ebook img

Solution for Higher Algebra PDF

815 Pages·00.977 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solution for Higher Algebra

<html><head> <link rel="stylesheet" href="/stylesheets/archive.css" type="text/css"/> <link rel="SHORTCUT ICON" href="/images/logo-16.jpg"/> <title>Full text of "Higher Algebra"</title> </head> <body class="Texts"> <!--BEGIN HEADER 1--> <table style="background-color:white " cellspacing="0" width="100%" border="0" c ellpadding="0"> <tbody> <tr> <td style="width:100px; height:72px; vertical-align:top; background-color: #000000;"> <a href="/"><img style="border:0;" alt="(logo)" src="/images/logo.jpg" w idth="84" height="70"/></a> </td> <td valign="bottom" style="background-image:url(/images/blendbar.jpg);"> <table width="100%" border="0" cellpadding="5"> <tr> <td class="level1Header"> <a href="/web/web.php">Web</a> | <a href="/details/movies">Moving Images</a> | <a class="headerAt" href="/details/texts">Texts</a> | <a href="/details/audio">Audio</a> | <a href="/details/software">Software</a> | <a href="/details/education">Education</a> | <a href="/account/login.php">Patron Info</a> | <a href="/about/about.php">About IA</a> </td> </tr> </table> </td> <td style="width:80px; height:72px; vertical-align:top; text-align: right" > <a href="/details//stream/higheralgebra032813mbp/higheralgebra032813mbp_ djvu.txt"><img alt="(navigation image)" src="/images/books-small.jpg" style="mar gin:0; border:0; vertical-align:top;" /></a> </td> </tr> </tbody> </table> <!--BEGIN HEADER 2--> <table width="100%" class="level2Header"> <tbody> <tr> <td align="left" valign="top" class="level2HeaderLeft"> <a class="level2Header" href="/">Home</a> </td> <td style="width:100%;" class="level2Header"> <a href="/details/americana">American Libraries</a> | <a href="/details/toronto">Canadian Libraries</a> | <a href="/details/opensource">Open Source Books</a> | <a href="/details/gutenberg">Project Gutenberg</a> | <a href="/details/biodiversity">Biodiversity Heritage Library</a> | <a href="/details/iacl">Children's Library</a> | <a href="/details/additional_collections">Additional Collections</a> </td> </tr> </tbody> </table> <!--BEGIN HEADER 3--> <table cellspacing="0" width="100%" border="0" cellpadding="0"><tbody> <tr> <td class="level3HeaderColorBar" colspan="4"></td> </tr> <tr> <td class="level3Header level3HeaderLeft"> <form style="margin:0;padding:0;" action="/searchresults.php" id="search form" method="post"><p style="margin:0;padding:0;"> <b>Search:</b> <input tabindex="1" size="25" name="search" value="" style="font-size: 8pt"/> <select tabindex="2" style="PADDING-TOP: 2px; font-size: 8pt;" name= "mediatype"> <option value="all">All Media Types</option> <option value="web">&nbsp;&nbsp;Wayback Machine</option> <option value="movies">&nbsp;&nbsp;Moving Images</option> <option value="movies.animationandcartoons" >&nbsp;&nbsp;&nbsp;&nbsp;Animation & Cartoons</option> <option value="movies.artsandmusicvideos" >&nbsp;&nbsp;&nbsp;&nbsp;Arts & Music </option> <option value="movies.computersandtechvideos" >&nbsp;&nbsp;&nbsp;&nbsp;Computer s & Technology</option> <option value="movies.culturalandacademicfilms" >&nbsp;&nbsp;&nbsp;&nbsp;Cultur al & Academic Films</option> <option value="movies.ephemera" >&nbsp;&nbsp;&nbsp;&nbsp;Ephemeral Films</optio n> <option value="movies.moviesandfilms" >&nbsp;&nbsp;&nbsp;&nbsp;Movies</option> <option