SOLUTION MANUAL FOR An Introduction to Equilibrium Thermodynamics Bernard Morrill Professor of Mechanical Engineering Swarthmore College Pergamon Press Inc. New York • Toronto • Oxford • Sydney • Braunschweig PERGAMON PRESS INC. Maxwell House. Fairview Park, Elmsford, N.Y. 10523 PERGAMON OF CANADA LTD. 207 Queen's Quay West, Toronto 117, Ontario PERGAMON PRESS LTD. Headington Hill Hall, Oxford PERGAMON PRESS (AUST.) PTY. LTD. Rushcutters Bay, Sydney. N.S.W. VIEWEG & SOHN GmbH Burgplatz I. Braunschweig Copyright^ 1972. Pergamon Press Inc. Library of Congress Catalog Card No. 73-173824 All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of Pergamon Press Inc. Printed in the United States of America 08 017184 2 1 Chapter 1 1-1 1-5 t = TOO C t. = OvC w kx2 l s t = 212°P t = 32°F k = 200 s ± !00 x 2 = 400 in-lbf 1°C 1.8°P 33.33 ft-lbf t°P = (32 + 1.8°C) 1 = 0.0428 BTU 1-2 1-6 pV = n PT W = 4k x2 e Y » = P where k1+k2 ke " k1 k2 "k1k2 40x60 k - = 24 Ibf/in e k +k 40+60 1 2 1-3 W = - i x 24 x (i)2 = JR k = N. .25 ft-: W = -T2 = 0 k = 3.21 x 10~4 BTU k = 5.662x10"24 ft lbf/part. °R 1-4 P = 190.99 lbf/ft2 ¥ = k = 40 = C W = A r\ - 45 in-lbf W = p(v - V) = 190.99(5-3) -3.75 ft-lbf 2 1 = 381.97 ft lbf W = - 3.75/778 = - .00482 BTU W = 0.491 BTU 2 1-8 1-9 cont. For a constant temperature process c) z = J" y cos x dx + sin x dy pV = C From initial condition dz = y cos x dx + sin x dy C = 200 x 144 x 3 = 86400 ft lbf Then cos x = cos x dz is exact W = C In 1-10 V = 86400 x In 5/3 = 86400 x 0.5108 u = A ( RT + pB) W = 44135 ft lbf du = A(Rdt + Bdp) = 56.73 BTU 1-9 2 1-11 a) z = 3xy + 4x AU = AQ - AW dz = (3y + 8x)dx + 3x dy AW = p (V - V. ) constant pressure If exact then 9 process AW = 5.553 BTU 3 = 3 AQ = - 8.5 BTU dz is exact AU = - 8.5 + 5.553 2 3 b) z = x + xy + yx = - 2.947 BTU dz = (2x + 3y + 3yx2)dx m = 0.22< + (3x + x5)dy Au = Au = - 12.85 BTU/lbm 2 2 3 + 3x = 3 + 3x dz is exact continued 3 11--1122 1-14 cont. 11 HHPP == ^^ QQ °°°° == 4422..4422 BBTTUU//mmiinn = .375 x .171 x (425 - 70) + 40 ¥ = - 62.76 BTU ddVV == ddQQ -- dd¥¥ ddUU ddQQ__ dd¥¥ ddtt ddtt ddtt 11--1155 ccAATT == AAuu == -- 3300.. ++ 4422..44 yy mm cc __ JJ^^44 __ ..112244 BBTTUU//mmiinn°°RR yy HH == 1122..44 BBTTUU//mmiinn MM ~~ 117711 ~~ **^^22^^ llbbmm//mmiinn 