ebook img

Soliton dynamics of an atomic spinor condensate on a Ring Lattice PDF

1.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Soliton dynamics of an atomic spinor condensate on a Ring Lattice

SolitondynamicsofanatomicspinorcondensateonaRingLattice Indubala I. Satija1, Carlos L. Pando L.2 and Eite Tiesinga3 1SchoolofPhysics,AstronomyandComputationalSciences,GeorgeMasonUniversity,Fairfax,VA22030,USA 2IFUAP, Universidad Autonoma de Puebla, Apdo, Postal J-48, Puebla 72570, Mexico and 3JointQuantumInstitute,NationalInstituteofStandardsandTechnologyandtheUniversityofMaryland, 100 Bureau Drive, Stop 8423, Gaithersburg, MD 20899-8423, USA (Dated:January25,2013) Westudythedynamicsofmacroscopically-coherentmatterwavesofanultra-coldatomicspin-1orspinor condensate on a ring lattice of six sites and demonstrate a novel type of spatio-temporal internal Josephson effect. Usingadiscretesolitarymodeofuncoupledspincomponentsasaninitialcondition,thetimeevolution 3 ofthismany-bodysystemisfoundtobecharacterizedbytwodominantfrequenciesleadingtoquasiperiodic 1 dynamicsatvarioussites.Thedynamicsofspatially-averagedandspin-averageddegreesoffreedom,however, 0 isperiodicenablinganuniqueidentificationofthetwofrequencies. Byincreasingthespin-dependentatom- 2 atominteractionstrengthweobservearesonancestate,wheretheratioofthetwofrequenciesisacharacteristic n integermultipleandthespin-and-spatialdegreesoffreedomoscillatein“unison”.Crucially,thisresonantstate a isfoundtosignaltheonsettochaoticdynamicscharacterizedbyabroadbandspectrum. Inaferromagnetic J spinor condensate with attractive spin-dependent interactions, the resonance is accompanied by a transition 4 fromoscillatory-torotational-typedynamicsasthetimeevolutionoftherelativephaseofthematterwaveof 2 theindividualspinprojectionschangesfromboundedtounbounded. ] PACSnumbers:03.75.Ss,03.75.Mn,42.50.Lc,73.43.Nq s a g - I. INTRODUCTION bodysystems.[17–19]Therehasalsobeentheoreticalstudies t n ofsolitonsinahomogeneousspin-1condensate[20,21].Fur- a thermore,theoreticalandexperimentalstudiesofdouble-well u Spinor condensates are atomic Bose-Einstein condensates bosonicJosephsonjunctionshaveunveilednovelphenomena q (BEC) with an internal spin degree of freedom that com- suchasbrokensymmetrymacroscopicquantumself-trapping . bine magnetism with condensation. Examples are optically- t [22]andπ-modes[23–25]aswellassymmetryrestoredswap- a trapped spinor condensates of atomic rubidium-87[1–4], pingmodes[22]. Inaddition,numericalinvestigationofBEC m sodium[5,6],orchromium[7]witheitherspinorangularmo- systems, spatially separated into a ring lattice have demon- - mentum f = 1, 2, or 3 condensates with a three-, five-, or d stratedchaoticdynamics, deterministicdynamicswithsensi- seven-componentvectororderparameter. Incontrasttomix- n tivedependenceoninitialconditions.[26–28] tures of two or more atomic states[8] or mixtures of several o In this paper, we explore the quantum coherent time evo- c atomic species, spin-changing collisions in spinor conden- lution of a spin-1 BEC that is spatially separated into six [ sates permit coherent dynamics among the hyperfine states. weakly-coupled sites arranged to form a ring geometry, see Inatypicalprocessfortwof =1atoms,oneinspincompo- 1 Fig. 1. For a large number of atoms such a system is well nentm = −1andoneinm = +1,canreversiblyscatterinto v represented by a three-component wavefunction or order pa- 1 twoatomswithspincomponentm = 0,whichconservesthe rameter, Φ(cid:126)((cid:126)x,t), that satisfies a nonlinear Gross-Pitaevskii 5 global magnetization of the condensate. This coherent spin equation[9,10]. Here,werestrictourcalculationstothecase 