) Z p p 2γ (τ,σ) means that the Hamiltonian H is onstant. In this ase the equations for the lo al variables obtained by varyingpthe a tion (42) take the form δS ∂ξµ(X0,σ) πµ(X0,σ) = = 0, δπµ(X0,σ) ∂X0 − (π2+γ2ξ′2) (44) − p δS ∂πµ(X0,σ) 2 ∂ ξµ′(X0,σ) = +γ = 0. δξµ(X0,σ) − ∂X0 ∂σ " (π2+γ2ξ′2)# (45) − (π2+γ2ξ′2) = γp, (Mst = γl) If we put a ording to Eq. (43) − , then it leads again to ξµ(X0,σ) d'Alambert equation for p 2 2 ∂ ξµ(X0,σ) ∂ ξµ(X0,σ) = . ∂X02 ∂σ2 (46) The general solution of these equations in lass of fun tions (27) with boundary onditions for ξ′µ(X0,0) = ξ′µ(X0,l) = 0 the open string is given as usually by the Fourier series 1 ξµ(X0,σ) = [Ψµ(X0 +σ)+Ψµ(X0 σ)], 2√γ − 1 ξ′µ(X0,σ) = [Ψ′µ(X0+σ) Ψ′µ(X0 σ)], 2√γ − − (47) πµ(X0,σ) =γ∂ξµ(X0,σ) = √γ[Ψ′µ(X0+σ)+Ψ′µ(X0 σ)], ∂X0 2 − where Ψµ(z) = i αnµe−iπlnz, Ψ′µ(z) = π αnµe−iπlnz n l (48) n6=0 n6=0 X X (n = 0) it is very important to stress that (48) does not ontain zero harmoni s 6 ). The substi- ξ π µ µ tution of and in this form into (35) and taken into onsideration (43) leads to density of Hamiltonian 1 M2 H = −4 Ψ′2µ(X0 +σ)+Ψ′2µ(X0−σ) = 2γslt2. (49) (πξ′) =(cid:2)0 Ψ′ (cid:3) µ From the onstraint (34) in terms of the ve tor (47) we obtain 1 πµ(X0,σ)ξ′µ(X0,σ) = 4 Ψ′2µ(X0 +σ)−Ψ′2µ(X0−σ) = 0, (50) (cid:0) (cid:1) (cid:2) (cid:3) 7 then from (49) and (50) finally we get 2 M Ψ′µ2(X0+σ) = Ψ′µ2(X0−σ) = −l2γst. (51) Ψ′ (z) µ It means that is the modulo- onstant spa e-like ve tor and in terms of its representation (48) the equalities (51) an be rewritten 2 ∞ 2 −Ψ′µ2(z) = πl2 Lke−iπlkz = Ml2γst, (52) k=−∞ X where L = α αµ , L∗ = L . k − nµ k−n k −k n6=k,0 X Now we an see that the zero harmoni of this onstraint determines the mass of a string Ms2t = π2γL0 = −πγ αnµαµ−k, αµ−k = α∗kµ (53) n6=0 X and oin ides with standard definition in string theory [1℄, however the non-zero harmoni s of onstraint (52) µ Lk6=0 = − αnkαk−n = 0 (54) n6=0,k X strongly differ from the standard theory be ause they do not depend on the global motion(do P P Ψµ′ µ µ not depend on ) and do not ontain the interferen e term , be ause of our onstraint (51) we an rewrite l2γΨ′ 2(z)+P2 = 0 µ µ (55) instead standard one [1℄ (P +l√γΨ′ (z))2 = 0. µ µ (56) Therefore diffeo-iPnvξaµria=nt0,appProaπ µh= oi0n idePs wαiµth=th0e, Ro(cid:4)nhr=li h0 one [13℄, whi h is based on the µ µ µ n gauge ondition ⇒ 6 . One use of that ondition for ξ0,π0 (Pi = 0) eliminating thetime omponents being onstru ted inthe frame of referen e leads Ψ′0 αn0 to formula (47)(cid:21)(54), where and are equal to zero. 3. Con lusions Thestandardapproa htoarelativisti stringisnotinvariantwithrespe ttothetime oordinate transformations. Itistheproblemas,indiffeo-invarianttheories,allobservablequantitiesshould be the diffeo-variant ones. We propose here to solve this problem as in [7℄, where the referen e frame is redefined by pointing out diffeo-invariant homogeneous (cid:16)time-like variable(cid:17) in a ordan e with the dimension of the diffeomorphism group. Just this hoi e of an evolution parameter simplifies the Hamiltonian equations and leads to exa t resolution of the energy onstraint with respe t to the anoni al momentum of the evolution parameter. We have shown that this diffeo-invariant approa h to a relativisti string orresponds to the Ro(cid:4)hrli h spe trum [13℄. A knowledgement The authorsaregrateful toA.V.Efremov, E.A. Kuraev, V.V.Nesterenko, for interesting and riti al dis ussions. 8 Referen es [1℄ B.M. Barbashov, V.V. Nesterenko, Introdu tion in the Relativisti String Theory (World S ientifi , 1990). [2℄ D. Hilbert, Na hri hten von der K(cid:4)on. Ges. der Wissens haften zu Go(cid:4)ttingen, Math.-Phys. Kl., Heft 3, 395 (1915). [3℄ D. Hilbert, Math. Annalen. 92, 1 (1924). [4℄ V.V.Nesterenko,(cid:16)About Interpretation of the Noether Identities(cid:17) PreprintJINR-P2-86-284, Dubna, 1986. [5℄ E. Noether, Go(cid:4)ttinger Na hri hten, Math.-Phys. Kl., 2, 235 (1918). [6℄ A.L. Zelmanov, Dokl. AN USSR 107, 315 (1956); A.L. Zelmanov, Dokl. AN USSR 209, 822 (1973); Yu.S. Vladimirov, Referen e Frames in Theory of Gravitation, Mos ow, Energoizdat, 1982 [in Russian℄. [7℄ B.M. Barbashov, V.N. Pervushin, and D.V. Proskurin, Theoreti al and Mathemati al Physi s, 132, 1045 (2002). [8℄ P.A.M. Dira , Pro .Roy.So . A 246, 333 (1958); P.A.M. Dira , Phys. Rev. 114, 924 (1959); R. Arnowitt, S. Deser and C.W. Misner, Phys. Rev. 117, 1595 (1960). [9℄ J.A. Wheeler, in Batelle Re ontres: 1967, Le tures in Mathemati s and Physi s, edited by C. DeWitt and J.A. Wheeler , New York, 1968, p. 242; B.C. DeWitt, Phys. Rev. 160, 1113 (1967). [10℄ B.M.BarbashovandN.A.Chernikov,Classi al Dynami s of Relativisti String[inRussian℄, Preprint JINR P2-7852, Dubna, 1974; A.G. Reiman and L.D. Faddeev, Vestn. Leningr. Gos. Univ., No.1, 138 (1975) [in Russian℄. [11℄ L. Brink, P. Di Ve hia, P. Howe, Phys. Lett B 65, 47 (1976). [12℄ B.M.BarbashovandV.N.Pervushin,Theor.Math.Phys.127483(2001);[hep-th/0005140℄. [13℄ F. Ro(cid:4)hrli h, Phys. Rev. Lett. 34, 842 (1975); Nu l. Phys. B 112, 177 (1976); Ann. Phys. 117, 292 (1979). [14℄ V.A. Fo k, Zs. f. Phys. 57, 261 (1929). 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.