Solitonicmodulation andLifshitzpoint inanexternal magneticfield withinNambu–Jona-Lasinio model Gaoqing Cao and Anping Huang DepartmentofPhysics,TsinghuaUniversityandCollaborativeInnovationCenterofQuantumMatter,Beijing100084,China (Dated:April25,2016) WestudytheinhomogeneoussolitonicmodulationofachiralcondensatewithintheeffectiveNambu–Jona- Lasiniomodelwhenaconstantexternalmagneticfieldispresent.Theself-consistentPauli-Villarsregularization scheme isadopted tomanipulate the ultravioletdivergence encountered in thethermodynamic quantities. In ordertodeterminethechiralrestorationlinesefficiently,anewkindofGinzburg-Landauexpansionapproachis proposedhere.Atzerotemperature,wefindthatboththeupperandlowerboundariesofthesolitonicmodulation oscillatewiththemagneticfieldintheµ–BphasediagramwhichisactuallythedeHass-vanAlphan(dHvA) 6 oscillation. ItisveryinterestingtofindouthowthetricriticalLifshitzpoint(T ,µ )evolveswiththemagnetic L L 1 field: There are also dHvA oscillations in the T –B and µ –B curves, though the tricritical temperature T L L L 0 increasesmonotonicallywiththemagneticfield. 2 r PACSnumbers:11.30.Qc,05.30.Fk,11.30.Hv,12.20.Ds p A I. INTRODUCTION tion”introducedinRef.[21],therealsituationisstillunclear. 2 In this work, we explore the features of chiral symmetry 2 breakingandrestorationinaconstantexternalmagneticfield The inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell bytakingthesolitonicmodulationchiralcondensateintoac- ] (LOFF)statehasattractedalotofinterestssinceitsproposi- h count. The main advantageis that this situation can be han- tion in 1960s [1]. Thoughno direct evidenceof LOFF state -t hasbeendiscoveredinexperimentsyet,recentdevelopments dledself-consistentlybyadoptingthePauli-Villars(PV)reg- l ularizationscheme.Besides,inrecentyears,inversemagnetic c ofultracoldatomicphysicsmightprovideagoodopportunity u to pin down the exotic state because of its strong control- catalysis (IMC) effect was found in QCD system [25] and n inspired a lot of discussions relevant to the effects of mag- lability [2–4]. In condensed matter physics, an external [ neticfield [26–37]. Expertsmainlyattributedthisanomalous magnetic field will split the single-particle dispersion of 2 electronswithspin-upandspin-downthroughZeemaneffect phenomenontothe asymptoticfreedomorearlierdeconfine- v and a large mismatch of the Fermi surfaces usually favors ment transition [26, 32, 33, 37]. Nevertheless, at very large 3 the pairing with finite momentum [1]. While in quantum magneticfield,itispossiblethatthedeconfinementtransition 9 might happen earlier than chiral symmetry restoration with chromodynamic (QCD) systems, baryon chemical potential 4 increasing temperature[37, 38]. In the case of finite chemi- directly playsa mismatch between quarkandanti-quarkand 3 calpotential,itisusuallythoughtthatdeconfinementandchi- 0 isospin chemical potential plays a mismatch between u and ralsymmetryrestorationtransition separateswith each other . d quarks; the sources of LOFF state are very rich in quark 1 which then gives rise to the quarkyonicmatter [39]; thus, if matterandnuclearmatter[5–19]. 0 theIMC effectholdsin thiscase isstill unknown,especially Specially, in the study of chiral symmetry breaking and 6 neartheLifshitzpoint. Forsimplicity, westill adoptthe ini- 1 restoration, it was found that the original first-order transi- tial Nambu–Jona-Lasinio model and introduce the magnetic : tionlineintheT–µphasediagram[20]wouldbecoveredby v fieldthroughcovariantderivative.We’llgivesomecomments theinhomogeneousphasewiththesolitonicmodulation(SM) Xi or dualchiraldensity wave (DCDW) modulationchiralcon- whenevertheIMCeffectshouldbeconsidered. r densate[7,9]. Butdifferentmodelsgivedifferentpredictions