8 mixing leads, nevertheless, to oscillations of the spin popu- withnoexternalmagneticfield.Moreimportantly,weassume 5 lations,andisananalogueofJosephsonoscillationsinultra- . that all sites and spin components have at all times the same 1 coldatoms[9–13].Hence,justascollisionalinteractionsallow identical localized spatial-mode function, φ((cid:126)x). That is, for 0 for a single-component condensate to be spatially coherent, 3 spin-changingcollisions,drivenbyinternalinteractions,allow themth-componentofΦ(cid:126)((cid:126)x,t)wehave 1 coherence among internal degrees of freedom. A positive or : L v negativesignofthestrengthofthespin-changinginteraction (cid:88) Φ ((cid:126)x,t)= ψm(t)φ((cid:126)x−(cid:126)x ), (1) i determineswhetherthesystemsbehaveanti-ferromagneticor m n n X ferromagnetic,respectively[10,14]. Spinorphysicshasalso n=1 r beenstudiedinopticallatticeswithexactlytwoatomsperlat- a whereListhenumberofsites,(cid:126)x isthecenterofsiten,and n ticesite[15]. thedimensionlessψm(t)arecomplextime-dependentampli- n In view of the nonlinear nature due to interparticle inter- tudes. Theoverlapbetweenspatial-modefunctionsatdiffer- actions and high degree of control in the experiments, BEC entsitesleadstotunnelingbetweenneighboringsites. systems are ideal systems for visualizing a wide variety of More advanced numerical modeling uses time varying nonlinear phenomena. This includes solitary waves, the lo- mode functions [29, 30] or directly solves for the three- calizednonlineartravelingwavesthatretaintheirshape,size dimensional Gross-Pitaevskii equation[18]. As a first study andspeed duringpropagation [16]. Experimentalrealization inthesolitondynamicsofaspinorcondensatewebelievethat ofsolitonsinahomogeneoussinglecomponentBECsystems our simplified approach is justified. It shows the generaliza- isahallmarkofthequantumcoherenceassociatedwithmany tionofthespinorJosephsoneffectaswellastheroutetochaos 2 to pendulum-type physics [10, 12]. Our study suggests that 0.8 |Φ(x)|2 the origin of this “regular” global dynamics has its roots in the strong correlations among different lattice sites and spin 0.7 n=3 n=2 projectionsandisnotrootedinthermalaveragingovermany degrees of freedom. We note that ω is solely determined by 0.6 thespin-changinginteraction,whereasΩshowsaratherweak n=4 n=1 ρn dependence. We find that Ω is mainly controlled by the size 0.5 ofthering. Byincreasingtheabsolutevalueofthespin-dependentin- n=5 n=6 0.4 teraction strength, the two frequencies can be mode locked. This resonance condition is found to describe the onset to 0.3 chaotic dynamics. In other words, the spinor condensate ex- 1 2 3 4 5 6 lattice index, n hibits a transition from quasi-periodic dynamics to chaotic dynamics where at the onset to transition, all local and FIG.1:(coloronline)Panela)showsaschematicofaringlatticeof globaldegreesoffreedomoscillateinunison. Consequently, sixsites(reddashedcirclewithlabeledmarkers)containingaf = the initial soliton profile reappears periodically, providing a 1spinorcondensate. Thesolidblacklinerepresentsthesuperfluid unique demonstration of a novel-type of spatio-temporal in- populationalongtheringasapolargraph.Panelb)showstheinitial ternal Josephson effect. Furthermore, in contrast to the anti- fractionalpopulation, ρ , asafunctionofsiteindexnusedinour n ferromagneticcase,intheferromagneticcondensate,theres- dynamical simulations. The distribution corresponds to an excited (period-6) solution of the DNLSE. For each site the population of onance is accompanied by a transition from bounded to un- thethreemagneticsublevelsofthespinoristhesame. bounded dynamics. In the anti-ferromagnetic case, the