Solar Engineering of Thermal Processes Solar Engineering of Thermal Processes Fourth Edition John A. Duffie (Deceased) EmeritusProfessorofChemicalEngineering William A. Beckman EmeritusProfessorofMechanicalEngineering SolarEnergyLaboratory UniversityofWisconsin-Madison Coverimage:(top)KyuOh/iStockphoto;(bottom)GyulaGyukli/iStockphoto Coverdesign:Anne-MicheleAbbott Thisbookisprintedonacid-freepaper. Copyright 2013byJohnWiley&Sons,Inc.Allrightsreserved PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey PublishedsimultaneouslyinCanada Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby anymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermitted underSection107or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermission ofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeetotheCopyrightClearance Center,222RosewoodDrive,Danvers,MA01923,(978)750-8400,fax(978)646-8600,oronthewebat www.copyright.com.RequeststothePublisherforpermissionshouldbeaddressedtothePermissions Department,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201) 748-6008,oronlineatwww.wiley.com/go/permissions. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin preparingthisbook,theymakenorepresentationsorwarrantieswiththerespecttotheaccuracyorcompleteness ofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessfora particularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterials. Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwitha professionalwhereappropriate.Neitherthepublishernortheauthorshallbeliablefordamagesarisingherefrom. Forgeneralinformationaboutourotherproductsandservices,pleasecontactourCustomerCareDepartment withintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993orfax(317)572-4002. Wileypublishesinavarietyofprintandelectronicformatsandbyprint-on-demand.Somematerialincluded withstandardprintversionsofthisbookmaynotbeincludedine-booksorinprint-on-demand.Ifthisbook referstomediasuchasaCDorDVDthatisnotincludedintheversionyoupurchased,youmaydownloadthis materialathttp://booksupport.wiley.com.FormoreinformationaboutWileyproducts,visitwww.wiley.com. ISBN978-0-470-87366-3(cloth);ISBN978-1-118-41541-2(ebk);ISBN978-1-118-41812-3(ebk); ISBN978-1-118-43348-5(ebk);ISBN978-1-118-67160-3(ebk) PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 Contents Preface xi 2.12 BeamandDiffuseComponentsofMonthly PrefacetotheThirdEdition xiii Radiation 79 PrefacetotheSecondEdition xv 2.13 EstimationofHourlyRadiationfromDaily PrefacetotheFirstEdition xvii Data 81 Introduction xxi 2.14 RadiationonSlopedSurfaces 84 2.15 RadiationonSlopedSurfaces:Isotropic Sky 89 PARTI FUNDAMENTALS 1 2.16 RadiationonSlopedSurfaces:Anisotropic Sky 91 2.17 RadiationAugmentation 97 1 SolarRadiation 3 2.18 BeamRadiationonMovingSurfaces 101 1.1 TheSun 3 2.19 AverageRadiationonSlopedSurfaces:Isotropic 1.2 TheSolarConstant 5 Sky 103 1.3 SpectralDistributionofExtraterrestrial 2.20 AverageRadiationonSlopedSurfaces: Radiation 6 KTMethod 107 1.4 VariationofExtraterrestrialRadiation 