Solar-to-ChemicalConversion Solar-to-Chemical Conversion Photocatalytic and Photoelectrochemical Processes Edited by Hongqi Sun Editor AllbookspublishedbyWiley-VCHarecarefully produced.Nevertheless,authors,editors,and Prof.HongqiSun publisherdonotwarranttheinformationcontained EdithCowanUniversity inthesebooks,includingthisbook,tobefreeof SchoolofEngineering errors.Readersareadvisedtokeepinmindthat 270JoondalupDrive statements,data,illustrations,proceduraldetailsor 6027Joondalup otheritemsmayinadvertentlybeinaccurate. Australia LibraryofCongressCardNo.: appliedfor BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailablefromthe BritishLibrary. Bibliographicinformationpublishedbythe DeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableonthe Internetat<http://dnb.d-nb.de>. ©2021WILEY-VCHGmbH,Boschstr.12,69469 Weinheim,Germany Allrightsreserved(includingthoseoftranslation intootherlanguages).Nopartofthisbookmaybe reproducedinanyform–byphotoprinting, microfilm,oranyothermeans–nortransmittedor translatedintoamachinelanguagewithoutwritten permissionfromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobeconsidered unprotectedbylaw. PrintISBN:978-3-527-34718-6 ePDFISBN:978-3-527-82509-7 ePubISBN:978-3-527-82508-0 oBookISBN:978-3-527-82507-3 Typesetting SPiGlobal,Chennai,India Printedonacid-freepaper 10 9 8 7 6 5 4 3 2 1 v Contents 1 Introduction:ADelicateCollectionofAdvancesin Solar-to-ChemicalConversions 1 HongqiSun 2 ArtificialPhotosynthesisandSolarFuels 7 JunKe 2.1 IntroductionofSolarFuels 7 2.2 Photosynthesis 8 2.2.1 NaturalPhotosynthesis 8 2.2.2 ArtificialPhotosynthesis 9 2.3 PrinciplesofPhotocatalysis 10 2.4 ProductsofArtificialPhotosynthesis 13 2.4.1 Hydrocarbons 13 2.4.1.1 Methane(CH ) 14 4 2.4.1.2 Methanol(CH OH) 18 3 2.4.1.3 Formaldehyde(HCHO) 20 2.4.1.4 FormicAcid(HCOOH) 22 2.4.1.5 C2Hydrocarbons 25 2.4.1.6 OtherHydrocarbons 26 2.4.2 CarbonMonoxide(CO) 27 2.4.3 Dioxygen(O ) 31 2 2.5 Perspective 34 Acknowledgments 36 References 36 3 NaturalandArtificialPhotosynthesis 41 DimitriosA.Pantazis 3.1 Introduction 41 3.2 OverviewofNaturalPhotosynthesis 43 3.3 LightHarvestingandExcitationEnergyTransfer 44 3.4 ChargeSeparationandElectronTransfer 48 3.5 WaterOxidation 53 vi Contents 3.6 CarbonFixation 61 3.7 Conclusions 63 References 63 4 PhotocatalyticHydrogenEvolution 77 AmanjKheradmand,YuxiangZhu,ShengshenGuandYijiaoJiang 4.1 Introduction 77 4.2 FundamentalsofPhotocatalyticH Evolution 79 2 4.3 PhotocatalyticH EvolutionUnderUVLight 82 2 4.3.1 TitaniumDioxide(TiO )-BasedSemiconductors 82 2 4.3.2 OtherTypesofUV-ResponsivePhotocatalysts 87 4.4 PhotocatalyticH EvolutionUnderVisibleLight 88 2 4.4.1 CarbonNitride(C N )-BasedSemiconductor 88 3 4 4.4.2 OtherTypesofVisible-Light-ResponsivePhotocatalysts 94 4.5 PhotocatalyticH EvolutionUnderNear-InfraredLight 95 2 4.6 RolesofSacrificialReagentsandReactionPathways 99 4.7 SummaryandOutlook 102 References 103 5 PhotoelectrochemicalHydrogenEvolution 107 ZhiliangWangandLianzhouWang 5.1 BackgroundofPhotoelectrocatalyticWaterSplitting 107 5.2 MechanismofChargeSeparationandTransfer 109 5.3 StrategyforImprovingChargeTransfer 112 5.3.1 ImprovingtheChargeTransferinContinuousFilm 113 5.3.2 ImprovingtheChargeTransferinParticulatePhotoelectrodes 114 5.4 StrategyforImprovingElectron–HoleSeparation 116 5.4.1 HeterojunctionFormation 116 5.4.2 CrystalFacetControl 117 5.4.3 SurfacePassivation 118 5.5 SurfaceCocatalystDesign 120 5.6 UnbiasedPECWaterSplitting 122 5.7 ConclusionandPerspective 