dy- namics remains bounded and oscillatory. Nevertheless, be- yondtheresonanceadditionalfrequenciesappear. initsclearestform.Itshouldbenotedthattheringlatticewith For sake of simplicity, we restrict our simulations to zero lessthanthreesitesisanintegrablesystem. BEConalattice magnetization. This is enforced by choosing initial condi- withthreeormorethanthreesitesexhibitsamazingdegreeof tions where the m = +1 and m = −1 components have complexityincludingcoexistenceofregularandirregularbe- sameinitialwavefunction. Infact,wechooseaninitialstate haviorthatisknowntoaccompanychaoticdynamics. Inour whereallthreecomponentshavethesameinitialwavefunc- detailed numerical exploration of ring lattices with different tion. An alternate initial state with zero magnetization and numbersofsites,thekeycharacteristicsofthetimeevolution containsmostlym=±1atomsleadtosimilarresults. Itwill as discussed in this paper are independent of the number of notbedescribedhere. sites. Here,wewillpresentourresultsforaringlatticeofsix In section II we review the mean-field equations that de- sitesonly. scribe the evolution of the spinor condensate on a lattice as well as the underlying single-mode approximation approxi- Our initial state is a discrete solitary wave that is an ex- mationoneachlatticesite. Thelatterhasbeenshowntopro- cited eigenstate of the discrete nonlinear Schro¨dinger equa- tion (DNLSE) satisfied by the ψm(t) in the absence of spin- vide a reasonable description for the continuum system. For n our ring lattice, the SMA suggests collective coordinates to changing interactions. The spin-changing interaction then describe the global dynamics. The initial state is described induces oscillatory dynamics, an internal Josephson effect in Sec. III. In section IV, we show numerical simulations wheredifferentspincomponentsevolvewithdifferentampli- forweakpositive,anti-ferromagneticspin-dependentintegra- tudes and phases. In reality the spin-changing Hamiltonian tionsandshowthatthedynamics,althoughcomplex,isdom- can not be turned off and this state needs to be engineered inatedbytwofrequencies. InsectionV,wediscussthereso- by a combination of resonant electro-magnetic radiation that controllably creates superpositions of m-states [6] and off- nanceconditionthatoccurswhenthespin-dependentinterac- tionstrengthisincreased. Atresonanceweobserveanonset resonant spatially-dependent light forces that induce solitons tochaos. SectionVIbrieflyillustratestheferromagneticcase. [17,18]. WeconcludeinSec.VII. Inthisarticleweshowthatforweakspin-changinginterac- tions the dynamics on the ring lattice is dominated by two frequencies. Interestingly, one of these frequencies, which wedenoteasω, describestheperiodicbehaviorofspatially- II. MEAN-FIELDEQUATIONSFORASPINOR averagedspinpopulations. Thesecondfrequency,denotedby CONDENSATEANDCOLLECTIVECOORDINATES Ω, describes the dynamics of the site-dependent population summedoverthethreespincomponents. Inotherwords,the Anatomicspinorcondensatewithlargeatomnumberisde- dynamicsofcollectiveoraveragedcoordinatesispendulum- scribed within mean-field theory by a complex vector order like. Aswediscussbelow,thisissomewhatsurprisingasthe parameterorcondensatewavefunctionΨ((cid:126)x,t),whoseevolu- spatial profiles of the three spin components evolve differ- tionisgovernedbyamulti-componentGross-Pitaevskiiequa- ently and the dynamics on the ring should deviate from that tion [9, 10]. We will assume that the order parameter can for a “simple” trapped spinor condensate. The single-mode be approximated by Eq. 1, where a single time-independent approximation for the latter system has been shown to lead mode