8 2.21 EffectsofReceivingSurfaceOrientation 1.5 Definitions 9 onHT 112 1.6 DirectionofBeamRadiation 12 2.22 Utilizability 115 1.7 AnglesforTrackingSurfaces 20 2.23 GeneralizedUtilizability 118 1.8 RatioofBeamRadiationonTiltedSurface 2.24 DailyUtilizability 126 toThatonHorizontalSurface 23 2.25 Summary 132 1.9 Shading 29 References 133 1.10 ExtraterrestrialRadiationonaHorizontal Surface 37 1.11 Summary 41 3 SelectedHeatTransferTopics 138 References 41 3.1 TheElectromagneticSpectrum 138 3.2 PhotonRadiation 139 2 AvailableSolarRadiation 43 3.3 TheBlackbody:PerfectAbsorberand Emitter 139 2.1 Definitions 43 3.4 Planck’sLawandWien’sDisplacement 2.2 PyrheliometersandPyrheliometricScales 44 Law 140 2.3 Pyranometers 48 3.5 Stefan-BoltzmannEquation 141 2.4 MeasurementofDurationofSunshine 53 3.6 RadiationTables 142 2.5 SolarRadiationData 54 3.7 RadiationIntensityandFlux 144 2.6 AtmosphericAttenuationofSolar 3.8 InfraredRadiationExchangebetweenGray Radiation 59 Surfaces 146 2.7 EstimationofAverageSolarRadiation 64 3.9 SkyRadiation 147 2.8 EstimationofClear-SkyRadiation 68 3.10 RadiationHeatTransferCoefficient 148 2.9 DistributionofClearandCloudyDays 3.11 NaturalConvectionbetweenFlatParallelPlates andHours 71 andbetweenConcentricCylinders 149 2.10 BeamandDiffuseComponentsofHourly 3.12 ConvectionSuppression 154 Radiation 74 3.13 Vee-CorrugatedEnclosures 158 2.11 BeamandDiffuseComponentsofDaily 3.14 HeatTransferRelationsforInternal Radiation 77 Flow 159 v vi Contents 3.15 WindConvectionCoefficients 163 6 Flat-PlateCollectors 236 3.16 HeatTransferandPressureDropinPacked 6.1 DescriptionofFlat-PlateCollectors 236 BedsandPerforatedPlates 165 6.2 BasicFlat-PlateEnergyBalance 3.17 Effectiveness-NTUCalculationsforHeat Equation 237 Exchangers 168 6.3 TemperatureDistributionsinFlat-Plate References 170 Collectors 238 6.4 CollectorOverallHeatLossCoefficient 240 4 RadiationCharacteristicsofOpaque 6.5 TemperatureDistributionbetweenTubesandthe Materials 173 CollectorEfficiencyFactor 254 6.6 TemperatureDistributioninFlow 4.1 AbsorptanceandEmittance 174 Direction 261 4.2 Kirchhoff’sLaw 176 6.7 CollectorHeatRemovalFactorandFlow 4.3 ReflectanceofSurfaces 177 Factor 262 4.4 RelationshipsamongAbsorptance,Emittance, 6.8 CriticalRadiationLevel 266 andReflectance 181 6.9 MeanFluidandPlateTemperatures 267 4.5 BroadbandEmittanceandAbsorptance 182 6.10 EffectiveTransmittance-Absorptance 4.6 CalculationofEmittanceand Product 268 Absorptance 183 6.11 EffectsofDustandShading 271 4.7 MeasurementofSurfaceRadiation 6.12 HeatCapacityEffectsinFlat-Plate Properties 186 Collectors 272 4.8 SelectiveSurfaces 188 6.13 LiquidHeaterPlateGeometries 275 4.9 MechanismsofSelectivity 192 6.14 AirHeaters 280 4.10 OptimumProperties 195 6.15 MeasurementsofCollectorPerformance 287 4.11 AngularDependenceofSolar 6.16 CollectorCharacterizations 288 Absorptance 196 6.17 CollectorTests:Efficiency,IncidenceAngle 4.12 AbsorptanceofCavityReceivers 197 Modifier,andTimeConstant 289 4.13 