Astronomy&Astrophysicsmanuscriptno.9077paper (cid:13)c ESO2008 February2,2008 Solar supergranulation revealed by granule tracking MichelRieutord, Nade`geMeunier⋆,ThierryRoudier,SylvainRondi,FrancisBeigbederandLaurentPare`s 8 0 0 Laboratoire d’Astrophysique de Toulouse et Tarbes, UMR 5572, CNRSet Universite´ Paul Sabatier Toulouse 3, 14 avenue E.Belin, 31400 2 Toulouse,France n e-mail:[rieutord,roudier,francis.beigbeder,pares]@ast.obs-mip.fr, [email protected], [email protected] a J February2,2008 9 ABSTRACT ] h Context.SupergranulationisapatternofthevelocityfieldatthesurfaceoftheSun,whichhasbeenknownaboutformorethanfiftyyears, p - however,nosatisfactoryexplanationofitsoriginhasbeenproposed. o Aims.Newobservationalconstraintsarethereforeneededtoguidetheoreticalapproacheswhichhesitatebetweenscenariosthateitherinvoke r alarge-scaleinstabilityofthesurfaceturbulentconvectionoradirectforcingbybuoyancy. t s Methods.Usingthe14-MpixelCALAScameraatthePic-du-Midiobservatory,weobtaineda7.5h-longsequenceofhighresolutionimages a withunprecedented fieldsize. Tracking granules, we have determined thevelocity field at the Sun’s surface in great detail from a scale of [ 2.5Mmupto250Mm. 1 Results.Thekineticenergydensityspectrumshowsthatsupergranulationpeaksat36Mmandspansonscalesrangingbetween20Mmand v 75Mm.Thedecreaseofsupergranularflowsinthesmallscalesisclosetoak−2-powerlaw,steeperthantheequipartitionKolmogorovone.The 9 probabilitydistributionfunctionofthedivergencefieldshowsthesignatureofintermittencyofthesupergranulationandthusitsturbulentnature. 6 3 1 Keywords.Convection–Turbulence–Sun:photosphere . 1 0 8 1. Introduction tletemperaturefluctuations(seeMeunieretal.2007a).Besides 0 : these scenarios, recent observations of Gizonetal. (2003) v SupergranulationwasdiscoveredbyHart(1954)usingDoppler addedsomewavelikepropertiestosupergranulation. i images of the Sun. It appeared as an essentially horizontal X Obviously, the supergranulation theory needs guidance flowfield atatypicalscale of30Mm.Theoriginofthisflow r from every available observational constraint. This letter a field was first thought to be related to the second ionization presentstheresultsoftheobservationsissuedfromtheCALAS of helium, which providessome latentheat at a deptharound project (a CAmera for the LArge scales of the Sun; see 10 Mm, compatible with their typical size (Simon&Weiss Meunieretal. 2005), collecting a sequence of high resolution 1968). This scenario has been much debated because of the widefieldimages,whichhaveallowedustocapturetheevolu- weakness of the effect and the apparent vigour of the super- tionofahundredsupergranulesatthedisccentreduring7.5h. granular flow. Other ways of generating this velocity scale Wecanthusgivenewconstraintsonthedynamicsofthesolar rely on large-scale instabilities of the surface turbulent flow surfaceinthesupergranulationrange.Afterabriefdescription (Rieutordetal.2000),triggeredbythestrongdensitystratifica- ofthedataset(Sect.2),weshowthespectralsideofthesuper- tion.Inthisscenario,kineticenergyofgranules,thesmall-scale granular flow (Sect. 3) as well as the probability distribution convectivecells, isthoughttobepipedtoa largerscale byan functionsofthedivergences(Sect.4);firstconclusionsfollow. AKA-like effect (Gamaetal. 1994). However, other kinds of large-scale instabilities are still possible, like a convectivein- stability triggered by fixed-flux boundary conditionsimposed 2. Observationaltechniquesanddatareduction by the small-scale granular convection (Rincon&Rieutord 2003). In thisapproach,thecoolingresultingfromthe granu- 2.1.Dataset lationdoesnotsuppresstheconvectiveinstabilityofthelarger On13March2007,weobservedtheSunatdisccentreduring scales; because all the heat flux is carried by the small scale, 7.5 h using the Lunette Jean Ro¨sch at Pic du Midi, a 50 cm- none is carried by the largescale instability, which shows lit- refractor.Imagesweretakenatλ=575±5nm,witha14Mpixel Sendoffprintrequeststo:M.Rieutord CMOS-camera (4560×3048 pixels), with 0.115 arcsec/pixel, ⋆ Present address: Laboratoire d’Astrophysique, Observatoire de thus coveringof 524×350arcsec2 (see Fig. 1). 