function, φ((cid:126)x), determines the spatial dependence in 3 eachwell. WedenotethisbytheL-sitesingle-modeapprox- which are independent of the spin-independent interaction imation (L-SMA) in analogy to the single-mode approxima- with strength c . For small Z and γ the dynamics are har- 0 tion(SMA)foraspinorcondensateinadipoletrap. monic. Ingeneral,however,thesecoupledequationsdescribe The interactions between two spin-1 atoms have a nonlinear pendulum whose length depends upon the mo- a spin-independent and a spin-dependent or (spin- mentum. changing) contribution. Within a mean-field the- ForaL > 2ringoflatticesitesthecollectivevariablesZ ory and the L-SMA their strength is given by andγ satisfy 2cqf=or4thπe(cid:126)2sgpqin/-(i2nµde)p(cid:82)endd(cid:126)xe|φnt((cid:126)xa)n|d4/s(cid:82)pind-(cid:126)xd|eφp(e(cid:126)xn)d|2enwticthonqtr=ibu0tiaonnd, Z˙ = c(cid:126)2 (cid:88)(σn2 −Zn2)sinγn (8) respectively. Here µ is the reduced mass for two atoms n and (cid:126) is the reduced Planck constant. The lengths gq are γ˙ = −2c2 (cid:88)Z (1+cosγ )+ JW (9) g =(a +2a )/3andg =(a −a )/3,wherea anda are (cid:126) n n (cid:126) 0 0 2 2 2 0 0 2 n scatteringlengthsfors-wavecollisionsoftwof = 1bosons with total angular momentum F = 0 and 2, respectively. whereW =Re[(cid:80)n(2ψn0+1/ψn0−ψn++11/ψn+1−ψn−+11/ψn−1)]. For stable condensed gases we require that c0 > 0. We Thespin-independentinteractionstrengthc0 doesnotexplic- note that c > 0 for anti-ferromagnetic Na and c < 0 for itly appear in these equations. As already mentioned in the 2 2 ferromagnetic87Rb. introduction and further discussed in next section, this sug- Thedynamicsoftheψm(t)aregovernedbytheDNLSE geststhatthespatially-averagedZ andγ willexhibitperiodic n oscillations, with frequency ω, that are solely determined by i(cid:126)ψ˙−1 =−J(ψ−1 +ψ−1 ) (2) thespin-changinginteraction. Finally,thespin-averagedpop- n n−1 n+1 +(c +c )(|ψ−1|2+|ψ0|2)ψ−1 ulationsateachsitesatisfy 0 2 n n n +(c0−c2)|ψn1|2ψn−1+c2(ψn0)2(ψn1)∗ σ˙ =−J Im(cid:32) (cid:88)1 (ψm)∗[ψm +ψm ](cid:33) , (10) i(cid:126)ψ˙0 =−J(ψ0 +ψ0 )+c |ψ0|2ψ0 (3) n (cid:126) n n+1 n−1 n n−1 n+1 0 n n m=−1 +(c0+c2)(|ψn1|2+|ψn−1|2)ψn0 +2c2ψn1ψn−1(ψn0)∗ which does not explicitly depend on c2. Hence, we expect i(cid:126)ψ˙n1 =−J(ψn1−1+ψn1+1)+(c0+c2)(|ψn1|2+|ψn0|2)ψn1 that the σn oscillate periodically, characterized by frequency Ωanditsharmonics. +(c −c )|ψ−1|2ψ1 +c (ψ0)2(ψ−1)∗, (4) 0 2 n n 2 n n where J is the positive site-to-site tunneling energy and we III. INITIALDISCRETESOLITON use periodic boundary conditions. In the absence of the last termontherighthandsideofEqs.2-4,thesetofequationsde- scribesathree-speciescondensate.Spin-changingtermsmake For a ring lattice of six sites, we use the initial condition aspinorcondensateuniqueastheyinducepopulationoscilla- showninFig.1. Commonlyreferredtoasadiscretesoliton, tions between m levels. Equations 2-4 conserve total atom itisastationarysolutionoftheDNLSEintheabsenceofthe nanudm(cid:80)bernmanmd|mψnmag(nte)t|i2zaartieocno.nsInervoethde.r words, (cid:80)nm|ψnm(t)|2 sJp.inA-clohnagngwinitghipnhtearsaectφiomnn=[260,3o1r]π(if.oer. weviethnco2r=od0d)saitnedicn0de=x We will monitor the local population of each spin state as n, respectively, the initial state populations are the same for wellasglobalorcollectivecoordinates,suchasspatially-and thethreecomponents. spin-averaged population and phases. It is therefore conve- This stationary solution, corresponding to a solution nient to define ψnm(t) = (cid:112)ρmn(t)exp[iφmn(t)] with popula- ψnm(t) = ψnm(t = 0)exp(−iµt/(cid:126)) where µ is the chemi- tions ρm(t) and phases φm(t). Following Refs. [9, 10] for a cal potential, is obtained by numerically solving the result- n n single-modespinorcondensatenaturallocalcanonicalcoordi- ing nonlinear map, as Eqs. 2-4 reduce to a set of L two- natesare dimensionalcubicmaps. FollowingRef.