value="movies.newsandpublicaffairs" >&nbsp;&nbsp;&nbsp;&nbsp;News & Pub lic Affairs</option> <option value="movies.foreignlanguagevideos" >&nbsp;&nbsp;&nbsp;&nbsp;Non-Engli sh Videos</option> <option value="movies.opensource_movies" >&nbsp;&nbsp;&nbsp;&nbsp;Open Source M ovies</option> <option value="movies.prelinger" >&nbsp;&nbsp;&nbsp;&nbsp;Prelinger Archives</o ption> <option value="movies.sports" >&nbsp;&nbsp;&nbsp;&nbsp;Sports Videos</option> <option value="movies.gamevideos" >&nbsp;&nbsp;&nbsp;&nbsp;Video Games</option> <option value="movies.vlogs" >&nbsp;&nbsp;&nbsp;&nbsp;Vlogs</option> <option value="movies.youth_media" >&nbsp;&nbsp;&nbsp;&nbsp;Youth Media</option > <option selected="selected" value="texts">&nbsp;&nbsp;Texts</option> <option value="texts.americana" >&nbsp;&nbsp;&nbsp;&nbsp;American Libraries</op tion> <option value="texts.toronto" >&nbsp;&nbsp;&nbsp;&nbsp;Canadian Libraries</opti on> <option value="texts.opensource" >&nbsp;&nbsp;&nbsp;&nbsp;Open Source Books</op tion> <option value="texts.gutenberg" >&nbsp;&nbsp;&nbsp;&nbsp;Project Gutenberg</opt ion> <option value="texts.biodiversity" >&nbsp;&nbsp;&nbsp;&nbsp;Biodiversity Herita ge Library</option> <option value="texts.iacl" >&nbsp;&nbsp;&nbsp;&nbsp;Children's Library</option> <option value="texts.additional_collections" >&nbsp;&nbsp;&nbsp;&nbsp;Additiona l Collections</option> <option value="audio">&nbsp;&nbsp;Audio</option> <option value="audio.audio_bookspoetry" >&nbsp;&nbsp;&nbsp;&nbsp;Audio Books & Poetry</option> <option value="audio.audio_tech" >&nbsp;&nbsp;&nbsp;&nbsp;Computers & Technolog y</option> <option value="audio.GratefulDead" >&nbsp;&nbsp;&nbsp;&nbsp;Grateful Dead</opti on> <option value="audio.etree" >&nbsp;&nbsp;&nbsp;&nbsp;Live Music Archive</option > <option value="audio.audio_music" >&nbsp;&nbsp;&nbsp;&nbsp;Music & Arts</option > <option value="audio.netlabels" >&nbsp;&nbsp;&nbsp;&nbsp;Netlabels</option> <option value="audio.audio_news" >&nbsp;&nbsp;&nbsp;&nbsp;News & Public Affairs </option> <option value="audio.audio_foreign" >&nbsp;&nbsp;&nbsp;&nbsp;Non-English Audio< /option> <option value="audio.opensource_audio" >&nbsp;&nbsp;&nbsp;&nbsp;Open Source Aud io</option> <option value="audio.audio_podcast" >&nbsp;&nbsp;&nbsp;&nbsp;Podcasts</option> <option value="audio.radioprograms" >&nbsp;&nbsp;&nbsp;&nbsp;Radio Programs</op tion> <option value="audio.audio_religion" >&nbsp;&nbsp;&nbsp;&nbsp;Spirituality & Re ligion</option> <option value="software">&nbsp;&nbsp;Software</option> <option value="software.clasp" >&nbsp;&nbsp;&nbsp;&nbsp;CLASP</option> <option value="software.tucows" >&nbsp;&nbsp;&nbsp;&nbsp;Tucows Software Librar y</option> <option value="education">&nbsp;&nbsp;Education</option> <option value="forums" >Forums</option> <option value="faqs" >FAQs</option> </select> <input tabindex="3" style="vertical-align:bottom; text-align:absmiddle ; width:21px; height:21px; border:0px" name="gobutton" type="image" id="gobutton " value="Find" src="/images/go-button-gateway.gif"/> <input type="hidden" name="limit" value="100"/> <input type="hidden" name="start" value="0"/> <input type="hidden" name="searchAll" value="yes"/> <input type="hidden" name="submit" value="this was submitted"/> <a href="/advancedsearch.php" class="level3Header level3Head erSearch">Advanced Search</a> </p></form> </td> <td class="level3Header level3HeaderRight"><a class="backColor1 linkbutt on" style="margin-right:15px; color:#fff !important" href="http://www.archive.or g/create/">Upload</a><b>Anonymous User</b> <span style="font-size:7pt;">(<a clas s="level3Header" href="/account/login.php">login</a> or <a class="level3Header" href="/account/login.createaccount.php">join us</a>)</span>&nbsp;</td> </tr> </tbody></table> <div style="padding-bottom:17px;"></div> <!