ebook img

Solar supergranulation revealed by granule tracking PDF

0.58 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solar supergranulation revealed by granule tracking

Astronomy&Astrophysicsmanuscriptno.9077paper (cid:13)c ESO2008 February2,2008 Solar supergranulation revealed by granule tracking MichelRieutord, Nade`geMeunier⋆,ThierryRoudier,SylvainRondi,FrancisBeigbederandLaurentPare`s 8 0 0 Laboratoire d’Astrophysique de Toulouse et Tarbes, UMR 5572, CNRSet Universite´ Paul Sabatier Toulouse 3, 14 avenue E.Belin, 31400 2 Toulouse,France n e-mail:[rieutord,roudier,francis.beigbeder,pares]@ast.obs-mip.fr, [email protected], [email protected] a J February2,2008 9 ABSTRACT ] h Context.SupergranulationisapatternofthevelocityfieldatthesurfaceoftheSun,whichhasbeenknownaboutformorethanfiftyyears, p - however,nosatisfactoryexplanationofitsoriginhasbeenproposed. o Aims.Newobservationalconstraintsarethereforeneededtoguidetheoreticalapproacheswhichhesitatebetweenscenariosthateitherinvoke r alarge-scaleinstabilityofthesurfaceturbulentconvectionoradirectforcingbybuoyancy. t s Methods.Usingthe14-MpixelCALAScameraatthePic-du-Midiobservatory,weobtaineda7.5h-longsequenceofhighresolutionimages a withunprecedented fieldsize. Tracking granules, we have determined thevelocity field at the Sun’s surface in great detail from a scale of [ 2.5Mmupto250Mm. 1 Results.Thekineticenergydensityspectrumshowsthatsupergranulationpeaksat36Mmandspansonscalesrangingbetween20Mmand v 75Mm.Thedecreaseofsupergranularflowsinthesmallscalesisclosetoak−2-powerlaw,steeperthantheequipartitionKolmogorovone.The 9 probabilitydistributionfunctionofthedivergencefieldshowsthesignatureofintermittencyofthesupergranulationandthusitsturbulentnature. 6 3 1 Keywords.Convection–Turbulence–Sun:photosphere . 1 0 8 1. Introduction tletemperaturefluctuations(seeMeunieretal.2007a).Besides 0 : these scenarios, recent observations of Gizonetal. (2003) v SupergranulationwasdiscoveredbyHart(1954)usingDoppler addedsomewavelikepropertiestosupergranulation. i images of the Sun. It appeared as an essentially horizontal X Obviously, the supergranulation theory needs guidance flowfield atatypicalscale of30Mm.Theoriginofthisflow r from every available observational constraint. This letter a field was first thought to be related to the second ionization presentstheresultsoftheobservationsissuedfromtheCALAS of helium, which providessome latentheat at a deptharound project (a CAmera for the LArge scales of the Sun; see 10 Mm, compatible with their typical size (Simon&Weiss Meunieretal. 2005), collecting a sequence of high resolution 1968). This scenario has been much debated because of the widefieldimages,whichhaveallowedustocapturetheevolu- weakness of the effect and the apparent vigour of the super- tionofahundredsupergranulesatthedisccentreduring7.5h. granular flow. Other ways of generating this velocity scale Wecanthusgivenewconstraintsonthedynamicsofthesolar rely on large-scale instabilities of the surface turbulent flow surfaceinthesupergranulationrange.Afterabriefdescription (Rieutordetal.2000),triggeredbythestrongdensitystratifica- ofthedataset(Sect.2),weshowthespectralsideofthesuper- tion.Inthisscenario,kineticenergyofgranules,thesmall-scale granular flow (Sect. 3) as well as the probability distribution convectivecells, isthoughttobepipedtoa largerscale byan functionsofthedivergences(Sect.4);firstconclusionsfollow. AKA-like effect (Gamaetal. 