123 References 124 6 PhotocatalyticOxygenEvolution 129 HuayangZhang,WenjieTianandShaobinWang 6.1 Introduction 129 6.1.1 ConfigurationofPhotocatalyticWaterOxidation 129 6.1.2 Mechanism,Thermodynamics,andKineticsTowardEfficient OxygenEvolution 130 6.2 HomogeneousPhotocatalyticWaterOxidation 131 6.2.1 MolecularComplexesandPolyoxometalates 131 6.2.2 MechanismDetailsandtheStability 135 6.3 HeterogeneousPhotocatalyticWaterOxidation 137 Contents vii 6.3.1 UniquePropertiesofNanosizedSemiconductorSystem 138 6.3.1.1 QuantumConfinement 138 6.3.1.2 LocalizedSurfacePlasmonResonance(LSPR) 141 6.3.1.3 SurfaceAreaandExposedFacet-EnhancedChargeTransfer 142 6.3.2 Zero-DimensionalSemiconductorMaterialsforPhotocatalytic WaterOxidation 143 6.3.2.1 0DMetalComplexesandNanoclusters 143 6.3.2.2 MetalOxideQuantumDotsandNanocrystals 144 6.3.3 One-DimensionalSemiconductorMaterialsforPhotocatalytic WaterOxidation 147 6.3.4 Two-DimensionalSemiconductorMaterialsforPhotocatalytic WaterOxidation 149 6.3.4.1 2DMetalOxideNanosheetsforPhotocatalyticWaterOxidation 149 6.3.4.2 LayeredDoubleHydroxide(LDH)NanosheetsforPhotocatalytic WaterOxidation 150 6.3.4.3 Metal-BasedOxyhalideSemiconductorsforPhotocatalyticWater Oxidation 152 6.3.5 LDSemiconductor-BasedHybridsforPhotocatalyticOxygen Evolution 153 6.3.5.1 1D-Based(0D/1Dand1D/1D)SemiconductorHybridsforEnhanced PhotocatalyticWaterOxidation 154 6.3.5.2 2D-Based(2D/2D)SemiconductorHybridsforEnhancedPhotocatalytic WaterOxidation 155 6.3.5.3 Metal-Free-BasedSemiconductorsforWaterOxidation 156 6.4 CatalyticActiveSite–CatalysisCorrelationinLDSemiconductors 156 6.5 ConclusionsandPerspectives 157 References 158 7 PhotoelectrochemicalOxygenEvolution 163 FumiakiAmano 7.1 Introduction 163 7.2 Honda–FujishimaEffect 164 7.3 FactorsAffectingthePhotoanodicCurrent 165 7.4 ElectrodePotentialsatDifferentpH 168 7.5 EvaluationofPECPerformance 170 7.6 FlatBandPotentialandPhotocurrentOnsetPotential 172 7.7 SelectionofMaterials 173 7.8 EnhancementofPECProperties 175 7.8.1 NanostructuringandMorphologyControl 176 7.8.2 DonorDoping 178 7.8.3 ModificationofPhotoanodeSurface 180 7.8.4 Electron-ConductiveMaterials 181 7.9 PECDeviceforWaterSplitting 182 7.10 ConclusionsandOutlook 184 References 185 viii Contents 8 PhotocatalyticandPhotoelectrochemicalOverallWater Splitting 189 NurAqliliRianaCheMohamad,FilipeMarquesMotaandDongHaKim 8.1 Introduction 189 8.2 PhotocatalyticOverallWaterSplitting 190 8.2.1 PrinciplesandMechanism 191 8.2.2 KeyPerformanceIndicators 193 8.2.3 MaterialsforOne-StepPhotoexcitationTowardOverallWater Splitting 194 8.2.3.1 Semiconductors 194 8.2.3.2 IncorporationofCocatalysts 204 8.2.3.3 PlasmonicNanostructures 206 8.2.4 HybridSystemsforTwo-StepPhotoexcitationTowardOverall WaterSplitting 207 8.2.4.1 Z-Schemes 208 8.3 PhotoelectrochemicalOverallWaterSplitting 213 8.3.1 PrinciplesandMechanism 215 8.3.2 KeyPerformanceIndicators 215 8.3.3 MaterialsDesign 216 8.3.3.1 PhotoanodeMaterials 216 8.3.3.2 PhotocathodeMaterials 219 8.3.4 UnassistedPhotoelectrochemicalOverallWaterSplitting 221 8.3.4.1 Photoanode–PhotocathodeTandemCells 221 8.3.4.2 Photovoltaic–PhotoelectrodeDevices 225 8.4 ConcludingRemarksandOutlook 230 Acknowledgments 231 References 231 9 PhotocatalyticCO Reduction 243 2 MaochangLiu,GuijunChen,BoyaMin,JinwenShi,YubinChenand QibinLiu 9.1 Introduction 243 9.2 PrincipleofPhotocatalyticReductionofCO 245 2 9.3 EnergyandMassTransfersinPhotocatalyticReductionofCO 247 2 9.3.1 EnergyFlowfromtheConcentratortoReactor 