--BEGIN PAGE--> <div id="col1"> <div class="box" style="border-color:white !important;"> <a class="backColor1 linkbutton" style="margin-right:15px; color:#fff !important" href="/details/higheralgebra032813mbp">See other formats</a> </div> </div> <div id="col2"> <div class="box"> <h1> Full text of "<a href="/details/higheralgebra032813mbp">Higher Algeb ra</a>" </h1> <pre>DAMAGE BOOK DO _1 60295 > ^ DO HIGHER ALGEBRA BY S. BARNARD, M.A. FORMERLY ASSISTANT MASTER AT RUGBY SCHOOL, LATE FELLOW AND LECTURER AT EMMANUEL COLLEGE, CAMBRIDGE AND J. M. CHILD, B.A., B.Sc. FORMERLY LECTURER IN MATHEMATICS IN THE UNIVERSITY OF' MANCHESTER LATE HEAD OF MATHEMATICAL DEPARTMENT, TECHNICAL COLLEGE, DERBY FORMERLY SCHOLAR AT JESUS COLLEGE, CAMBRIDGE LON-DON MACMILLAN fcf'CO LTD *v NEW YORK ST MARTIN *S PRESS 1959 This book is copyright in all countries which are signatories to the Berne Convention First Edition 1936 Reprinted 1947, ^949> I952> *955, 1959 MACMILLAN AND COMPANY LIMITED London Bombay Calcutta Madras Melbourne THE MACMILLAN COMPANY OF CANADA LIMITED Toronto ST MARTIN'S PRESS INC New York PRINTED IN GREAT BRITAIN BY LOWE AND BRYDONE (PRINTERS) LIMITED, LONDON, N.W.IO CONTENTS ix IjHAPTER EXEKCISE XV (128). Minors, Expansion in Terms of Second Minors (132, 133). Product of Two Iteterminants (134). Rectangular Arrays (135). Reciprocal Deteyrrtlilnts, Two Methods of Expansion (136, 137). Use of Double Suffix, Symmetric and Skew-symmetric Determinants, Pfaffian (138- 143), ExERtad XVI (143) X. SYSTEMS OF EQUATIONS. Definitions, Equivalent Systems (149, 150). Linear Equations in Two Unknowns, Line at Infinity (150-152). Linear Equations in Three Unknowns, Equation to a Plane, Plane at Infinity (153-157). EXEKCISE XVII (158). Systems of Equations of any Degree, Methods of Solution for Special Types (160-164). EXERCISE XVIII (164). XL RECIPROCAL AND BINOMIAL EQUATIONS. Reduction of Reciprocal Equations (168-170). The Equation x n - 1=0, Special Roots (170, 171). The Equation x n -A =0 (172). The Equation a 17 - 1 ==0, Regular 17-sided Polygon (173-176). EXERCISE XIX (177). AND BIQUADRATIC EQUATIONS. The Cubic Equation (roots a, jS, y), Equation whose Roots are ( -y) 2 , etc., Value of J, Character of Roots (179, 180). Cardan's Solution, Trigonometrical Solution, the Functions a -f eo/? -f-\>V> a-f a> 2 4- a>y (180, 181). Cubic as Sum of Two Cubes, the Hessftfh (182, 183). Tschirnhausen's Transformation (186). EXERCISE XX (184). The Biquadratic Equation (roots a, , y, 8) (186). The Functions A=y + aS, etc., the Functions /, J, J, Reducing Cubic, Character of Roots (187-189). Ferrari's Solution and Deductions (189-191). Descartes' Solution (191). Conditions for Four Real Roots (192-ty). Transformation into Reciprocal Form (194). Tschirnhausen's Trans- formation (195). EXERCISE XXI (197). OP IRRATIONALS. Sections of the System of Rationals, Dedekind's Definition (200, 