The paper is organizedas following: In Sec.II, we give a a generaltheoreticalframeworkforthestudyofchiralsymme- aboutwhichinhomogeneousphaseismuchmorefavored. A trybreakingandrestorationwithSec.IIA presentingthefor- recent study in the renormalizable quark-meson model sug- mulism for solitonic modulation in NJL model and Sec.IIB gestedthatthesolitonicmodulationusuallyhaslowerfreeen- discussing a new kind of Ginzburg-Landau (GL) expansion ergyandthephaseboundariesarebothofsecondorderwhich approach. ThenumericalresultswillbeshowninSec.IIIand indicates the existence of a tricritical Lifshitz point [9]. On wefinallysummarizeinSec.IV. the other hand, at the presence of a constant magnetic field, thefeaturesofchiralsymmetrybreakingandrestorationwith LOFF state alter a lot [21, 22]. Because of the asymmetry II. THEORETICALFRAMEWORK between the particle and antiparticle dispersions at the low- est Landau level (LLL), the DCDW modulation was found to be much more favored at non-vanishing chemical poten- A. Nambu–Jona-Lasiniomodelandsolitonicmodulation tial [21] and the transitionpointwas foundto be a tricritical point at vanishing chemical potential [22]. However, due to The Lagrangian of Nambu–Jona-Lasinio model in a con- thesensitivityoftheinhomogeneousstatetothechoiceofreg- stantexternalmagneticfieldis ularizationsinthechiraleffectiveNambu–Jona-Lasinio(NJL) model [21, 23] and the ambiguous”intermediate regulariza- =ψ¯(iD/ m µγ0)ψ+G (ψ¯ψ)2+(ψ¯iγ τψ)2 , (1) 0 5 L − − h i 2 whereψ(x) = (u(x),d(x))T denotesthetwo-flavorquarkfield thermodynamicpotentialforthechosensettingcanbeevalu- withcolordegreesoffreedomN = 3andD = ∂ +iQA is atedas c µ µ µ the covariant derivative with the subscripts µ = 1,2,3 cor- T responding to the coordinates x,y,z and the charge matrix Ω = N Trln iD/ m(x) iγ τ3m(x) µγ0 c r 5 i Q = diag(q ,q ) = diag(2e/3, e/3) in flavor space. With- V − − − − u d (cid:2) (cid:0) (cid:1) − 1 out loss of generality, we set the magnetic field to be along + d4x m2(x)+m2(x) z-directionandthevectorpotentialtobeexpressedwithLan- 4G Z r i (cid:0) (cid:1)(cid:3) daugauge,thatis, A = (0,0, Bx,0) (B > 0) . Here, m is T 1+γ5τ3 1 γ5τ3 the currentmass of uµand d qu−arkswhich we set to zero0for = V −NcTrln iD/− 2 m(x)− −2 m∗(x)−µγ0 simplicity as it will notaffect the qualitative results [7], µ is (cid:2)1 (cid:0) (cid:1) quarkchemicalpotentialandτ = (τ1,τ2,τ3) arePaulimatri- + d4xm(x)2 , (5) 4G Z | | cesinflavorspace. Fortheconvenienceoflaterdiscussions, (cid:3) we’d like to choose the explicitformsof γ-matricesin Weyl where the mass gap m(x) = m(x)+im(x), and we work in r i representation[40]: Euclideanspacewiththeintegraloftheimaginarytime x = 4 ix intheregion[0,1/T]. 0 γ0 = 0 I , γi = 0 σi , (2) InordertoobtainanexplicitexpressionforΩ,it’sessential I 0 ! σi 0 ! toevaluatethecontributionofquarks. Let’ssupposethatthe − inhomogeneous mass gap is one-dimensional and along the where σ1,σ2, and σ3 are Pauli matrices and I is the 2 2 magneticfield, thatis, m(x) = m(z), asthe Taylorexpansion × identitymatrixinDiracspinorspace.Aswellknown,inchiral analysisindicatedthattheinhomogeneityalongotherdimen- limitm0 =0,theLagrangianhasSUL(2) SUR(2)chiralsym- sionsisdisfavored[21].Then,themostimportantmissionleft × metry with the left-handedand right-handedtransformations istoevaluatetheeigenvaluesofthefollowingHamiltonian: ψ(x) exp(i(1 γ )τ·θ/2)ψ(x),respectively. Iftheexpec- 5 tation→valueofψ¯∓ψorψ¯iγ τψisnonvanishing,itiseasytosee 1+γ5 1 γ5 that the symmetry of the5 Lagrangian will be spontaneously Hf = −γ0 iD/f − 2 m(z)− −2 m∗(z) broken. Thus, ψ¯ψ and ψ¯iγ5τψ are both orderparametersfor = γ0(cid:2)iγ1∂x+iγ2(∂y iqfBx)+iγ3∂z (cid:3) chiralsymmetrybreakingandrestoration. − − 1+(cid:2) γ5 1 γ5 