SpecularlyReflectingSurfaces 198 6.18 TestData 299 References 199 6.19 ThermalTestDataConversion 302 6.20 FlowRateCorrectionstoFR(τα)n andFR UL 305 5 RadiationTransmissionthroughGlazing: 6.21 FlowDistributioninCollectors 308 AbsorbedRadiation 202 6.22 InSituCollectorPerformance 309 6.23 PracticalConsiderationsforFlat-Plate 5.1 ReflectionofRadiation 202 Collectors 310 5.2 AbsorptionbyGlazing 206 6.24 PuttingitallTogether 313 5.3 OpticalPropertiesofCover 6.25 Summary 318 Systems 206 References 319 5.4 TransmittanceforDiffuse Radiation 211 5.5 Transmittance-AbsorptanceProduct 213 7 ConcentratingCollectors 322 5.6 AngularDependenceof(τα) 214 5.7 SpectralDependenceofTransmittance 215 7.1 CollectorConfigurations 323 5.8 EffectsofSurfaceLayerson 7.2 ConcentrationRatio 325 Transmittance 218 7.3 ThermalPerformanceofConcentrating 5.9 AbsorbedSolarRadiation 219 Collectors 327 5.10 MonthlyAverageAbsorbedRadiation 223 7.4 OpticalPerformanceofConcentrating 5.11 AbsorptanceofRooms 229 Collectors 334 5.12 AbsorptanceofPhotovoltaicCells 231 7.5 CylindricalAbsorberArrays 335 5.13 Summary 234 7.6 OpticalCharacteristicsofNonimaging References 234 Concentrators 337 Contents vii 7.7 OrientationandAbsorbedEnergyforCPC 10.4 Controls 429 Collectors 345 10.5 CollectorArrays:SeriesConnections 431 7.8 PerformanceofCPCCollectors 349 10.6 PerformanceofPartiallyShaded 7.9 LinearImagingConcentrators:Geometry 351 Collectors 433 7.10 ImagesFormedbyPerfectLinear 10.7 SeriesArrayswithSectionsHavingDifferent Concentrators 354 Orientations 435 7.11 ImagesfromImperfectLinear 10.8 UseofModifiedCollectorEquations 438 Concentrators 359 10.9 SystemModels 441 7.12 Ray-TraceMethodsforEvaluating 10.10 SolarFractionandSolarSavings Concentrators 361 Fraction 444 7.13 IncidenceAngleModifiersandEnergy 10.11 Summary 445 Balances 361 References 446 7.14 ParaboloidalConcentrators 367 7.15 Central-ReceiverCollectors 368 7.16 PracticalConsiderations 369 11 SolarProcessEconomics 447 References 370 11.1 CostsofSolarProcessSystems 447 11.2 DesignVariables 450 8 EnergyStorage 373 11.3 EconomicFiguresofMerit 452 11.4 DiscountingandInflation 454 8.1 ProcessLoadsandSolarCollector 11.5 Present-WorthFactor 456 Outputs 373 11.6 Life-CycleSavingsMethod 459 8.2 EnergyStorageinSolarProcessSystems 375 11.7 EvaluationofOtherEconomic 8.3 WaterStorage 376 Indicators 464 8.4 StratificationinStorageTanks 379 11.8 TheP ,P Method 467 1 2 8.5 Packed-BedStorage 384 11.9 UncertaintiesinEconomicAnalyses 472 8.6 StorageWalls 392 11.10 EconomicAnalysisUsingSolarSavings 8.7 SeasonalStorage 394 Fraction 475 8.8 PhaseChangeEnergyStorage 396 11.11 Summary 476 8.9 ChemicalEnergyStorage 400 References 476 8.10 BatteryStorage 402 References 406 PARTII APPLICATIONS 477 9 SolarProcessLoads 409 12 SolarWaterHeating:Activeand 9.1 ExamplesofTime-DependentLoads 410 Passive 479 9.2 Hot-WaterLoads 411 9.3 SpaceHeatingLoads,Degree-Days, 12.1 WaterHeatingSystems 479 andBalanceTemperature 412 12.2 Freezing,Boiling,andScaling 483 9.4 