201). Equality and Inequality (202). Use of Sequences in defining a Real Number, Endless Decimals (203, 204). The Fundamental Operations of Arithmetic, Powers, Roots and Surds (204-209). Irrational Indices, Logarithms (209, 210). Definitions, Interval, Steadily Increasing Functions (210). Sections of the System of^Real Numbers, the Continuum (211, 212). Ratio and Proportion, Euclid's Definition (212, 213). EXERCISE XXII (214). x CONTENTS CHAPTER XIV/INEQUALITIES. Weierstrass' Inequalities (216). Elementary Methods (210, 217) For n Numbers a l9 a 2 a > \*JACJJ n n n (a* -!)/* (a" -I)/*,, (219). xa x ~ l (a-b)$a x -b x ^ xb x ~ l (a - 6), (219). (l+x) n ^l+nx, (220). Arithmetic and Geometric Means (221, 222). - - V ^ n and Extension (223). Maxima and Minima (223, 224). EXERCISE XXIII (224). XV. SEQUENCES AND LIMITS. Definitions, Theorems, Monotone Sequences (228-232). E* ponential Inequalities and Limits, l\m / i\n / l\-m / 1 \ ~n 1) >(!+-) and (1--) <(l--) if m>n, m/ \ n/ \ mj \ nj / 1 \ n / l\" w lim (1-f- =lim(l--) =e, (232,233). n _ >00 V nj \ nj EXERCISE XXIV (233). General Principle of Convergence (235-237). Bounds of a Sequent Limits of Inde termination (237-240). Theorems : (1) Increasing Sequence (u n ), where u n -u n ^ l <k(u n _^\^ n _ z ^ 1 (2) If u n >0 and u n+l lu n -*l, then u n n -*L (3) If lim u n l, then lim (Ui+u 2 + ... +u n )jn I. n >oo n->oo (4) If lim a n ~a, and lim fe w = 6, then n-~>oo n~>oo lim (a n 6 1 + a w _ 1 6 1 + ...H-a 1 6 n )/n=o6, (240-243). n >ao Complex Sequences, General Principle of Convergence (243, 244). EXERCISE XXV (244). CONTENTS xi XVI. \CONVERGENCE OP SERIES (1). Definitions, Elementary Theorems, Geometric Series (247, 248). Series of Positive Terms. Introduction and Removal of Brackets, Changing Order of Terms, Comparison Tests, 271 /w p , D'Alembert's and Cauchy's Tests (248-254). EXERCISE XXVI (254). Series with Terms alternately Positive and Negative (256). Series with Terms Positive or Negative. Absolute Convergence, General Condition for Convergence, Pringsheim's Theorem, Intro- duction and Removal of Brackets, Rearrangement of Terms, Ap- proximate Sum, Rapidity of Convergence or Divergence (256-261). Series of Complex Terms. Condition of Convergence, Absolute Con- vergence, Geometric Series, Zr n cos nd, Sr n sin n6. If u n /u n+l = l+a n /n, where a n ->a>0, then u n -*Q. Convergence of Binomial Series (261-263). EXERCISE XXVII (264). XVII^CoNTiNuous VARIABLE. ^ Meaning of Continuous Variation, Limit, Tending to <*> , Theorems on Limits and Polynomials (266-268) . Continuous and Discontinuous Functions (269, 270). Continuity of Sums, Products, etc., Function of a Function, lirn <f>{f(x)}, Rational Functions, x n (271). Funda- mental Theorems (272). Derivatives, Tangent to a Curve, Notation of the Calculus, Rules of Differentiation (273-277). Continuity of <f>{f(x)}, Derivatives of <f>{f(x)} and x n (278, 279). Meaning of Sign of J'(x) (279). Complex Functions, Higher Derivatives (2*9, 280). Maxima and Minima, Points of Inflexion (280-282). EXERCISE XXVIII (282). Inverse Functions, Bounds of a Function, Rolle's Theorem, Mean- Value Theorem (284-288). Integration (289). Taylor's Theorem, Lagrange's Form of Remainder (290, 291). Function of a Complex Variable, Continuity (291, 292). EXEBCISE XXIX (293). XVIIL, THEORY OF EQUATIONS (2), POLYNOMIALS (2), RATIONAL FRAC- TIONS (1). Multiple Roots, Rolle's Theorem, Position of Real Roots of/(&)=0 (296, 296). Newton's Theorem on Sums of Powers of the Roots of f(x) =0 (297). Order and Weight of Symmetric Functions (298, 299). Partial Derivatives, Taylor's Theorem for Polynomials in x and in x, y, ... . Euler's Theorem for Polynomials, x + y + ...