Inordertostudytheexpectationvaluesoftheorderparam- m(z) − m∗(z) , (6) eters, weintroducefourauxiliaryfieldsσ(x) andπ(x). Then − 2 − 2 (cid:3) the original partition function = [ ψ¯][ ψ]ei can be L wherethesubscriptfstandsfortheflavoruord. Ifweexpand Z D D changedtothefollowingform: R the spinors with Ritus’s method by separating variables, the firsttwotermsinthesquarebracketgiverisetoaLandaulevel 1 = [ ψ¯][ ψ][ σ][ π]exp i d4x (σ2+π2) termi 2nq Bγ2[43,44].Thelefttermsactuallycorrespond Z Z D D D D Z − 4G | f | n h toaonpe-dimensionalNJLmodelorGross-Neveu(GN)model +ψ¯(iD/ σ iγ π·τ µγ0)ψ , (3) withthefollowingHamiltonian: 5 − − − io which is actually the Hubbard-Stratonovich transforma- 1+γ5 1 γ5 tion[41]. Then,bycompletingthefunctionalintegrationover HGN = −γ0 iγ3∂z− 2 m(z)− −2 m∗(z) the quark degrees of freedom, the model can be bosonized (cid:2) i∂ 0 m(z) 0 (cid:3) z withthepartitionfunctiongivenas 0 i∂ 0 m(z) = − z . (7) Z = Z [Dσ][Dπ]expn−ih41G Z d4x(σ2+π2) m∗0(z) m∗0(z) −0i∂z i∂0z +iN Trln(iD/ σ iγ π τ µγ0) , (4) TheHamiltoniancanbebroughttoablockdiagonalformby c 5 − − · − takingasimilitudetransformation,thatis, io wherethetraceistakenoverthecoordinate,spinorandflavor H m(z) 0 spaces. Inmeanfieldapproximation,let’sset σ(x) =m(x), U 1H U = z , (8) π3(x) = m(x), and π1(x) = π2(x) = 0.hThisisettinrg is − GN (cid:0)0 (cid:1) Hz m∗(z) ! i ghenerailwhenthemagnheticfiieldihsabseintbecauseoftherota- (cid:0) (cid:1) wheretheinvolvedmatricesarerespectively: tional symmetryin the flavor space. However, when a finite magnetic field is present, other cases with π1(x) or π2(x) 1 0 0 0 nonvanishingarequitedifferentfromthis. Ihnprinicipalh,thesei i∂ m (z) 0 0 0 1 H m(z) = z ∗ ,U = . (9) cc(LahsaQerCsgeDasr)eccaharrlacireuddlatbtoiyoenπv1a[4lau2na]dteaπnp2dr.etcAhiescecGloyrindbzienbcguarutgos-eLthaoenfdlatahtuteicaeenlaeQlcyCtrsDiics z(cid:0) (cid:1) m(z) −i∂z ! 00 10 01 00 ofourpreviouswork[36],π1(π2)condensationisjustlikesu- For a given inhomogeneousstate, the explicit form of the perconductorandthemagneticfielddisfavorsthepionsuper- thermodynamic potential usually can be evaluated with the fluidity,sothesecasescanbesafelyneglectedhere.Then,the helpofthedensityofstates. However,oneshouldbecautious 3 whenm(z)isnotreal.Inthiscase,thespinorsareactuallyhalf whenmagneticfieldispresent[36].Thentheconvergentform validattheLLLandtaketheformsu(x)= u (x),0,u (x),0 T ofthethermodynamicpotentialis 1 3 and d(x) = 0,d2(x),0,d4(x) T, respective(cid:0)ly [44]. Then th(cid:1)e M2(m,ν) qB DspCecDtrWa {mε}odo(cid:0)uflaHtiGoNna(mre(zn)o=t s(cid:1)myme2mikze)troicf uwiqtuha{r−kεf}o.r eTxaakmeptlhee, Ω(T,µ,B;m,ν) = 4G −q=Xqu,qdNc|2π|Xn=0αn sthigenspaesyctmramaeretri{c±sppepc2ztr+amm2a+kek}t.hAesrehgauslbareieznatmioennvtieornyeddi,ffithceuslet Z ∞dερ(ε;m,ν)fPV(T,µ,n,q,B,ε),(15) 0 at finit chemical potentialdue to the non-renormalizablena- where f (T,µ,n,q,B,ε) = 3 c f(T,µ,n,q,B,√ε2+iΛ2) ture of NJL model [21, 23]. For the solitonic modulation, PV i=0 i withc = c =1,c = c = 3. TheadvantagesofthePV m(z)isrealanditcanbecheckedthattheLLLspectraaresign 0 3 1 2P − − − regularizationschemearereadytosee: Inthelimitν 0or symmetric.Thus,thiscasecanbetreatedself-consistently. → m 0,wecanreproducethePVregularizedthermodynamic Forthesolitonicmodulation,themassgaptakesthefollow- → potentialforthechiralsymmetryrestorationphase(χSR)asit ingform[45]: shouldbe. Inthelimitν 1,thePVregularizedthermody- → namicpotentialforthehomogeneouschiralsymmetrybreak- M(m,ν,z) = m νsn(K(ν)ν)sn(mzν)sn(mz+K(ν)ν) | | | ingphase(χSB)canalsobereproduced. Thus,thePVregu- (cid:16) cn(K(ν)ν)dn(K(ν)ν) larizationschemeguaranteestheself-consistencyofsolitonic + | | , (10) sn(K(ν)ν) modulationinseverallimits. Finally,thegroundstateshould | (cid:17) bedeterminedbyminimizingΩ(T,µ,B;m,ν)with respectto where sn,cn and dn are elliptic Jocobi functions with ellip- m and ν for given parametersT,µ and B. And phase transi- tic modulus √ν. And the thermodynamic potential can be tionhappenswiththechangeofparameters:Whenνchanges derivedstraightforwardlyfromthe case with vanishingmag- from1 to asmaller one, thesystem transitsfromχSBphase neticfield[7]becausethetransversaldegreesoffreedomare toSMphase;whenitchangesfrom0<ν<1to0,thesystem irrelevanttothelongitudinalone. Byreplacingthetransverse transitsfromSMphasetoχSRphase. momentawiththeLandauLevels,thethermodynamicpoten- tialcanbeexpressedexplicitlyas B. Ginzburg-Landauexpansionwithsmallν 1 L qB Ω(T,µ,B;m,ν) = M2(m,ν,z)dz N | | α 4GLZ − c 2π n Inordertoevaluatethechiralsymmetryrestorationtransi- 0 q=Xqu,qd Xn=0 tion and the Lifshitz point more efficiently, we’d like to in- ∞dερ(ε;m,ν)f(T,µ,n,q,B,ε), (11) troduceadifferentGinzburg-Landauexpansionschemecom- Z0 pared to that of Ref. [7], that is, expand the thermodynamic potentialΩ(T,µ,B;m,ν)with respect to the elliptic modulus whereL = 2K(ν)/mistheperiodof M(m,ν,z),αn = 2 δn,0 ν. The Taylor expansions of M2(m,ν) and ρ(ε;m,ν) around − stands for the degeneracy of the n-th Landau level, and the smallνarerespectively integrandis 7ν M2(m,ν) = m2 √ν +o(ν3/2) , (16) f(T,µ,n,q,B,ε) = ǫ(n,q,B,ε)+Tln(1+e (ǫ(n,q,B,ε) µ)/T) − 8 − − (cid:0) (cid:1) +Tln(1+e−(ǫ(n,q,B,ε)+µ)/T), (12) ρ(ε;m,ν) = 1 + m2√ν 7m2ν π 2π(ε2 m2) − 16π(ε2 m2) withtheexcitationenergyǫ(n,q,B,ε)= 2n|qB|+ε2 1/2. The mνδ(ε m−)+o(ν3/2), − (17) corresponding density of states for soli(cid:0)tonic modu(cid:1)lation is −2π − givenby[46] whereo(ν3/2)isthePeanoformoftheremainderandthethird terminEq.(17)isfromthestepfunctions. Thus,thethermo- 1 ε2 m2E(ν)/K(ν) ρ(ε;m,ν) = − dynamicpotentialhasthefollowingform π (ε2 m2) ε2 (1 ν)m2 − − − Ω(T,µ,B;m,ν) = Ω(T,µ,B;m,0)+m2β(T,µ,B;m)√ν θ(pε2 m2) (cid:0)θ ε2+(1 ν(cid:1))m2 , (13) 7 − − − − + m2β(T,µ,B;m)+γ(T,µ,B;m) ν (cid:2) (cid:0) (cid:1)(cid:3) − 8 whereK(ν)isthequarterperiod,E(ν)istheincompleteellip- (cid:16) (cid:17) +o(ν3/2), (18) ticintegralandθ(x)isthestepfunction. Fortheconvenience ofnumericalcalculations,theintegralinthefirstpartofΩcan 1 qB beworkedoutpresicelytogive[45] β(T,µ,B;m)= N | | α ∞dε 4G − c 2π nZ q=Xqu,qd Xn=0 0 1 2E(ν) M2(m,ν)=m2 +1 ν . (14) 1 (cid:16)sn2(K(ν)|ν) − K(ν) − (cid:17) 2π(ε2 m2)fPV(T,µ,n,q,B,ε), (19) − qB ThesecondpartisdivergentandwerefertoPVregularization γ(T,µ,B;m)=m N | | α f (T,µ,n,q,B,m).(20) schemeasitismuchsofterthanothersandcanavoidartifacts q=Xqu,qd c(2π)2 Xn=0 n PV 4 NotethatΩ(T,µ,B;m,0)isjustthethermodynamicpoten- inthevacuumwhichisalittle smallerthantheLQCD result tial for χSR phase which doesn’t depend on m. However, u¯u = d¯d = (0.25GeV)3. h i h i − m2β(T,µ,B;m)is massdependentandthevalueofm should BoththeNJLmodelandQMmodelpredictedthatthetran- be determined by minimizing this coefficient for given pa- sitions from χSB phase to SM phase and from SM phase to rameters which gives the lowest free energy around ν 0. χSR phase are both of second order in the absence of mag- ∼ The integral over ε should be understood as Cauchy Princi- netic field [7, 9]. We carefully check the case with a con- pal value integration and then β(T,µ,B;m) is real and con- stantmagneticfieldandfinditremainsthesame: Asthereis vergent. The minimum of β(T,µ,B;m) directly determines onlyoneminimumofΩ(T,µ,B;m,ν)withrespecttoνwhich whichphaseisthesystemin: Iftheminimumisnegative,the alone determines the transition points for given parameters χSBphaseorSMphaseismorefavored;ifpositive,theχSR andnonzeromandtheconventionalfirst-ordertransitionfrom phaseismorefavored;andmin β(T,µ,B;m) = 0justdeter- χSB phase to χSR phase lies between