[28],wefindthatfor L=6thesolutionsare6-folddegenerateandforarangeofµ Z =ρ0−(ρ+1+ρ−1) and γ =φ−1+φ1−2φ0 . (5) thelocalizedsolitonmodeinFig.1istheonlystablesolution. n n n n n n n n Infact,wehaveusedµ=2.5J. Intriguingly,forthesevalues (cid:80) aswellasglobally-averagedcoordinatesZ = Z /Land (cid:80) n n of the chemical potential the homogeneous solution with the γ = γ /L. Throughout this article we call γ and γ n n n samedensityatallsitesisunstable. spinorphases. Otherusefulpopulationaveragesare It should also be noted that known localized soliton-type solutionswithzerophaseforallsitescorrespondtoattractive L 1 ρm = L1 (cid:88)ρmn and σn = 31 (cid:88) ρmn . (6) sizpeidn-sionlduetpioennsdefonrtrienpteurlascivtieoinnstewraicthtiocn0s,<on0e.nTeoedosbttoacinonlosicdaelr- n=1 m=−1 solutionswithphasesdifferentfromzero.Ingeneral,itcanbe Inadipoletrap,orequivalentlyforL = 1,asimplespinor shownthatforalatticewithevennumberofsites,themapping modelisgivenbytheSMA.ThecanonicalvariablesZ andγ ψm →(−1)n(ψm)∗relatesasolitonsolutionforattractivein- n n thensatisfythepairofequations teractionswiththosewithrepulsiveinteractions. Forasingle- c c componentcondensatediscretesolitonshavebeenstudiedex- Z˙ = (cid:126)2(1−Z2)sinγ and γ˙ =−2(cid:126)2Z(1+cosγ), (7) tensivelyforringlatticesofvarioussizes[26–28]. 4 FIG. 3: (color online) Power spectrum or Fourier transform of FIG.2:(coloronline)Timedynamicsofananti-ferromagneticspinor thetimeevolutionofthespatially-averagedspinpopulationρ m=+1 solitononasix-siteringforseveralspin-and/orspatially-averaged (red), spatially-averagedspinorphaseγ (green), andspin-averaged degrees of freedom assuming a small positive spin-changing inter- population σ at site n = 1 (blue). The parameters and initial action energy. Time is in units of (cid:126)/J, where J is the tunneling stateareasinn=F1ig.2andthefrequencyisinunitsofJ/(cid:126). Thetop energybetweenthesites. Calculationsareperformedforc =0.1J 2 andbottompanelshowthepowerspectraonalinearandlogarith- andc = J. Panela)showsthedynamicsofthespatially-averaged 0 micscale,respectively. Alsoindicatedarethedominantfrequencies spinor population Z (black line) and the spinor population Z for n ω and Ω, which have been assigned as due to the spin-dependent the individual sites n (colored lines). The symmetry of the initial andspin-independentinteractions,respectively. Inthebottompanel solitonaroundn = 3impliesthatonlyfourofthesixsiteshavea higherharmonicsofΩcanbeobserved. distinct time evolution. Panel b) shows the spinor phases γ (black line)andγ (coloredlines). Finally,panelc)showsthesite-specific n populationσ ,averagedoverthethreespincomponents. n Experiments with single-component Bose condensates in sions around the average γ. Finally, we note that the spinor double-wellpotentials[24]haveobservedJosephsonoscilla- tions and quantum self-trapping in the limit J (cid:28) c . The phasesareboundedforoscillatorymotion. 0 opposite limit can also be reached leading to tunneling of (nearly-)independent atoms. Here, we chose a compromise Figure 3 shows the power spectrum of three of the time with c = J. As an aside we note that with our initial state 0 traces shown in Fig. 2. It highlights the existence of two andc = J wehaveimplicitlyspecifiedthechemicalpoten- 0 dominant frequencies, ω and Ω, as well as weaker higher tialandthusatomnumberineachsite. harmonics in Ω indicating non-sinusoidal periodic behavior. Thespatially-averageddegreesoffreedompredominantlyos- cillatewithafrequencyω,whichfromsimulationswithother IV. QUASIPERIODICDYNAMICSOFAN smallc isfoundtobeproportionaltotheabsolutevalueofc . 