ebook img

Solution Manual for Signals and Systems PDF

634 Pages·4.393 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solution Manual for Signals and Systems

CHAPTER 1 1.1 to 1.41 - part of text 1.42 (a) Periodic: Fundamental period = 0.5s (b) Nonperiodic (c) Periodic Fundamental period = 3s (d) Periodic Fundamental period = 2 samples (e) Nonperiodic (f) Periodic: Fundamental period = 10 samples (g) Nonperiodic (h) Nonperiodic (i) Periodic: Fundamental period = 1 sample (cid:230) (cid:230) p(cid:246) (cid:246) 2 l.43 y(t) = 3cos 200t + --- Ł Ł ł ł 6 2(cid:230) p(cid:246) = 9cos 200t + --- Ł ł 6 9 (cid:230) p(cid:246) = --- cos 400t + --- 1 Ł ł 2 3 9 (a) DC component = --- 2 9 (cid:230) p(cid:246) (b) Sinusoidal component = ---cos 400t + --- Ł ł 2 3 9 Amplitude = --- 2 1 200 Fundamental frequency = ---------Hz p 1.44 The RMS value of sinusoidal x(t) is A⁄ 2. Hence, the average power of x(t) in a 1-ohm resistor is (A⁄ 2)2 = A2/2. 1.45 LetN denote the fundamental period ofx[N]. which is defined by 2p N = ------ W The average power ofx[n] is therefore N-1 P = -1---(cid:229) x2[n] N n=0 N-1 = -1--- (cid:229) A2cos2(cid:230) 2----p---n--- + f(cid:246) Ł ł N N n=0 = -A----2- N(cid:229) -1cos2(cid:230) 2----p---n--- + f(cid:246) Ł ł N N n=0 1.46 The energy of the raised cosine pulse is E = (cid:242) p w⁄ 1---(cos(w t) +1)2dt –p w⁄ 4 = 1---(cid:242) p w⁄ (cos2(w t)+ 2cos(w t) +1)dt 2 0 = 1---(cid:242) p w⁄ (cid:230) 1---cos(2w t)+ 1--- +2cos(w t) +1(cid:246) dt Ł ł 2 2 2 0 1(cid:230) 3(cid:246) (cid:230) p(cid:246) = --- --- ---- = 3p ⁄4w 2Ł 2ł Ł w ł 1.47 The signal x(t) is even; its total energy is therefore E = 2(cid:242) 5x2(t)dt 0 2 = 2(cid:242) 4(1)2dt +2(cid:242) 5(5 –t)2dt 0 4 = 2[t]4 +2 –1---(5–t)3 5 t=0 3 t=4 2 26 = 8+ --- = ------ 3 3 1.48 (a) The differentiator output is (cid:236) 1 for –5< t < –4 (cid:239) y(t) = (cid:237) –1 for 4 <t < 5 (cid:239) (cid:238) 0 otherwise (b) The energy of y(t) is E = (cid:242) –4(1)2dt +(cid:242) 5(–1)2dt –5 4 = 1+1 = 2 1.49 The output of the integrator is t y(t) = A(cid:242) t dt = At for 0£ £t T 0 Hence the energy ofy(t) is 2 3 (cid:242) T 2 2 A T E = A t dt = ------------- 3 0 1.50 (a) x(5t) 1.0 -1 -0.8 0 0.8 1 t (b) x(0.2t) 1.0 -25 -20 0 20 25 t 3 1.51 x(10t - 5) 1.0 t 0 0.1 0.5 0.9 1.0 1.52 (a) x(t) 1 t -1 1 2 3 -1 y(t- 1) t -1 1 2 3 -1 x(t)y(t- 1) 1 1 t -1 2 3 -1 4 1.52 (b) x(t+ 1) x(t- 1) 1 1 t -1 1 2 3 4 -1 y(-t)y(-t) 1 t -2 -1 1 2 3 4 -1 x(t- 1)y(-t) 1 t -2 -1 1 2 3 4 -1 1.52 (c) -2 t -1 1 2 3 -1 -2 -1 t 1 2 3 4 x(t+ 1)y(t - 2) -2 -1 1 2 3 4 t 5 1.52 (d) x(t) 1 t -3 -2 -1 1 2 3 -1 y(1/2t+ 1) 6 -5 -4 -3 -2 -1 t 1 2 4 6 -1.0 x(t- 1)y(-t) 1 t -3 -2 -1 1 2 3 -1 1.52 (e) x(t) 1 -4 -3 -2 -1 t 1 2 3 -1 y(2 - t) 1 2 3 t -4 -3 -2 -1 x(t)y(2 - t) -1 t 1 2 3 -1 6 1.52 (f) x(t) 1 t -2 -1 1 2 -1 y(t/2+ 1) 1.0 -5 -3 -2 -1 t -6 1 1 2 3 -1.0 x(2t)y(1/2t+ 1) +1 -0.5 t -1 1 2 -1 1.52 (g) x(4 -t) 1 t -7 -6 -5 -4 -3 -2 -1 y(t) t -2 -1 1 2 4 x(4 -t)y(t) = 0 t -3 -2 -1 1 2 3 7 1.53 We may represent x(t) as the superposition of 4 rectangular pulses as follows: g (t) 1 1 1 2 3 4 t g (t) 2 1 11 2 3 4 t g (t) 3 1 1 2 3 4 t g (t) 4 1 1 2 3 4 t 0 To generateg (t) from the prescribedg(t), we let 1 g (t) = g(at –b) 1 wherea and b are to be determined. The width of pulse g(t) is 2, whereas the width of pulseg (t) is 4. We therefore need to expand g(t) by a factor of 2, which, in turn, requires 1 that we choose 1 a = --- 2 Themid-pointofg(t)isatt=0,whereasthemid-pointofg (t)isatt=2.Hence,wemust 1 chooseb to satisfy the condition a(2) –b = 0 or (cid:230) 1(cid:246) b = 2a = 2 --- = 1 Ł ł 2 (cid:230) 1 (cid:246) Hence, g (t) = g ---t –1 1 Ł 2 ł Proceeding in a similar manner, we find that (cid:230) 2 5(cid:246) g (t) = g ---t – --- 2 Ł 3 3ł g (t) = g(t –3) 3 g (t) = g(2t –7) 4 Accordingly,wemayexpressthestaircasesignalx(t)intermsoftherectangularpulseg(t) as follows: 8 (cid:230) 1 (cid:246) (cid:230) 2 5(cid:246) x(t) = g ---t –1 + g ---t – --- +g(t –3) +g(2t –7) Ł ł Ł ł 2 3 3 1.54 (a) x(t) =u(t) -u(t - 2) t 0 1 2 (b) x(t) =u(t + 1) - 2u(t) +u(t - 1) -2 0 1 2 t -1 3 -1 (c) x(t) =-u(t + 3) + 2u(t +1) -2u(t - 1) +u(t - 3) -3 1 2 3 t 0 -1 (d) x(t) =r(t + 1) -r(t) +r(t - 2) 1 t -2 -1 0 1 2 3 (e) x(t) =r(t + 2) -r(t + 1) -r(t - 1)+r(t - 2) 1 t -3 -2 -1 0 1 2 9 1.55 We may generatex(t) as the superposition of 3 rectangular pulses as follows: g (t) 1 1 t -4 -2 0 2 4 g (t) 2 1 t -4 -2 0 2 4 g (t) 3 1 t -4 - 2 0 2 4 All three pulses,g (t), g (t), and g (t), are symmetrically positioned around the origin: 1 2 3 1. g (t) is exactly the same asg(t). 1 2. g (t) is an expanded version of g(t) by a factor of 3. 2 3. g (t) is an expanded version of g(t) by a factor of 4. 3 Hence, it follows that g (t) = g(t) 1 (cid:230) 1(cid:246) g (t) = g ---t 2 Ł 3ł (cid:230) 1(cid:246) g (t) = g ---t 3 Ł 4ł That is, (cid:230) 1(cid:246) (cid:230) 1(cid:246) x(t) = g(t)+ g ---t +g ---t Ł ł Ł ł 3 4 1.56 (a) x[2n] o 2 o o n -1 0 1 (b) x[3n- 1] 2 o o1 o n -1 0 1 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.