these two, the transi- minesthechiralsymmetryresto(cid:0)rationpoint. A(cid:1)tthetransition tionsmustbothbeofsecondorder. point,thenext-ordercoefficientreducestoγ(T,µ,B;m)which In order to explore the effect of magnetic field, we’d like issemi-positivedefinite(onlyequalstozerowhenm=0)and tostartfirstlyatzerotemperature. Inthiscase,theintegrand this means that the phase transition is always of second or- becomes der. Itshouldbeclarifiedthatanonzeroexpectationvalueof 1 m aroundν 0 doesn’tnecessarily meanthe transitioncan- f(0,µ,n,q,B,ε)= ǫ(n,q,B,ε) sµ, (24) ∼ notbesecondorder,becausewhatreallymattersis M(m,ν,z) 2 | − | Xs= whichofcoursevanishesatν=0. ± Furthermore,thiskindofGLexpansionapproachisalsoca- andthenumericalresultsfortheupperandlowerboundaries pabletofindtheLifshitzpointwherethesolutionwithν=0is ofSM phaseare shownin Fig.1. Itisinterestingtofind that consistentwiththesolutionν=1.Thiscanhappenonlywhen the critical chemicalpotential µ oscillates with the magnetic theexpectationvalueofmiszeroandtheLifshitzpointisin field B at both boundaries which is actually an illumination fact the critical pointbetween m = 0 and m , 0. Neverthe- of the dHvA effect [48]. This is consistent with that found less,thereisasmalldefectwiththisapproach:Thederivative in the study of homogeneouschiral condensate [35, 36, 49]. of the coefficientβ(T,µ,B;m)with respect to m is divergent Because theoscillationsare notstrictly coincidentwith each aroundtheintegralregionε mascanbeseenfromthefol- other,thesizeoftheexistingregionfortheSMphasealsoos- lowing ∼ cillates with B and is the smallest around √eB = 0.33 GeV which is accidently the same as the mass in vacuum. For ∂β(T,µ,B;m) = N |qB| α ∞dεfPV(T,µ,n,q,B,ε). larger B, the region for the SM phase increases with B due m∂m − c 2π nZ π(ε2 m2)2 tothecatalysiseffect. q=Xqu,qd Xn=0 0 − (21) 0.34 Therefore,theminimumcanonlybeevaluatedbydirectscan- ning of β(T,µ,B;m) over m instead of a new kind of ”gap ΧSR 0.32 equation”. V e 0.30 G (cid:144)Μ ΧSB III. THEPHASEDIAGRAMSANDLIFSHITZPOINT 0.28 SM 0.26 Ashadalreadybeenilluminatedinthequark-meson(QM) model [7], the expectation value of m in vacuum affects the 0.24 qualitativeresultsquitemuchabouttheexistenceofthesoli- 0.0 0.2 0.4 0.6 0.8 tonic modulation. In order to show the results explicitly, we eB (cid:144)GeV choosem=330MeVasamoderatechoiceandkeepthepion decay constant f to the experimentalvalue 93 MeV. Then, π FIG.1: Theµ–Bphasediagramatzerotemperature. Theupperand accordingtothefollowingrelations[47]: lowerboundariescorrespondtothetransitionfromsolitonicmodula- tionphasetochiralsymmetryrestorationphaseandfromchiralsym- m 6m 3 m2+iΛ2 metrybreakingphasetosolitonicmodulationphase,respectively. ψ¯ψ = c(m2+iΛ2)ln ,(22) h i ≡ −2G −4π2 i m2 Xi=0 Then,we’dliketoturnonthetemperatureandcheckhow f2 = Ncm2 3 c lnm2+iΛ2, (23) would the magnetic field affect the T–µ phase diagram. To π 4π2 i m2 showtheeffectobviously,wechooseastrongmagneticfield Xi=0 √eB = 0.6GeV whichis nearthe minimaofthe boundaries theparametersofthePVregularizedNJLmodelcanbefixed andcompareitwiththecaseintheabsenceofmagneticfield. as Λ = 0.786 GeV and GΛ2 = 6.24. This corresponds to The results are illuminated in Fig.2. As can be seen, the re- a chiral condensate u¯u = d¯d = ψ¯ψ /2 = (0.20 GeV)3 sult for B = 0 is qualitatively consistent with that obtained h i h i h i − 5 0.25 0.14 0.20 0.6 GeV 0.12 V V 0.15 IMC e e eB = 0 G 0.10 G (cid:144) (cid:144) L T 0.10 T 0.08 0.05 0.06 0.30 0.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Μ(cid:144)GeV 0.28 V FIG.2: (coloronline) Thephasetransitionlinesforthecaseswith 0.26 e B = 0(blackdashedlines)and √eB = 0.6GeV(reddottedlines). G Thesolitonicmodulationphaseisinthesmallclosedregionsatlarge (cid:144)L 0.24 Μ chemicalpotentialandthebulletsaretheLifshitzpoints.Theinverse magnetic catalysis effect to the case with √eB = 0.6 GeV is also 0.22 illuminated(bluedot-dashedline). 