2 2 ANTI-FERROMAGNETICSPINOR In contrast, spin-averaged local populations oscillate nearly- sinusoidalwithfrequencyΩ,whichfromothersimulationsis Figure2showsthetimeevolutionofthespinorsolitonona foundtoweaklydependonthespin-changinginteractionbut six-sitering,describedintermsofthespinorcoordinatesZ is inversely proportional to the number of lattice sites. Fi- n andZ,spinorphasesγ andγ,aswellaspopulationsσ . We nally, the local dynamics for individual spin projections is n n useasmallpositivespin-changinginteractionstrengthc for quasiperiodic with a slow frequency ω and a faster beat fre- 2 ananti-ferromagneticspinor. Weobservethatthetimedepen- quencyatmultiplesofΩ. Thisillustratesthecorrelationsthat dence of Z and γ are nearly sinusoidal. The site-dependent exist among the spatial and spin components. Detailed stud- Z ,γ andσ ,however,oscillateatahigherfrequency. They ies with various ring sizes indicate that the spinor dynamics n n n do so in a non-sinusoidal manner with sharper minima than ischaracterizedbytwofrequencies,irrespectiveofthesizeof maximaorviceversa. Thephasesγ onlyshowsmallexcur- thering. n 5 FIG.5: (coloronline)Powerspectrashowingtheresonancecondi- tionforincreasingspin-changingstrengthc forthesameparame- 2 tersasinFig.4. ThefrequencyisinunitsofJ/(cid:126). Inallpanelsthe FIG. 4: (color online) Time series for an anti-ferromagnetic spatially-averagedρ (redcurve)andspin-averagedσ (blue m=+1 n=1 spinorshowingtheresonanceconditionforincreasingspin-changing curve) are shown. Panels on the left and right show spectra on a strengthc2.Timeisinunitsof(cid:126)/J andc0 =J.InallpanelsZ(red linearandlogarithmicscale,respectively,whilefromtoptobottom curve)andσn=1 (bluecurve)areshown. Panelsa),b),andc)show c2 =0.5J,0.65J and1.0J. resultsforc =0.5J,0.65J,and1.0J,respectively.Theresonance 2 condition occurs for c = 0.65J, where the spatially-averaged Z 2 andspin-averagedσ oscillateatthesamerate. Forc > 0.65J n=1 2 thetracesarechaotic. V. RESONANCECONDITIONFORTHE ANTI-FERROMAGNETICCONDENSATE Figures1and2showedthatforsmallc /c twofrequencies 2 0 ω andΩareverydistinct. Forincreasingpositivec atfixed 2 c , as shown by time traces in Fig. 4 and power spectra in 0 Fig. 5, both frequencies increase although at a different rate. Foracriticalspin-changingstrengthc whenω =Ωtheanti- 2 ferromagnetic spinor reaches a “resonance” state. All three spin-componentsatallthesitesoftheringthenoscillateasa singleentity.Forc0 =J thisresonanceoccursatc2 =0.65J. FIG.6:(coloronline)Spin-averagedsolitonprofiles,σn,fortheanti- Forlargevaluesofc thebehaviorbecomeschaotic,whichis ferromagneticspinorbeforeandatresonanceforfivetimesspaced 2 apparent as broad-band features in the corresponding power bytimeinterval2π/Ω,startingwiththeinitialstate(redcurve). We spectrumshowninFig.5. use c0 = J and panels a) and b) correspond to c2 = 0.5J and c = 0.65J, respectively. The soliton reforms close to its initial Fourier analysis of collective as well as local coordinates 2 stateatresonancewhenc =0.65J. showsthattheresonancestatecorrespondstomatchingofnot 2 onlythedominantfrequenciesω andΩ,butalsosomeofthe otherlessprominentfrequencies(notvisibleinthelinearplot) asillustratedinthelog-linearplotonthemiddlerowofFig.5. Infact,atresonance,thedominantortheprimarypeakisac- companiedbysecondarysatellitepeaks,equallyspacedonthe statewherewavefunctionsofallthecomponentsofthespinor eithersideoftheprimarypeak. condensateatallL-sitesoftheringlatticeoscillateinunison Figure6furtherillustratesthatatresonanceallsitesoscil- and the dynamics is well characterized one frequency. The late in phase with same frequency. The spatial profile of the factthatthesolitonprofilereemergesperiodicallyprovidesa solitonreemergesperiodicallywithoutanysignificantchange uniquedemonstrationofquantumcoherenceandanovel-type fromtheinitialprofile.Thus,theresonancestateinanordered ofinternalspatio-temporalJosephsoneffect. 