249 9.3.2 EnergyFlowontheSurfaceofthePhotocatalyst 252 9.3.3 MassFlowinCO PhotocatalyticReduction 259 2 9.3.4 ProductSelectivityinCO PhotocatalyticReaction 262 2 9.4 Conclusions 265 Acknowledgments 266 References 266 10 PhotoelectrochemicalCO Reduction 269 2 ZhongxueYang,HuiNing,QingshanZhao,HongqiSunandMingboWu 10.1 Introduction 269 10.1.1 IntroductionofPhotoelectrocatalyticReductionofCO 269 2 Contents ix 10.1.2 PrinciplesofPhotoelectrocatalyticReductionofCO 270 2 10.1.3 SystemConfigurationsofPhotoelectrocatalyticReduction ofCO 270 2 10.2 PECCO ReductionPrinciples 272 2 10.2.1 ThermodynamicsandKineticsofCO Reduction 272 2 10.2.2 ReactionConditions 273 10.2.2.1 ReactionTemperatureandPressure 273 10.2.2.2 pHValue 274 10.2.2.3 Solvent 274 10.2.2.4 ExternalElectricalBias 274 10.2.3 PerformanceEvaluationofPECCO Reduction 275 2 10.2.3.1 ProductEvolutionRateandCatalyticCurrentDensity 275 10.2.3.2 TurnoverNumberandTurnoverFrequency 275 10.2.3.3 Overpotential 275 10.2.3.4 FaradaicEfficiency 276 10.3 ApplicationofSolar-to-ChemicalEnergyConversioninPECCO 2 Reduction 276 10.3.1 PECCO ReductiononSemiconductors 276 2 10.3.1.1 OxideSemiconductors 277 10.3.1.2 Non-oxideSemiconductors 280 10.3.1.3 ChalcogenideSemiconductors 281 10.3.2 PECCO ReductiononCocatalystSystems 282 2 10.3.2.1 MetalNanoparticles 283 10.3.2.2 MetalComplexes 284 10.3.3 PECCO ReductiononHybridSemiconductors 285 2 10.3.3.1 ConductivePolymers 286 10.3.3.2 EnzymaticBiocatalysts 287 10.3.3.3 OrganicMolecules 287 10.4 OtherConfigurationsforPECCO Reduction 289 2 10.5 ConclusionandOutlook 292 Acknowledgments 295 ConflictofInterest 295 References 295 11 PhotocatalyticandPhotoelectrochemicalNitrogen Fixation 301 LeiShiandHongqiSun 11.1 Introduction 301 11.2 FundamentalPrinciplesandPresentChallenges 303 11.2.1 PrinciplesinN ReductionforNH Production 303 2 3 11.2.2 ChallengesforN ReductiontoNH 305 2 3 11.3 StrategiesforCatalystDesignandFabrication 307 11.3.1 DefectEngineering 307 11.3.1.1 Vacancies 307 11.3.1.2 HeteroatomDoping 313 x Contents 11.3.1.3 Amorphization 314 11.3.2 StructureEngineering 317 11.3.2.1 MorphologyRegulation 317 11.3.2.2 FacetControl 321 11.3.3 InterfaceEngineering 322 11.3.4 HeterojunctionEngineering 324 11.3.5 Co-catalystEngineering 327 11.3.6 BiomimeticEngineering 330 11.4 ConclusionsandOutlook 333 References 334 12 PhotocatalyticProductionofHydrogenPeroxideUsing MOFMaterials 339 XiaolangChen,YasutakaKuwahara,KohsukeMoriandHiromiYamashita 12.1 Introduction 339 12.2 PhotocatalyticH O ProductionThroughSelectiveTwo-Electron 2 2 ReductionofO UtilizingNiO/MIL-125-NH 340 2 2 12.3 Two-PhaseSystemUtilizingLinker-AlkylatedHydrophobic MIL-125-NH forPhotocatalyticH O Production 346 2 2 2 12.4 TiCluster-AlkylatedHydrophobicMIL-125-NH forPhotocatalytic 2 H O ProductioninTwo-PhaseSystem 356 2 2 12.5 ConclusionandOutlooks 362 Reference 362 13 PhotocatalyticandPhotoelectrochemicalReformingof Methane 365 JinqiangZhangandHongqiSun 13.1 Introduction 365 13.2 Photo-MediatedProcesses 367 13.3 DifferencesBetweenPhoto-AssistedCatalysisand Thermocatalysis 369 13.3.1 CatalystInvolved 369 13.3.2 Reactors 370 13.3.3 Mechanism 371 13.3.4 EquationsforQuantumEfficiency 373 13.4 ReactionsofMethaneConversionviaPhoto-AssistedCatalysis 373 13.4.1 MethaneDryReforming 374 13.4.2 MethaneSteamReforming 376 13.4.3 MethaneCoupling 379 13.4.4 MethaneOxidation 381 13.4.5 MethaneDehydroaromatization 382 13.5 ConclusionsandPerspectives 383 Acknowledgment 384 References 384