0.20 0.0 0.2 0.4 0.6 0.8 in Ref. [7]. However,one shouldnotice here thata mostre- eB (cid:144)GeV cent study of a more general form of inhomogeneous order parameterbyusingfinite-modeapproachgivesa verydiffer- entresult: thehomogeneous-inhomogeneousphasetransition becomes of first order and the inhomogeneousregion is en- FIG.3: TheevolutionsofthetemperatureT andthechemicalpo- larged a lot even for a moderate constitute quark mass [24]. L tentialµ attheLifshitzpointwiththemagneticfieldB. DuetothedHvAeffectatzerotemperature,thesecond-order L transition linesfrom χSBphase to χSR phase intersect with eachother. ItmightnotbethecaseinrealQCDsystem: Be- cause of the IMC effect [25], it is much more probable that magneticfieldduetothesignsymmetryofthequarkspectra. Andinordertoevaluatethechiralsymmetryrestorationtran- the transition line would be substituted by another one for sition more efficiently, we develop a new kind of Ginzburg- √eB = 0.6GeV(seethebluedot-dashedline)andthetransi- Landauexpansionapproacharoundsmallν. tionlinesarecoveredbythoseof B = 0. However,forlarger ThetransitionsfromχSBphasetoSMphaseandfromSM magnetic field (√eB 0.8 GeV), the transition lines would startto intersectwith≥thoseof B = 0 dueto the dHvAoscil- phasetoχSRphasearebothofsecondorderinthepresenceof magneticfield.Atzerotemperature,boththeupperandlower lation at low temperature. There are two tricritical Lifshitz boundariesoftheSM phaseoscillate withthemagneticfield pointswherethreesecond-ordertransitionlinesintersectwith andsodoesthesizeoftheSMregionwhichareilluminations eachotherintheplotandthepointisfoundtoshifttoupper of the dHvA effect. At finite temperature, the tricritical Lif- leftbythemagneticfield. shitz pointis also found to oscillate with the magnetic field. Finally, the evolution of the Lifshitz point with the mag- Generally, only one minimum is found for each µ–B phase netic field is evaluated as illuminated in Fig.3. The dHvA diagramwhichisconsistentwithpreviousworks[35,36,49]. oscillation showsup in both curves: The oscillation is much Ourrecentstudyisverypreliminary. How’sthefateofthe moreobviousintheµ –Bcurvewiththeminimumataround L √eB = 0.7 GeV. On the other hand, the temperatureT in- SM phase when the fluctuations of collective modes are in- L cludedeitherthroughGaussianexpansion(thoughverydiffi- creases monotonicallywith the magnetic field B and the flat cult)orquark-mesonmodel[7,9,50]isanimportantquestion. oscillationintheregion √eB [0.2GeV,0.5GeV]ismainly ∈ Asitisimpossibletocheckwhichoneismuchmorefavored duetothefastdecreasingofµ . L betweentheDCDWmodulationandthesolitonicmodulation phasesbythefirstprincipalLQCDcalculationatfinitechem- ical potential[51], it is very importantto find a method that IV. SUMMARY canconsistentlytreatbothcasesatfinitemagneticfield. The Dyson-Schwinger equation and the functional renormaliza- In this work, we explore the magnetic field effect to the tion groupapproachmay serve as possible candidates. Still, phase transitions among the homogeneous chiral symme- when taking a more general form of inhomogeneous order trybreaking,inhomogeneoussolitonicmodulationandchiral parameter into account [24], how would the phase diagram symmetry restoration phases. The thermodynamic potential changeatfinitemagneticfielddeservesfurtherstudy.Finally, canbeobtaineddirectlybygeneralizingfromthecasewithout thoughthedHvAoscillationsurelyexistsatlowtemperature, 6 how would the IMC effect affect the T–µ phase diagram at geneousstates and Lifshitz point. The work is supportedby finitemagneticfieldstillneedfurthercheck. the NSFC under Grant No. 11335005and the MOST under Acknowledgments: G.C. thanks Bernd-Jochen Schaefer GrantsNo. 