10811 images Grenoble,BP53,38041Grenoblecedex9 wereobtainedwitharegularcadenceofoneevery2.5s.Twoin- 2 Rieutordetal.:Solarsupergranulation 350" 524" Fig.1.Bottomright:theCALASfieldofviewontheSun;thelargerectangleindicatesthesizeoftheimages,thesmallerone showsthefieldwherethevelocitiescouldbecomputed,whilethesmallsquareshowsthefieldofviewoftheSOTinstrumenton theHinodesatellitewhentrackinggranules.Top:thesupergranulationvelocityfieldwiththedivergencecontourssuperimposed (scales shorter than 8 Mm have been filtered out). A time-window of 150 min was used. Bottom left: a zoom on granulation showingtherelativesizesofgranulesandsupergranules. dependentseriesof∼ 1400imageswerethenextracted.They Because of trackingdifficulties, the commonfield of each samplethesamesolarsignalwithaperiodof20sbutarenoised serieswas reducedto ∼400×300arcsec2, thuscoveringa sur- differently by the Earth atmospheric perturbations. The com- faceof290×216Mm2ontheSun(Fig.1). parisonbetweentheoutputsofbothseriesallowsustoevaluate theinfluenceoftheseeingandtesttherobustnessoftheresults withrespecttothisnoise. After recentering, subimages were k − ω filtered (with a threshold of 7 km/s), so as to remove, as much as possible, Earthatmosphericdistortion,whichisthemainsourceofnoise forvelocitymeasurements(Tkaczuketal.2007). Rieutordetal.:Solarsupergranulation 3 Fig.2. Kinetic energy spectra obtained for various time win- Fig.3. Same as in Fig. 2 but for the horizontaldivergence of dows.Theverticaldottedlineindicatesthepositionofthepeak theflow,∂ v +∂ v (solidline),andfortheverticalvorticity, x x y y at 36.4 Mm. The vertical dashed line emphasizes the 10 Mm ∂ v −∂ v (dashedline);thesupergranulationpeakisclearly x y y x scale, usually taken as the upper limit of mesogranular scale. visibleatλ= 36Mminthedivergencespectrumbutabsentin Twopowerlawsareshownoneachsideofthepeak,aswellas thevorticityone.Ak2-powerlawisgivenforcomparison. theoneofsmall-scalenoise. computed the spectral density of kinetic energy E(k) associ- 2.2.Velocityfields ated with the horizontalflowsthat we can measure.Itis such that Horizontal velocity fields have been obtained using the CST granuletrackingalgorithm(Roudieretal.1999;Rieutordetal. 1 ∞ <v2 >= E(k)dk. 2007). As shown in Rieutordetal. (2001), granules’ motions 2 Z 0 trace large-scale velocity fields when the scale is larger than E(k),whichiscomputedinthesamewayasinRieutordetal. 2.5Mm.Hence,wesampledthevelocityfieldwithabinof12 pixels(∼1Mm). (2000),isdisplayedinFig.2fortheflowsdeterminedwithvar- ioustime-windows.Theshorttime-windowsof45mingiveus Thevelocitiesareobtainedbytrackingthegranulesduring 10independentspectra,whichareaveragedtogether,whilethe a giventime window.Thus, we have accessto averageveloc- itycomponents,namelyv (i, j)andv (i, j),wheretheoverline wholeseries450mintime-windowgivesusonlyonespectrum. x y Note thatno spatial filteringwas appliedto the velocityfield. referstothetimeaveragingimposedbythetimewindow.This We see that E(k) ∝ k atsmallscale, whichis thesignatureof averagingimprovesthesignal-to-noiseratio,butnaturallyde- decorrelatedrandomnoise. creasesthetimeresolution.Typically,theshortesttimewindow These spectra clearly show the emergence of the spec- thatcanbeusedis30min. Althoughthefieldislarge,projectioneffectsofthespheri- tral range of the supergranulation as the length