Springer Series in Materials Science 273 Dmitry G. Eskin Jiawei Mi Editors Solidifi cation Processing of Metallic Alloys Under External Fields Springer Series in Materials Science Volume 273 SeriesEditors RobertHull,Troy,USA ChennupatiJagadish,Canberra,Australia YoshiyukiKawazoe,Sendai,Japan RichardM.Osgood,NewYork,USA JürgenParisi,Oldenburg,Germany UdoW.Pohl,Berlin,Germany Tae-YeonSeong,Seoul,RepublicofKorea(SouthKorea) Shin-ichiUchida,Tsukuba,Japan ZhimingM.Wang,Chengdu,China JamieKruzic,Sidney,Australia TheSpringerSeriesinMaterialsSciencecoversthecompletespectrumofmaterials research and technology, including fundamental principles, physical properties, materials theory and design. Recognizing the increasing importance of materials scienceinfuturedevicetechnologies,thebooktitlesinthisseriesreflectthestate-of- the-artinunderstandingandcontrollingthestructureandpropertiesofallimportant classesofmaterials. Moreinformationaboutthisseriesathttp://www.springer.com/series/856 (cid:129) Dmitry G. Eskin Jiawei Mi Editors fi Solidi cation Processing of Metallic Alloys Under External Fields Editors DmitryG.Eskin JiaweiMi BrunelCentreforAdvanced SchoolofEngineering SolidificationTechnology andComputerScience BrunelUniversityLondon UniversityofHull Uxbridge,Middlesex,UK Hull,UK ISSN0933-033X ISSN2196-2812 (electronic) SpringerSeriesinMaterialsScience ISBN978-3-319-94841-6 ISBN978-3-319-94842-3 (eBook) https://doi.org/10.1007/978-3-319-94842-3 LibraryofCongressControlNumber:2018952472 ©SpringerNatureSwitzerlandAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsorthe editorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrors oromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaims inpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents 1 BasicsofSolidificationProcessingofMetallicAlloys. . . . . . . . . . . . . 1 DmitryG.Eskin 2 InSituStudiesoftheSolidificationDynamicsofMetalAlloys. . . . . . 19 JiaweiMi 3 MagnetohydrodynamicsProcessingandModeling. . . . . . . . . . . . . . 75 KoulisA.Pericleous,ValdisBojarevics,andGeorgiS.Djambazov 4 ElectromagneticStirringandLow-FrequencyElectromagnetic Vibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 JianzhongCui,HaitaoZhang,LeiLi,YuboZuo,andHiromiNagaumi 5 High-FrequencyVibrationandUltrasonicProcessing. . . . . . . . . . . . 153 DmitryG.EskinandIakovosTzanakis 6 HighMagneticFieldProcessingofMetalAlloys. . . . . . . . . . . . . . . . 195 YvesFautrelle,JiangWang,DafanDu,XiLi,andZhongmingRen 7 PulseExternalFieldsProcessingofMetalAlloys. . . .. . . . . .. . . . .. 243 JiaweiMi 8 ThermalMeltProcessingofMetallicAlloys. . . . . . . . . . . . . . . . . . . 277 UlfDahlborg,MoniqueCalvo-Dahlborg,DmitryG.Eskin, andPiotrS.Popel Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 v Contributors ValdisBojarevics CentreforNumericalModellingandProcessAnalysis,Univer- sityofGreenwich,London,UK Monique Calvo-Dahlborg UniversitédeRouenNormandie, GroupedePhysique desMateriaux,Saint-Etienne-du-RouvrayCedex,France Jianzhong Cui Key Lab of Electromagnetic Processing of Materials, Ministry ofEducation,NortheasternUniversity,Shenyang,Liaoning,China Ulf Dahlborg Université de Rouen Normandie, Groupe de Physique des Materiaux,Saint-Etienne-du-RouvrayCedex,France Georgi S. Djambazov Centre for Numerical Modelling and Process Analysis, UniversityofGreenwich,London,UK DafanDu ShanghaiKeyLaboratoryofModernMetallurgy&MaterialProcessing, Department of Material Science and Engineering, Shanghai University, Shanghai, People’sRepublicofChina Dmitry G. Eskin Brunel Centre for Advanced Solidification Technology, Brunel UniversityLondon,Uxbridge,Middlesex,UK Yves Fautrelle Univ. Grenoble Alpes, CNRS, Grenoble INP*, SIMaP, Grenoble, France LeiLi KeyLabofElectromagneticProcessingofMaterials,MinistryofEducation, NortheasternUniversity,Shenyang,Liaoning,China Xi Li Shanghai Key Laboratory of Modern Metallurgy & Material Processing, Department of Material Science and Engineering, Shanghai University, Shanghai, People’sRepublicofChina vii viii Contributors JiaweiMi SchoolofEngineeringandComputerScience,UniversityofHull,Hull, UK HiromiNagaumi SchoolofIronandSteel,SoochowUniversity,Suzhou,Jiangsu, China Koulis A. Pericleous Centre for Numerical Modelling and Process Analysis, UniversityofGreenwich,London,UK Piotr S. Popel Ural State Pedagogical University, Department of Physics and MathematicalModelling,Ekaterinburg,Russia Zhongming Ren Shanghai Key Laboratory of Modern Metallurgy & Material Processing,DepartmentofMaterialScienceandEngineering,ShanghaiUniversity, Shanghai,People’sRepublicofChina IakovosTzanakis OxfordBrookesUniversity,WheatleyCampus,Oxford,UK Jiang Wang Shanghai Key Laboratory of Modern Metallurgy & Material Processing,DepartmentofMaterialScienceandEngineering,ShanghaiUniversity, Shanghai,People’sRepublicofChina Haitao Zhang Key Lab of Electromagnetic Processing of Materials, Ministry of Education,NortheasternUniversity,Shenyang,Liaoning,China Yubo Zuo Key Lab of Electromagnetic Processing of