1994). However, other kinds of large-scale instabilities are still possible, like a convectivein- stability triggered by fixed-flux boundary conditionsimposed 2. Observationaltechniquesanddatareduction by the small-scale granular convection (Rincon&Rieutord 2003). In thisapproach,thecoolingresultingfromthe granu- 2.1.Dataset lationdoesnotsuppresstheconvectiveinstabilityofthelarger On13March2007,weobservedtheSunatdisccentreduring scales; because all the heat flux is carried by the small scale, 7.5 h using the Lunette Jean Ro¨sch at Pic du Midi, a 50 cm- none is carried by the largescale instability, which shows lit- refractor.Imagesweretakenatλ=575±5nm,witha14Mpixel Sendoffprintrequeststo:M.Rieutord CMOS-camera (4560×3048 pixels), with 0.115 arcsec/pixel, ⋆ Present address: Laboratoire d’Astrophysique, Observatoire de thus coveringof 524×350arcsec2 (see Fig. 1). 10811 images Grenoble,BP53,38041Grenoblecedex9 wereobtainedwitharegularcadenceofoneevery2.5s.Twoin- 2 Rieutordetal.:Solarsupergranulation 350" 524" Fig.1.Bottomright:theCALASfieldofviewontheSun;thelargerectangleindicatesthesizeoftheimages,thesmallerone showsthefieldwherethevelocitiescouldbecomputed,whilethesmallsquareshowsthefieldofviewoftheSOTinstrumenton theHinodesatellitewhentrackinggranules.Top:thesupergranulationvelocityfieldwiththedivergencecontourssuperimposed (scales shorter than 8 Mm have been filtered out). A time-window of 150 min was used. Bottom left: a zoom on granulation showingtherelativesizesofgranulesandsupergranules. dependentseriesof∼ 1400imageswerethenextracted.They Because of trackingdifficulties, the commonfield of each samplethesamesolarsignalwithaperiodof20sbutarenoised serieswas reducedto ∼400×300arcsec2, thuscoveringa sur- differently by the Earth atmospheric perturbations. The com- faceof290×216Mm2ontheSun(Fig.1). parisonbetweentheoutputsofbothseriesallowsustoevaluate theinfluenceoftheseeingandtesttherobustnessoftheresults withrespecttothisnoise. After recentering, subimages were k − ω filtered (with a threshold of 7 km/s), so as to remove, as much as possible, Earthatmosphericdistortion,whichisthemainsourceofnoise forvelocitymeasurements(Tkaczuketal.2007). Rieutordetal.:Solarsupergranulation 3 Fig.2. Kinetic energy spectra obtained for various time win- Fig.3. Same as in Fig. 2 but for the horizontaldivergence of dows.Theverticaldottedlineindicatesthepositionofthepeak theflow,∂ v +∂ v (solidline),andfortheverticalvorticity, x x y y at 36.4 Mm. The vertical dashed line emphasizes the 10 Mm ∂ v −∂ v (dashedline);thesupergranulationpeakisclearly x y y x scale, usually taken as the upper limit of mesogranular scale. visibleatλ= 36Mminthedivergencespectrumbutabsentin Twopowerlawsareshownoneachsideofthepeak,aswellas thevorticityone.Ak2-powerlawisgivenforcomparison. theoneofsmall-scalenoise. computed the spectral density of kinetic energy E(k) associ- 2.2.Velocityfields ated with the horizontalflowsthat we can measure.Itis such that Horizontal velocity fields have been obtained using the CST granuletrackingalgorithm(Roudieretal.1999;Rieutordetal. 1 ∞ <v2 >= E(k)dk. 2007). As shown in Rieutordetal. (2001), granules’ motions 2 Z 0 trace large-scale velocity fields when the scale is larger than E(k),whichiscomputedinthesamewayasinRieutordetal. 2.5Mm.Hence,wesampledthevelocityfieldwithabinof12 pixels(∼1Mm). (2000),isdisplayedinFig.2fortheflowsdeterminedwithvar- ioustime-windows.Theshorttime-windowsof45mingiveus Thevelocitiesareobtainedbytrackingthegranulesduring 10independentspectra,whichareaveragedtogether,whilethe a giventime window.Thus, we have accessto averageveloc- itycomponents,namelyv (i, j)andv (i, j),wheretheoverline wholeseries450mintime-windowgivesusonlyonespectrum. x y Note thatno spatial filteringwas appliedto the velocityfield. referstothetimeaveragingimposedbythetimewindow.This We see that E(k) ∝ k atsmallscale, whichis thesignatureof averagingimprovesthesignal-to-noiseratio,butnaturallyde- decorrelatedrandomnoise. creasesthetimeresolution.Typically,theshortesttimewindow These spectra clearly show the emergence of the spec- thatcanbeusedis30min. Althoughthefieldislarge,projectioneffectsofthespheri- tral