111---111333 1-16 WWW === ^^^pppdddVVV u = (j(x x,x) 1f 2 3 FFFooorrr cccooonnnssstttaaannnttt eeennneeerrrgggyyy ppprrroooccceeessssss,,, TTT === CCC TTThhheeennn "-12, DX1 +^D J C2+%D X3 pppVVV === CCC Extensive property conjugate to vvv , v v ¥¥¥ === CCC JJJ ^^^ lllnnn^^^--- ===CCC ^ax ' xi vvv 111 1 111 PPP,,, --- --- SSS^^^HHHPPP222*** === *** »»»°°° PPP*** QX ' ^ X2 2 „„„ PPP111VVV111 222888555222000 xxx 111 ___ ... •?S_ 1 „ 000 === 777777888 ~~~ 777777888 333 666'''666555 ^ x - *3 3 WWW === 333666...666555 IIInnn 222... 11--1177 WWW === 444000...222666 BBBTTTUUU GGiivveenn ppVV == CC ¥¥¥ === 333111333333000 fffttt lllbbbsss RRTT QQQ === WWW === 444000...222666 BBBTTTUUU TThheenn II 1-14 OOTT rr""11 -- ""ll ((..)) RT 53.3 x 530 iD* -A V = AU - = JB Oy 4kT - ,A Q continued ccoonnttiinnuueedd 4 1-17 cont. 1-19 cont. starting with (a) x 10 RT (b) V_ = 3.715 ft3 V = — P then (a) becomes T (a) T = 602.2°R 2 T p R 1-20 For adiabatic process (b) r 2 A U = J p dV where V1 i/r -r p = CV ( 2 -r Au dV 1-18 T2 = T1 = 530 bXJ = - 94.08 BTU = 530 (.235)-286 1-21 = 530 (4.25)*286 Along 1-3 path T = 801.71 2 Pi7/ " Au = c T = .171(801.7-530) ? along 2-3 path Au = 46.46 BTU/lbm PV = P3V3 22 V 1-19 Divide 1st by 2nd 1/2T continued continued 5 1-21 cont. 1-22 cont. AU = C(T-T) = .171(1069,3-534.6) 2 3 y 3 2 AU = 91.43 BTU 2 5 /3 2*3 J dv = P(V-V) 2 3 2 2.5 = 36.63 BTU V, = .0466 ft 2W3 3 Q =^ U +AW = 91.43 + 36.63 2 3 2 3 2 3 128.06 BTU = 2897 psia 2Q3 0 3W1 1-22 3Aui =3*Qi = WV P = ^ 15 2 = .171 (405.3 - 1069.3) P = 39.58 psia 2 5^ = _ 113.54 BTU AQ = - 113.54 3 1 534.6°R Wnet = ^W = ~22-11 + 36.63 + 0. = 14.52 BTU 1*U2 = l /- 1W2 = CV*T 2 Q = X Q = 0. + 128.06 - 113.54 net = .171 (534.6 - 405.3) = 14.52 BTU AU = 22.11 BTU 1 2 &W =-22.11 BTU 1-23 1 2 W in _ ^3V3 _ 39.58 x 144 x 10 3 ~ R " 53.3 W . = H-52 BTU net T, = 1069.3°R Qin = 2Q3 = 1 2 8 , 06 3 _ 14.52 x 100 " 128.06 continued continued 6 1-23 cont. 1-26 cont. FFoorr llaarrggeerr eennggiinnee 1-24 For smaller engine ^= ( i 3) l o o - ( i- f g) 100 c ^ = 22.73$ c Vl/2 If ¥ = W then Co.OuP.r . - ^ - _5 10 T 0 T 660 510 H L 2 C.O.P. = 3.40 TT == 22 TT -- TT 11--2255 LL wwnneett xx22 552200 II cc QQ.. '' TT.. '' 11446600 iinn 11 1-27 \ = .6438 ¥hen T„ = 1000°R and T = 500°R c T ¥ net. = KI cQ . m h 1000-500 , / I L" 1000 ^1°0-5O/ O ^in ~ ^out \ c ^in . ? T -2 T t, H lL 1000 „„, 1 s= 2 T-T = 1500X 1 00 = 6 6'7^ v U ) Qm. = ^Qo ut. =100 Wn TL Qin " 1. - .6438 = 280'77 1-28 ¥ , = Q. - Q .