6 VI. FERROMAGNETICCONDENSATE We now briefly describe the dynamics of a ferromag- netic spinor condensate with negative c . For a small spin- 2 changing interaction, the dynamics is similar to that of an anti-ferromagneticspinor. Namely,thespatially-averagedbe- haviorispendulum-likewithdominantfrequencyω,whilethe local population oscillates with frequency Ω. An example is shown in Fig. 7. The local density for each spin component oscillateswithbothfrequencies. Aresonancestatecanagain be achieved by increasing |c | but, for c = J, now occurs 2 0 whenω/Ω=3. Incontrasttotheanti-ferromagneticcase,however,theres- onant transition is accompanied by unbounded dynamics or phasewindingwherethephaseofthecondensatebecomesun- boundedasshowninFig.8. Thisbehaviormanifestsitselfas azero-frequencymodeinapowerspectrum. Inotherwords, chaotic dynamics with its broad-band spectrum is accompa- niedbyatransitionfromanoscillatorytorotationalmodefor thecollectivedegreesoffreedom. FIG.7: (coloronline)Timeevolutionofspatially-averagedpopula- VII. DISCUSSION tionZ (red)andspin-averagedpopulationσ (blue)foraferro- n=1 magnetic spinor condensate with negative c . Panel a), b), and c) 2 In summary, numerical explorations of mean-field equa- show traces for c = −0.075J, −0.09J, and −0.095J, respec- 2 tions of spinor condensate on a ring lattice with a small tively,correspondingtocasesbefore,at,andbeyondresonance. We number of sites reveals strikingly correlated dynamics of the usec =J andtimeisinunitsof(cid:126)/J. 0 many-bodysystem. Eventhoughthecondensateisseparated intoL-sites,solitondynamicsatallsitescanbecharacterized by just two frequencies. With quasiperiodic dynamics at lo- cal sites for individual spin components, spatially averaged behavior for each spin component as well as spin-averaged dynamics at each sites is found to be periodic. The fact that thetimeseriesdescribinglocaldynamicsischaracterizedby twofrequenciesandthesetwofrequenciesuntangleinthecol- lectivedegreesoffreedomisrootedincorrelationsamongdif- ferent spin degrees of freedom at various sites of the lattice. However,properunderstandingofthesecorrelationsremains an open challenge. Our study with ring lattices of various sizesshowthattwo-frequencycharacterizationsofthespin-1 condensateonaringlatticeisvalidirrespectiveofthenumber ofsitesonthelattice. Our study provides a new illustration of a quasiperiodic route to chaotic dynamics in a many-body system where the critical point is known to be characterized by a resonant state. Simple models of dynamical systems such as the one- dimensional circle map[32] are paradigms of quasiperiodic route to chaos, where the critical point corresponds to pa- rameters where the two frequencies are mode-locked. The quasiperiodic route to chaos is a well-established scenario in dynamical systems exhibiting a transition from regular to chaoticdynamics[32].However,thefactthatthecriticalpoint FIG.8: Phaseportraitsorparametricplotsofthetime-evolutionof describes periodic dynamics is a novelty in many-body sys- the spinor population Z and phase γ for a ferromagnetic spinor at tems rooted in the coherence associated with spinor conden- c2 =−0.075J,panela),andc2 =−0.095J,panelb). Thesystem sate. Inthiscase,thecriticalpointisahighly-orderedmany- isatresonanceinpanelb).Thedynamicsinpanelb)isaccompanied