range of the supergranulation as the length of the time- windowincreases.Letuspointouttheremarkablestabilityof calSunarestillofweakinfluence.Atmost,inthefieldcorners, thewavenumberofthespectralpeakwhenthetimeaveragingis thecorrectiononthevelocitywouldbelessthan4%,whichis changed.Thisdemonstratesthatsupergranulationisagenuine muchlessthanthenoise. velocity field at the Sun’s surface. It is not the consequence WeshowinFig.1anexampleofthesevelocityfields.The oftime-averagingthesmall,fastturning-oversmallscales.Of small-scalecomponentsoftheflow(withscalesbelow8Mm) course,if theaveragingintervalislongenough(i.e.oftheor- werefilteredoutusingDaubechieswavelets(seeRieutordetal. deroftheturn-overtimescaleofsupergranulation),thespectral 2007). Figure 1 shows that robust steady supergranules live peakwill moveto everlargerscales beforedisappearing.The amonga wide varietyofflow structuresillustratingtheturbu- maximumofthespectraldensityisatawavelengthof36Mm. lentnatureofthesescalesandtheirwidespectralrange. The FWHM of the peakindicatesthatsupergranulationoccu- 3. Thekineticenergyspectrum piestherangeofscalesof[20,75]Mm. A convenient way to view the dynamics of a flow is to ex- Thepresentmeanvalueofthediameterofsupergranulesis amine the spectral content of the velocity field. We therefore slightlyhigherthanthepreviousdeterminations.Forinstance, 4 Rieutordetal.:Solarsupergranulation Meunieretal.(2007b)findameandiameterof31.4Mmwitha techniquebasedonthesegmentationofthedivergencefieldde- rivedfromvelocitiesissuedfromalocalcorrelationtechnique applied to SOHO/MDI white light images. DelMoroetal. (2004) also use a divergence field but derived from time- distancehelioseismology;theyfindameansizeof27Mm,sig- nificantlysmallerthanours. Bothoftheseresultsarebasedonthedivergencefieldand itssegmentation.Thehistogramofsizesisthenusedtodeter- mine the mean diameter of a supergranule. Such a technique necessarily underestimates the actual scale of supergranular flowsasonlypartofit (thepositivedivergences)is used.Our spectra,whichdirectlyresultfromthemeasuredhorizontalve- locities, incorporate all the components of the flow at super- granulation scale, and thus better reflect the dynamical state. NotethatablinduseofthedivergencespectruminFig.3would pointtoascaleof∼23Mm. In Fig. 2 we also indicate the best-fit power laws, which mimic the sides of the supergranulation peak. We find that E(k) ∼ k3 on the large-scale side and E(k) ∼ k−2 on the small-scaleone.Thislatterpowerlawissteeperthanthe−5/3 Kolmogorovoneandmaybeaneffectofdensitystratification. Fig.4. Histograms of the divergences; solid and dashed lines To complete the spectral picture, we also show, in Fig. 3, havethesamesolarsignalbutadifferentnoisefromtheEarth thespectraofthehorizontaldivergenceofthevelocityfieldand atmosphere. Scales below 8 Mm have been filtered out. A theverticalvorticity.Beyondthek2-dependenceofthespectral Gaussiandistributionwiththesamestandarddeviationisover- densities, which is a consequence of the derivative of uncor- plottedforcomparison. relatednoise,we cansee thatthedivergencespectrumclearly shows the supergranulation peak, while the vertical vorticity shows no signal in this range. The vorticity does show some compassesallthescalesrangingfrom20to75Mm,asshown weaksignalhowever,butinthemesogranulationrange,below bytheFWHMofthepeak.Exceptforitsamplitude,thispeakis 10Mm. notsensitivetothetimewindowusedtomeasurethegranules’ 4. Probabilitydensityfunctions motions.Thesignalalsoclearlyappearsinthedivergencespec- traldensity,butnotinthevorticity;itislikelythatvorticityat Another way to look at the velocity fields is to consider the supergranulationscale nearthe Sun’sequatoris muchweaker probability density functions. Such distributions have been