= 280.77 - 100 net in out a) constant temperature process C ¥ . = 180.77 BTU net P = V v (¥) = c/ " f = c m^ 1-26 T v 1 1 In general from equation 1.15.11 V2 V2 (¥) = m RT In — T 1 ¥ork = JQ^ - |Q ^mR^-T^lity- 2 b) constant pressure process rv2 continued ( w ) = pi Jvi dv = pi(VV P 7 1-28 cont. 1-29 cont. oO cc)) AAddiiaabbaattiicc process 11 5 | e 3 * dt w = - v. RRll ppVV == CC 0 so T2 dV C Ll-2 tt W = |- RC £ RC 0 W = - ^C joules H =o - 1- r v 2 vi ZZ 33 111---333000 AAA---^^^ HHHaaa - rr " a "' " V " 1 11--2299 ii I—11 —. i 1 - _ J • / MMoo ||77\\ • li Mi i ,,,|||WWW === 000 sssiiinnnccceee MMM iiisss * Pl'r * 222 ccoonnssttaanntt By Kirchhoff• s Law 2W = ^0 HOdM ^ (idt + Ri - V = 0 5 c 7 FFoorr ccoonnssttaanntt HH Differentiate to D.E. ddTT 1 . di ddMM == -- CCHH ~~ n 0 c 1 + R dt = TT Then di 1 . A 0r d t+R C1 = ° 2 dT 4-Y m = - CH This is a seperable equation 2 3 0 Q T dT di 1 W = -4^CH2J flt 0 2 5 0 0 r + rc dt - 2T T2 Q ln 1 = - RC i T t + K 2 1 e~ = 4 0CH0 T " i = K ? 2 o £ VHo at t = 0 w 2W3 T V Q or V - R— 1 " R - 1- t i =x e 2W3 =^0H0M0 RC amps R (volts x amps) dt U continued 8 Chapter 2 2-1 2-6 P(1,1) = 1/6 x 1/6 = 1/36 VA = 4; V = 3; V = 2 B c P. = exp [-o< - ft V] i = A,B,C 2-2 i No. Heads P(A) P(A) x (A) exp[«K ] = 2 exp[-jSV] i 0 1/8 0 1 3/8 3/8 2 3/8 6/8 C<= ln(e±p[-4p] + exp[-3^] + exp[-2y3]) 3 1/8 3/8 £ P(A)x(A) = 12/8 3 -4exp[-4(j]-3exp[-3£]-2exp[-2£] - =2.5 <X> = 2 Pi X (V = 1 ,5 exp[-4£]+exp[-3jb]+exp[-2£t] i=0 LLeett xx == eexxpp[[--^^33 ]] 2-3 11..55 xx44 ++ 00..55 xx55 -- 00..55 xx22 == 00 U =-k ln P =-k ln 1/8 3 x2 + x - 1 =0 5 U= k In 8 = 2.0794 k x = - ~ - lj\l'l+y\2 = 0.434, -0.768 UUssiinngg tthhee ppoossiittiivvee rroooott 2-4 exp[-/3] = 0.434 Tl=-k ln P =-k In 3/8 y3= 0.834 U.= k In 8/3 = 0.9808 k c(= ln(exp[-4x0.834] + exp[-3x0.834] + exp[-2x0.834]) 2'5 3 c<= ln(exp[-3.336] + exp[-2.502] S =-k £ p. in p. + exp[-1.668]) i=0 - - k r-ln-^ln^ln^ln-1 ©<= ln (0.3061) - l-8in8^ 8^ 8^ 8J ©(= - 1.184 S = k(jln8 + |ln|) = 1.2555 k P = exp[-0^] expf-^] ± exp[-0(} = exp[L184] = 3.267 continued