2013CB922000andNo. 2014CB845400. forprovidingtherelevantpapersaboutthe studyofinhomo- [1] P.FuldeandR.A.Ferrell,Superconductivityinastrongspin- Phys.A576,525(1994). exchangeField,Phys.Rev.,135,A550(1964);A.I.Larkinand [21] I. E. Frolov, V. C. Zhukovsky and K. G. Klimenko, Chiral Yu.N.Ovchinnikov, Zh.Eksp.Teor.Fiz.,47,1136(1964);A. densitywavesinquarkmatterwithintheNambu-Jona-Lasinio I.LarkinandYu.N.Ovchinnikov,Inhomogeneousstateofsu- model inanexternalmagneticfield,Phys.Rev.D82, 076002 perconductors,Sov.Phys.JETP.,20,762(1965). (2010). [2] Z.Zheng,M.Gong,X.Zou,C.Zhang,andG.-C.Guo,Routeto [22] T. Tatsumi, K. Nishiyama and S. Karasawa, Inhomogeneous observable Fulde-Ferrell-Larkin-Ovchinnikov phases inthree- chiral phase in the magnetic field, EPJ Web Conf. 71, 00131 dimensional spin-orbit-coupled degenerate Fermigases, Phys. (2014). Rev.A87,031602(R)(2013). [23] T. Meissner, E. Ruiz Arriola and K. Goeke, Regularization [3] V. B. Shenoy, Flow-enhanced pairing and other unusual ef- schemedependenceofvacuumobservablesintheNambu-Jona- fectsinFermigasesinsyntheticgaugefields,Phys.Rev.A88, Lasiniomodel,Z.Phys.A336,91(1990). 033609(2013). [24] A.Heinz,F.Giacosa,M.WagnerandD.H.Rischke,Inhomo- [4] F. Wu, G.-C. Guo, W. Zhang and W. Yi, Unconventional su- geneous condensation in effective models for QCD using the perfluidinatwo-dimensional fermigaswithanisotropicspin- finite-modeapproach,Phys.Rev.D93,014007(2016). orbitcouplingandZeemanfields,Phys.Rev.Lett.110,110401 [25] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz, (2013). S. Krieg, A. Schafer and K. K. Szabo, The QCD phase di- [5] E.NakanoandT.Tatsumi,Chiralsymmetryanddensitywave agram for external magnetic fields, JHEP 1202, 044 (2012); inquarkmatter,Phys.Rev.D71,114006(2005). QCDquarkcondensateinexternalmagneticfields,Phys.Rev. [6] D.Nickel,Howmanyphasesmeetatthechiralcriticalpoint?, D86,071502(2012). Phys.Rev.Lett.103,072301(2009). [26] F.Bruckmann,G.EndrodiandT.G.Kovacs,Inversemagnetic [7] D. Nickel, Inhomogeneous phases in the Nambu-Jona-Lasino catalysisandthePolyakovloop,JHEP1304,112(2013). andquark-mesonmodel,Phys.Rev.D80,074025(2009). [27] K.FukushimaandY.Hidaka,MagneticCatalysisVersusMag- [8] S.Carignano,D.NickelandM.Buballa,Influenceofvectorin- neticInhibition,Phys.Rev.Lett.110,031601(2013). teractionandPolyakovloopdynamicsoninhomogeneouschi- [28] J.Chao, P.ChuandM.Huang, Inversemagneticcatalysisin- ralsymmetrybreakingphases,Phys.Rev.D82,054009(2010). ducedbysphalerons,Phys.Rev.D88,054009(2013). [9] S.Carignano, M. BuballaandB.J.Schaefer, Inhomogeneous [29] L.Yu,H.LiuandM.Huang,Spontaneousgenerationoflocal phases in the quark-meson model with vacuum fluctuations, CPviolationandinversemagneticcatalysis, Phys.Rev.D90, Phys.Rev.D90,014033(2014). 074009(2014). [10] L. He, M. Jin and P. Zhuang, Pion Condensation in Bary- [30] G.Cao,L.HeandP.Zhuang,CollectivemodesandKosterlitz- onicMatter:fromSarmaPhasetoLarkin-Ovchinnikov-Fudde- Thouless transition in a magnetic field in the planar Nambu- FerrellPhase,Phys.Rev.D74,036005(2006). Jona-Lasinomodel,Phys.Rev.D90,056005(2014). [11] H.Abuki,Ginzburg-LandauphasediagramofQCDnearchiral [31] E.J.Ferrer,V.delaInceraandX.J.Wen,QuarkAntiscreening criticalpoint - chiral defect latticeand solitonicpion conden- atStrongMagneticFieldandInverseMagneticCatalysis,Phys. sate,Phys.Lett.B728,427(2014). Rev.D91,054006(2015). [12] H.Abuki,SolitonicChargedPionCrystalinDenseQCD:from [32] M. Ferreira, P. Costa, D. P. Menezes, C. Providncia and ageneralized Ginzburg-Landau approach, EPJWebConf. 