anddoesnotemergefromthenoise. computedforthevelocityfield,itsdivergenceanditscurl.We show in Fig. 4 the distribution of the divergence field when Finally,ourdataconfirmthefactthatsupergranulationhas scalesshorterthan8Mmhavebeenfilteredoutofthevelocity a noticeable degree of intermittency, clearly appearing in the field.Thisdistributionclearlyshowsapositivewinglargerthan distributionofpositivedivergencevalues. theGaussianone,associatedwithaskewnessof0.38.Wealso As far as the origin of supergranulationis concerned, the notethatthenoiseoftheEarthatmosphereisweakenough,and scenarios mentioned in the introduction can be tested with doesnotperturbtheresult.Thistrendtoanexponentialdistri- thesedata,eitherintherealspacewithvelocityfieldslikethe bution is a signature of intermittency(e.g. Frisch 1995). This oneshowninFig.1orinthespectralspacewiththegivenspec- result, with the same asymmetry between positive and nega- tra. tive values, was also observedby Meunieretal. (2007b) with Further work on the observational side will focus on the a completely different set of data and method. Thus, the in- determinationofthethirdcomponentofthevelocityfield,the termittencyofsupergranulationseemstobearobustproperty. increaseofthefieldsizeandthereductionofthenoise,soasto Exponentialwingsareusuallylessvisibleonthevelocity(e.g. further constrain the dynamicsof scales from the granulation Vincent&Meneguzzi1991),and,indeed,arebarelynoticeable onetothe100Mmone. inourdata.Asfarasvorticityisconcerned,thenoiseisunfor- Acknowledgements. The CALAS project has been financially sup- tunatelytoohightogiveconvincingmeasurements. portedbytheFrenchministeryofeducation(ACI),bytheProgramme 5. Conclusions NationalSoleil-TerreofCNRSandtheObservatoireMidi-Pyre´ne´es. Wearealsoverygratefultothe“Grouped’IntrumentationdesGrands For the first time, it has been possible to follow the motion Te´lescopes(GIGT)”ofthelaboratory,fortheirtechnicalhelpatvari- of well-resolved granules in a large field of view. The spec- ousphaseoftheproject,especiallytoSe´bastienBaratchartandElodie tral peak of supergranulation has thus been determined in a Bourrec.WealsowishtothankRene´ Dorignacforhisefficientsup- very direct manner. According to our data, supergranulation portinmechanicalrealizationsandPhilippeSabyforhishelpinsort- has the most energetic motions at a scale of 36 Mm and en- ingouttherightcomputinghardware.SRwishestothanktheCNRS Rieutordetal.:Solarsupergranulation 5 for itssupport during hisPhD thesiswhichmuch contributed tothe project. References DelMoro,D.,Berilli,F.,Duvall,T.,&Kosovichev,A.G.2004, SolarPhys.,221,23 Frisch,U.1995,Turbulence:thelegacyofA.N.Kolmogorov (CambridgeUniversityPress) Gama, S., Vergassola,M., & Frisch, U. 1994,J. Fluid Mech., 260,95 Gizon,L.,Duvall,T.L.,&Schou,J.2003,Nature,421,43 Hart,A.B.1954,MNRAS,114,17 Meunier, N., Rondi, S., Tkaczuk, R., Rieutord, M., & Beigbeder, F. 2005, in Astronomical Society of the Pacific ConferenceSeries,Vol.346,Large-scaleStructuresandtheir RoleinSolarActivity,ed.K.Sankarasubramanian,M.Penn, &A.Pevtsov,53 Meunier,N., Tkaczuk,R., & Roudier,T. 2007a,A & A, 463, 745 Meunier,N.,Tkaczuk,R.,Roudier,T.,&Rieutord,M.2007b, A&A,461,1141 Rieutord, M., Roudier, T., Ludwig, H.-G., Nordlund, Å., & Stein,R.2001,A&A,377,L14 Rieutord,M.,Roudier,T.,Malherbe,J.M.,&Rincon,F.2000, A&A,357,1063 Rieutord,M.,Roudier,T.,Roques,S.,&Ducottet,C.2007,A &A,471,687 Rincon, F. & Rieutord, M. 2003, in SF2A-2003: Semaine de l’Astrophysique Francaise, ed. F. Combes, D. Barret, T.Contini,&L.Pagani,103 Roudier,T.,Rieutord,M.,Malherbe,J.,&Vigneau,J.1999,A &A,349,301 Simon, G. W. & Weiss, N. O. 1968, Zeit. fu¨r Astrophys., 69, 435 Tkaczuk,R.,Rieutord,M.,Meunier,N.,&Roudier,T.2007,A &A,471,695 Vincent,A.&Meneguzzi,M.1991,J.FluidMech.,225,1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.