of the time- windowincreases.Letuspointouttheremarkablestabilityof calSunarestillofweakinfluence.Atmost,inthefieldcorners, thewavenumberofthespectralpeakwhenthetimeaveragingis thecorrectiononthevelocitywouldbelessthan4%,whichis changed.Thisdemonstratesthatsupergranulationisagenuine muchlessthanthenoise. velocity field at the Sun’s surface. It is not the consequence WeshowinFig.1anexampleofthesevelocityfields.The oftime-averagingthesmall,fastturning-oversmallscales.Of small-scalecomponentsoftheflow(withscalesbelow8Mm) course,if theaveragingintervalislongenough(i.e.oftheor- werefilteredoutusingDaubechieswavelets(seeRieutordetal. deroftheturn-overtimescaleofsupergranulation),thespectral 2007). Figure 1 shows that robust steady supergranules live peakwill moveto everlargerscales beforedisappearing.The amonga wide varietyofflow structuresillustratingtheturbu- maximumofthespectraldensityisatawavelengthof36Mm. lentnatureofthesescalesandtheirwidespectralrange. The FWHM of the peakindicatesthatsupergranulationoccu- 3. Thekineticenergyspectrum piestherangeofscalesof[20,75]Mm. A convenient way to view the dynamics of a flow is to ex- Thepresentmeanvalueofthediameterofsupergranulesis amine the spectral content of the velocity field. We therefore slightlyhigherthanthepreviousdeterminations.Forinstance, 4 Rieutordetal.:Solarsupergranulation Meunieretal.(2007b)findameandiameterof31.4Mmwitha techniquebasedonthesegmentationofthedivergencefieldde- rivedfromvelocitiesissuedfromalocalcorrelationtechnique applied to SOHO/MDI white light images. DelMoroetal. (2004) also use a divergence field but derived from time- distancehelioseismology;theyfindameansizeof27Mm,sig- nificantlysmallerthanours. Bothoftheseresultsarebasedonthedivergencefieldand itssegmentation.Thehistogramofsizesisthenusedtodeter- mine the mean diameter of a supergranule. Such a technique necessarily underestimates the actual scale of supergranular flowsasonlypartofit (thepositivedivergences)is used.Our spectra,whichdirectlyresultfromthemeasuredhorizontalve- locities, incorporate all the components of the flow at super- granulation scale, and thus better reflect the dynamical state. NotethatablinduseofthedivergencespectruminFig.3would pointtoascaleof∼23Mm. In Fig. 2 we also indicate the best-fit power laws, which mimic the sides of the supergranulation peak. We find that E(k) ∼ k3 on the large-scale side and E(k) ∼ k−2 on the small-scaleone.Thislatterpowerlawissteeperthanthe−5/3 Kolmogorovoneandmaybeaneffectofdensitystratification. Fig.4. Histograms of the divergences; solid and dashed lines To complete the spectral picture, we also show, in Fig. 3, havethesamesolarsignalbutadifferentnoisefromtheEarth thespectraofthehorizontaldivergenceofthevelocityfieldand atmosphere. Scales below 8 Mm have been filtered out. A theverticalvorticity.Beyondthek2-dependenceofthespectral Gaussiandistributionwiththesamestandarddeviationisover- densities, which is a consequence of the derivative of uncor- plottedforcomparison. relatednoise,we cansee thatthedivergencespectrumclearly shows the supergranulation peak, while the vertical vorticity shows no signal in this range. The vorticity does show some compassesallthescalesrangingfrom20to75Mm,asshown weaksignalhowever,butinthemesogranulationrange,below bytheFWHMofthepeak.Exceptforitsamplitude,thispeakis 10Mm. notsensitivetothetimewindowusedtomeasurethegranules’ 4. Probabilitydensityfunctions motions.Thesignalalsoclearlyappearsinthedivergencespec- traldensity,butnotinthevorticity;itislikelythatvorticityat Another way to look at the velocity fields is to consider the supergranulationscale nearthe Sun’sequatoris muchweaker probability density functions. Such distributions have been