80, N. Scoccola, Deconfinement and chiral restoration within 00041(2014). the SU(3) Polyakov–Nambu–Jona-Lasinio and entangled [13] J.A.Bowersand K.Rajagopal, TheCrystallography of color Polyakov–Nambu–Jona-Lasinio models in an external mag- superconductivity,Phys.Rev.D66,065002(2002). neticfield,Phys.Rev.D89, 016002(2014)[Phys.Rev.D89, [14] K. Rajagopal and R. Sharma, The Crystallography of Three- 019902(2014)]. FlavorQuarkMatter,Phys.Rev.D74,094019(2006). [33] R.L.S.Farias,K.P.Gomes,G.I.KreinandM.B.Pinto,Impor- [15] L.He,M.JinandP.Zhuang,NeutralColorSuperconductivity tanceofasymptoticfreedomforthepseudocriticaltemperature IncludingInhomogeneousPhasesatFiniteTemperature,Phys. inmagnetizedquarkmatter,Phys.Rev.C90,025203(2014). Rev.D75,036003(2007). [34] N.MuellerandJ.M.Pawlowski,Magneticcatalysisandinverse [16] D. Nickel and M. Buballa, Solitonic ground states in (color-) magneticcatalysisinQCD,Phys.Rev.D91,116010(2015). superconductivity,Phys.Rev.D79,054009(2009). [35] F.Preis,A.RebhanandA.Schmitt,Inversemagneticcatalysis [17] A.Heinz,F.GiacosaandD.H.Rischke,Chiraldensitywavein indenseholographicmatter,JHEP1103,033(2011). nuclearmatter,Nucl.Phys.A933,34(2015). [36] G.CaoandP.Zhuang,Effectsofchiralimbalanceandmagnetic [18] M. Buballa and S. Carignano, Inhomogeneous chiral conden- field on pion superfluidity and color superconductivity, Phys. sates,Prog.Part.Nucl.Phys.81,39(2015). Rev.D92,105030(2015). [19] G. Cao, L. He and P. Zhuang, Solid-state calculation of [37] V. A. Miransky and I. A. Shovkovy, Quantum field theory in crystalline color superconductivity, Phys. Rev. D 91, 114021 amagneticfield: Fromquantumchromodynamicstographene (2015). andDiracsemimetals,Phys.Rept.576,1(2015). [20] P.Zhuang,J.HufnerandS.P.Klevansky,Thermodynamicsofa [38] E.S.Fraga,A.J.MizherandM.N.Chernodub,Possiblesplit- quark-mesonplasmaintheNambu-Jona-Lasiniomodel,Nucl. tingofdeconfinementandchiraltransitionsinstrongmagnetic 7 fieldsinQCD,PoSICHEP2010,340(2010). weakmagneticfield,Phys.Rev.D86,085029(2012). [39] L.McLerranandR.D.Pisarski,Phasesofcold, densequarks [45] O.Schnetz,M.ThiesandK.Urlichs,Fullphasediagramofthe at large N(c), Nucl. Phys. A 796, 83 (2007); L. McLerran, massiveGross-Neveumodel,AnnalsPhys.321,2604(2006). K.RedlichandC.Sasaki,QuarkyonicMatterandChiralSym- [46] O. Schnetz, M. Thies and K. Urlichs, Phase diagram of the metryBreaking,Nucl.Phys.A824,86(2009). Gross-Neveu model: Exact results andcondensed matter pre- [40] M.E.PeskinandD.V.Schroeder,AnIntroductiontoQuantum cursors,AnnalsPhys.314,425(2004). FieldTheory,Addison-Wesley,NewYork,1995. [47] S. P. Klevansky, The Nambu-Jona-Lasinio model of quantum [41] R.L.Stratonovich,OnaMethodofCalculatingQuantumDis- chromodynamics,Rev.Mod.Phys.64,649(1992). tribution Functions, Sov. Phys. Dok. 2, 416 (1958); J. Hub- [48] W. J. de Haas and P. M. van Alphen, Proc. Acad. Sci. (Am- bard,CalculationofPartitionFunctions,Phys.Rev.Lett.,3,77 sterdam), 33, 1106 (1930); L. D. Landau and E. M. Lifshitz, (1959). StatisticalPhysics,Pergamon,NewYork,1980. [42] G. Endro¨di, Magnetic structure of isospin-asymmetric QCD [49] D.Ebert,K.G.Klimenko,M.A.VdovichenkoandA.S.Vshiv- matterinneutronstars,Phys.Rev.D90,094501(2014). tsev,Magneticoscillationsindensecoldquarkmatterwithfour [43] V. I.Ritus, Radiative corrections inquantum electrodynamics fermioninteractions,Phys.Rev.D61,025005(1999). withintensefieldandtheiranalyticalproperties,AnnalsPhys. [50] E.S.FragaandA.J.Mizher,Chiraltransitioninastrongmag- 69,555(1972);MethodOfEigenfunctionsAndMassOperator neticbackground,Phys.Rev.D78,025016(2008). InQuantumElectrodynamicsOfAConstantField,Sov.Phys. [51] A. Nakamura, Quarks and Gluons at Finite Temperature and JETP48,788(1978). Density,Phys.Lett.B149,391(1984). [44] H. J. Warringa, Dynamics of the Chiral Magnetic Effect in a