~nu J dx dy (299-302). A Theorem on Partial Fractions (302). The Equation lf + ...=0, (303). EXERCISE XXX (304). xii CONTENTS CHAPTER XIX. EXPONENTIAL AND LOGARITHMIC FUNCTIONS AND SERIES. Continuity, Inequalities and Limits (306, 307). The Exponential Theorem, Series for a x (307, 308). Meaning of an Irrational Index, Derivatives of a x , log x and x n (309). Inequalities and Limits, the way in which e x and log x tend to oo , Euler's Constant y, Series for log 2 (310-312). The Exponential Function E(z), Complex Index (312, 313). Series for sinx, cos x arid Exponential Values (313). Use of Exponential Theorem in Summing Series (314). EXERCISE XXXI (315). Logarithmic Series and their Use in Summation of Series, Calcula- tion of Logarithms (315-319). The Hyperbolic Functions (319-321). EXERCISE XXXII (321). XX. CONVERGENCE (2). Series of Positive Terms. Cauchy's Condensation Test, Test Series 2 - (325). Rummer's, Raabc's and Gauss's Tests (326-328). ' Binomial and Hyper-geometric Series (328, 329). De Morgan and Bertrand's Tests % (330). Series with Terms Positive or Negative. Theorem, Abel's Inequality, Dirichlct's and Abel's Tests (330, 331). Power Series, Interval and Radius of Convergence, Criterion for Identity of Power Series (332- 334). Binomial Series l-f?iz4-... when z is complex (334). Multi- plication of Series, Merten's and Abel's Theorems (335-338). EXERCISE XXXIII (338). XXI. JBlNOMIAL AND MULTINOMIAL THEOREMS. Statement, Vandermonde's Theorem (340). Binomial Theorem. Euler's Proof, Second Proof, Particular Ins tancesj 34 1-345). Num- erically Greatest Term, Approximate Values of " ; 1 + x (345-348). EXERCISE XXXIV (349). Use of Binomial Theorem in Summing Series, ^Multinomia^Theorem (351-355). EXERCISE XXXV (355). XXII. RATIONAL FRACTIONS (2), PR,ECURRING)SERIES AND DIFFERENCE EQUATIONS. Expansion of a Rational Fraction (357-359). EXERCISE XXXVI (359). Expansions of cos nd and sin nOjsin 9 in Powers of cos 6 (360). Recurring Series, Scale of Relation, Convergence, Generating Func- tion, Sum (360-363). Linear Difference Equations with Constant Coefficients (363-365). EXERCISE XXXVII (365). Difference Equations, General and Particular Solutions (367-370). EXERCISE XXXVIII (370). CONTENTS xiii CHAPTER XXIII. THE OPERATORS 4> E, D. INTERPOLATION. The Operators J, E, Series for A r u x , u x+r ; U 1 + u 2 + u 3 + ... in Terms of u l9 Au^ A 2 u l9 ... (373-379). Interpolation, Lagrange's and / d \ n Bessel's Formulae (379-382). The Operator f) 9 Value of ( j- ) (uv) (382, 383). Vcte/ EXERCISE XXXIX (384). XXIV. CONTINUED FRACTIONS (1). Definitions, ForniationjoConvergents, Infinite Continued Fractions (388-391). Simple and ^eeuTrirSg; Continued Fractions (391-394). EXERCISE XL (394). Simple Continued Fractions, Properties of the Convergents, an Irrational as a Simple Continued Fraction (396-401). Approxima- tions, Miscellaneous Theorems (402-406). Symmetric Continued Fractions, Application to Theory of Numbers (406-409). Simple

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.