anddoesnotemergefromthenoise. computedforthevelocityfield,itsdivergenceanditscurl.We show in Fig. 4 the distribution of the divergence field when Finally,ourdataconfirmthefactthatsupergranulationhas scalesshorterthan8Mmhavebeenfilteredoutofthevelocity a noticeable degree of intermittency, clearly appearing in the field.Thisdistributionclearlyshowsapositivewinglargerthan distributionofpositivedivergencevalues. theGaussianone,associatedwithaskewnessof0.38.Wealso As far as the origin of supergranulationis concerned, the notethatthenoiseoftheEarthatmosphereisweakenough,and scenarios mentioned in the introduction can be tested with doesnotperturbtheresult.Thistrendtoanexponentialdistri- thesedata,eitherintherealspacewithvelocityfieldslikethe bution is a signature of intermittency(e.g. Frisch 1995). This oneshowninFig.1orinthespectralspacewiththegivenspec- result, with the same asymmetry between positive and nega- tra. tive values, was also observedby Meunieretal. (2007b) with Further work on the observational side will focus on the a completely different set of data and method. Thus, the in- determinationofthethirdcomponentofthevelocityfield,the termittencyofsupergranulationseemstobearobustproperty. increaseofthefieldsizeandthereductionofthenoise,soasto Exponentialwingsareusuallylessvisibleonthevelocity(e.g. further constrain the dynamicsof scales from the granulation Vincent&Meneguzzi1991),and,indeed,arebarelynoticeable onetothe100Mmone. inourdata.Asfarasvorticityisconcerned,thenoiseisunfor- Acknowledgements. The CALAS project has been financially sup- tunatelytoohightogiveconvincingmeasurements. portedbytheFrenchministeryofeducation(ACI),bytheProgramme 5. Conclusions NationalSoleil-TerreofCNRSandtheObservatoireMidi-Pyre´ne´es. Wearealsoverygratefultothe“Grouped’IntrumentationdesGrands For the first time, it has been possible to follow the motion Te´lescopes(GIGT)”ofthelaboratory,fortheirtechnicalhelpatvari- of well-resolved granules in a large field of view. The spec- ousphaseoftheproject,especiallytoSe´bastienBaratchartandElodie tral peak of supergranulation has thus been determined in a Bourrec.WealsowishtothankRene´ Dorignacforhisefficientsup- very direct manner. According to our data, supergranulation portinmechanicalrealizationsandPhilippeSabyforhishelpinsort- has the most energetic motions at a scale of 36 Mm and en- ingouttherightcomputinghardware.SRwishestothanktheCNRS Rieutordetal.:Solarsupergranulation 5 for itssupport during hisPhD thesiswhichmuch contributed tothe project. References DelMoro,D.,Berilli,F.,Duvall,T.,&Kosovichev,A.G.2004, SolarPhys.,221,23 Frisch,U.1995,Turbulence:thelegacyofA.N.Kolmogorov (CambridgeUniversityPress) Gama, S., Vergassola,M., & Frisch, U. 1994,J. Fluid Mech., 260,95 Gizon,L.,Duvall,T.L.,&Schou,J.2003,Nature,421,43 Hart,A.B.1954,MNRAS,114,17 Meunier, N., Rondi, S., Tkaczuk, R., Rieutord, M., & Beigbeder, F. 2005, in Astronomical Society of the Pacific ConferenceSeries,Vol.346,Large-scaleStructuresandtheir RoleinSolarActivity,ed.K.Sankarasubramanian,M.Penn, &A.Pevtsov,53 Meunier,N., Tkaczuk,R., & Roudier,T. 2007a,A & A, 463, 745 Meunier,N.,Tkaczuk,R.,Roudier,T.,&Rieutord,M.2007b, A&A,461,1141 Rieutord, M., Roudier, T., Ludwig, H.-G., Nordlund, Å., & Stein,R.2001,A&A,377,L14 Rieutord,M.,Roudier,T.,Malherbe,J.M.,&Rincon,F.2000, A&A,357,1063 Rieutord,M.,Roudier,T.,Roques,S.,&Ducottet,C.2007,A &A,471,687 Rincon, F. & Rieutord, M. 2003, in SF2A-2003: Semaine de l’Astrophysique Francaise, ed. F. Combes, D. Barret, T.Contini,&L.Pagani,103 Roudier,T.,Rieutord,M.,Malherbe,J.,&Vigneau,J.1999,A &A,349,301 Simon, G. W. & Weiss, N. O. 1968, Zeit. fu¨r Astrophys., 69, 435 Tkaczuk,R.,Rieutord,M.,Meunier,N.,&Roudier,T.2007,A &A,471,695 Vincent,A.&Meneguzzi,M.1991,J.FluidMech.,225,1