Materials, Ministry of Education,NortheasternUniversity,Shenyang,Liaoning,China Chapter 1 fi Basics of Solidi cation Processing of Metallic Alloys DmitryG.Eskin 1.1 Structure Formation Upon Casting Themicro-andmacrostructureofcastmetalisveryimportantfromthepointofview of casting and downstream processing performance, as it determines the quality of thecastingandmechanicalpropertiesofas-castanddeformedproducts.Finegrain structuremeansuniformdistributionofgrainsizeinthebillet(ingot)cross-section, elimination ofcolumnarand feathery grains, lesser macrosegregation,uniform and improvedmechanicalpropertiesinthesemisolidandsolidstates,decreasedpropen- sity to hot and cold cracks, etc. Intermetallics and other excess inclusions (oxides, carbides,nitrides,borides,etc.)shouldalsobefineandevenlydistributedinthecast matrix.Theseinclusionsareusuallyintrinsictothemetallicmaterialandresultfrom itscompositionorcontamination.Sometimes,however,theforeigninclusionsmay be intentionally added to form a composite material or for the purpose of grain refining(actingassubstrates). Inthissection,wewillconsiderthemainmechanismsofstructureformationand outlinethemainmeanstoaffectorcontrolthisstructure. Structure formationonthemicroscopicleveldependsontwobasicphenomena: nucleationandgrowth. Thefundamentalsofnucleationarediscussedindetailelsewhere[1,2].Here,we onlyconsidersomemostimportantparametersofheterogeneousnucleation,asthis typeofnucleationismostrelevanttorealcastingpractice. The solidification sites (or substrates, or heterogeneous nuclei) that ease the nucleation are specially introduced or naturally form in the melt. Heterogeneous D.G.Eskin(*) BrunelCentreforAdvancedSolidificationTechnology,BrunelUniversityLondon, Uxbridge,Middlesex,UK e-mail:[email protected] ©SpringerNatureSwitzerlandAG2018 1 D.G.Eskin,J.Mi(eds.),SolidificationProcessingofMetallicAlloys UnderExternalFields,SpringerSeriesinMaterialsScience273, https://doi.org/10.1007/978-3-319-94842-3_1 2 D.G.Eskin nucleation is energetically advantageous over homogeneous nucleation as the undercooling (energy stimulus) required for the formation of the new solid phase from the melt is lower by the level of energy required to form the new interface. Hence, heterogeneous nucleation is stimulated by the decrease of the interfacial energythatisrequiredtoformthenewsolidphase.Thesubstratethatcanefficiently dothejobshouldtherefore:(1)bewettablebytheliquidphase(active);(2)provide crystallographicplanesthatresemblethecrystallographicplanesofthesolidphase; (3)providechemistryrequiredfortheformationofthenewphase;and(4)beofthe sizethatmatchestheactualundercoolingachieveduponsolidification.Forexample, the actual undercooling required for activation ofall potent heterogeneous solidifi- cationsitesinliquidaluminumislessthan2(cid:1)C[2].Thetype,amount,andsizeofthe substratesdeterminetheefficiencyofheterogeneousnucleation.First,particleshave to be sufficiently large to become active substrates at a given undercooling. In the caseofgoodwettingandcrystallographicmatch,therequiredundercoolingisvery small.Thenucleationratedependssolelyonthetemperature(notonthetimesince nucleation occursinstantaneously), and this type of nucleation is sometimes called “athermal,”thoughthistermismisleading.Then,growthoccursuntilthenewphase reaches the size of the substrate and subsequent growth will require further undercooling. The nature of the substrate (interfacial energy) determines how efficient the nucleation is, while the size of the substrate determines the ease of subsequentgrowth[3]. The undercooling ΔT for the so-called free growth is related to the size of the substratedas 4σ ΔT ¼ sl , ð1:1Þ ΔS d V whereσ isthesolid–liquidinterfacialenergyandΔS isthevolumetricentropyof sl V fusion. In reality, there is a size distribution of potential solidification sites that becomeactiveinthemeltataspecificdegreeofundercooling.Forthesubstratesize of 1 μm, the required undercooling for free growth in liquid aluminum is about 0.5(cid:1)C,whereastherealmeasuredundercoolinginaluminumalloysisabout0.2(cid:1)C whichcorrespondstothesizerange3–5μm[3]. Thegrowthofthenucleatedgrainisdeterminedtoalargeextentbythecompo- sitionofthemeltaheadofthesolid–liquidinterface.Despitethecommonnotionthat the diffusion in liquid occurs almost instantaneously, there is always an accumula- tionofsoluteelementsatthesolid–liquidinterfaceascomparedtothebulkcompo- sition. This accumulation causes on the one hand the phenomenon called constitutionalundercooling,andontheotherhandpreventsthegrowthofthesolid phase, as thegrowth can only occur when thecompositions of thesolidand liquid phases at the solid–liquid interface are in equilibrium, according to the phase diagram. The degree of solute accumulation depends on the alloy composition (partitioning coefficients of alloying elements) and on the solidification conditions (diffusion and convection), which explains why the final structure formed in a casting depends on both the alloy composition and the casting conditions