body state exhibiting a new type of spatial-temporal coher- byunboundedmotionofthespinorphase.Weusec =J. 0 ence. At the critical point where the two dominant frequen- cies are in resonance, the ring lattice with L-sites oscillates 7 inunisonwithasinglecharacteristicfrequency. Thisinternal temporalcoherence. Josephsoneffectwhereanunscathedsolitonprofilereemerges ThisresearchissupportedbyOfficeofNavalResearch,the periodically provides a novel illustration of both spatial and CONACYT-Me´xicoandtheUSArmyResearchOffice. [1] T.Kuwamoto, K.Araki, T.Eno, andT.Hirano, Phys.Rev.A here. 69,063604(2004). [17] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, [2] M.-S. Chang, C. D. Hamley, J. A. Sauer, K. M. Fortier, A.Sanpera,G.V.Shlyapnikov,andM.Lewenstein,Phys.Rev. W. Zhang, L. You, and M. S. Chapman, Phys. Rev. Lett. 92, Lett.83,5198(1999). 140403(2004). [18] J.Denschlag,J.E.Simsarian,D.L.Feder,C.W.Clark,L.A. [3] H.Schmaljohann, M.Erhard, J.Kronja¨ger, M.Kottke, S.van Collins, J.Cubizolles, L.Deng, E.W.Hagley, K.Helmerson, Staa, L. Cacciapuoti, J. J. Arlt, K. Bongs, and K. Sengstock, W.P.Reinhardt,etal.,Science287,97(2000). Phys.Rev.Lett.92,040402(2004). [19] R.V.Mishmash,I.Danshita,C.W.Clark,andL.D.Carr,Phys. [4] J.Guzman,G.-B.Jo,A.N.Wenz,K.W.Murch,C.K.Thomas, Rev.A80,053612(2009). andD.M.Stamper-Kurn,Phys.Rev.A84,063625(2011). [20] M. Wadati and N. Tsuchida, J. Phys. Soc. Jpn. 75, 014301 [5] A.T.Black, E.Gomez, L.D.Turner, S.Jung, andP.D.Lett, (2006). Phys.Rev.Lett.99,070403(2007). [21] J. Ieda, T. Miyakawa, and M. Wadati, Laser Physics 16, 678 [6] Y.Liu,S.Jung,S.E.Maxwell,L.D.Turner,E.Tiesinga,and (2006). P.D.Lett,Phys.Rev.Lett.102,125301(2009). [22] I.I.Satija,R.Balakrishnan,P.Naudus,J.Heward,M.Edwards, [7] B. Pasquiou, E. Mare´chal, G. Bismut, P. Pedri, L. Vernac, andC.W.Clark,Phys.Rev.A79,033616(2009). O. Gorceix, and B. Laburthe-Tolra, Phys. Rev. Lett. 106, [23] A.Smerzi,S.Fantoni,S.Giovanazzi,andS.R.Shenoy,Phys. 255303(2011). Rev.Lett.79,4950(1997). [8] C.J.Myatt,E.A.Burt,R.W.Ghrist,E.A.Cornell,andC.E. [24] M.Albiez,R.Gati,J.Folling,S.Hunsmann,M.Cristiani,and Wieman,Phys.Rev.Lett.78,586(1997). M.K.Oberthaler,Phys.Rev.Lett.95,010402(2005). [9] H.Pu,C.K.Law,S.Raghavan,J.H.Eberly,andN.P.Bigelow, [25] K.W.Mahmud,H.Perry,andW.P.Reinhardt,Phys.Rev.A71, Phys.Rev.A60,14631470(1999). 023615(2005). [10] W. Zhang, D. L. Zhou, M.-S. Chang, M. S. Chapman, and [26] C. L. Pando L. and E. J. Doedel, Phys. Rev. E 69, 036603 L.You,Phys.Rev.A72,013602(2005). (2004). [11] L.SantosandT.Pfau,Phys.Rev.Lett.96,190404(2006). [27] P.Buonsante,P.G.Kevrekidis,V.Penna,andA.Vezzani,Phys. [12] R. Barnett, J. D. Sau, and S. Das Sarma, Phys. Rev. A 82, Rev.E75,016212(2007). 031602(2010). [28] C.L.PandoL.andE.Doedel,PhysicaD238,687(2009). [13] E.YukawaandM.Ueda,Phys.Rev.A86,063614(2012). [29] T. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, [14] R. Barnett, A. Turner, and E. Demler, Phys. Rev. Lett. 97, A. Trombettoni, and M. K. Oberthaler, Phys. Rev. Lett. 94, 180412(2006). 020403(2005). [15] A.Widera,F.Gerbier,S.Fo¨lling,T.Gericke,O.Mandel,and [30] O.E.Alon,A.I.Streltsov,andL.S.Cederbaum,Phys.Lett.A I.Bloch,Phys.Rev.Lett.95,190405(2005). 362,453(2007). [16] A soliton is a solitary wave with a special collision property, [31] C.PandoL.andE.J.Doedel,Phys.Rev.E71,056201(2005). viz.,itretainsitsidentityevenaftercollisionwithanothersoli- [32] E. Ott, Chaos in Dynamical Systems (Cambridge University tary wave. Following a common practice in physics lierature, Press,1993),1sted. wewillrefertononlinearlocalizedsolitarywavesassolitions

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.