BuildingLossCoefficients 415 12.3 AuxiliaryEnergy 486 9.5 BuildingEnergyStorageCapacity 417 12.4 Forced-CirculationSystems 488 9.6 CoolingLoads 417 12.5 Low-FlowPumpedSystems 490 9.7 SwimmingPoolHeatingLoads 418 12.6 Natural-CirculationSystems 491 References 420 12.7 IntegralCollectorStorageSystems 494 12.8 RetrofitWaterHeaters 496 12.9 WaterHeatinginSpaceHeatingandCooling 10 SystemThermalCalculations 422 Systems 497 10.1 ComponentModels 422 12.10 TestingandRatingofSolarWater 10.2 CollectorHeatExchangerFactor 424 Heaters 497 10.3 DuctandPipeLossFactors 426 12.11 EconomicsofSolarWaterHeating 499 viii Contents 12.12 SwimmingPoolHeating 502 15.7 SolarDesiccantCooling 592 12.13 Summary 503 15.8 VentilationandRecirculationDesiccant References 503 Cycles 594 15.9 Solar-MechanicalCooling 596 15.10 Solar-RelatedAirConditioning 599 13 BuildingHeating:Active 505 15.11 PassiveCooling 601 References 601 13.1 HistoricalNotes 506 13.2 SolarHeatingSystems 507 13.3 CSUHouseIIIFlat-PlateLiquidSystem 511 16 SolarIndustrialProcessHeat 604 13.4 CSUHouseIIAirSystem 513 13.5 HeatingSystemParametricStudy 517 16.1 IntegrationwithIndustrialProcesses 604 13.6 SolarEnergy–HeatPumpSystems 521 16.2 MechanicalDesignConsiderations 605 13.7 PhaseChangeStorageSystems 527 16.3 EconomicsofIndustrialProcessHeat 606 13.8 SeasonalEnergyStorageSystems 530 16.4 Open-CircuitAirHeatingApplications 607 13.9 SolarandOff-PeakElectricSystems 533 16.5 RecirculatingAirSystemApplications 611 13.10 SolarSystemOverheating 535 16.6 Once-ThroughIndustrialWaterHeating 613 13.11 SolarHeatingEconomics 536 16.7 RecirculatingIndustrialWaterHeating 615 13.12 ArchitecturalConsiderations 539 16.8 Shallow-PondWaterHeaters 617 References 541 16.9 Summary 619 References 619 14 BuildingHeating:PassiveandHybrid Methods 544 17 SolarThermalPowerSystems 621 14.1 ConceptsofPassiveHeating 545 17.1 ThermalConversionSystems 621 17.2 GilaBendPumpingSystem 622 14.2 ComfortCriteriaandHeatingLoads 546 14.3 MovableInsulationandControls 546 17.3 LuzSystems 624 14.4 Shading:OverhangsandWingwalls 547 17.4 Central-ReceiverSystems 628 17.5 SolarOneandSolarTwoPowerPlants 630 14.5 Direct-GainSystems 552 14.6 Collector-StorageWallsandRoofs 557 References 633 14.7 Sunspaces 561 14.8 ActiveCollection–PassiveStorageHybrid 18 SolarPonds:EvaporativeProcesses 635 Systems 563 14.9 OtherHybridSystems 565 18.1 Salt-GradientSolarPonds 635 14.10 PassiveApplications 565 18.2 PondTheory 637 14.11 HeatDistributioninPassiveBuildings 571 18.3 ApplicationsofPonds 639 14.12 CostsandEconomicsofPassive 18.4 SolarDistillation 640 Heating 571 18.5 Evaporation 646 References 573 18.6 DirectSolarDrying 647 18.7 Summary 647 References 648 15 SolarCooling 575 15.1 SolarAbsorptionCooling 576 PARTIII DESIGN 15.2 TheoryofAbsorptionCooling 578 15.3 CombinedSolarHeatingandCooling 584 METHODS 651 15.4 SimulationStudyofSolarAir Conditioning 585 19 SimulationsinSolarProcessDesign 653 15.5 OperatingExperiencewithSolarCooling 589 15.6 ApplicationsofSolarAbsorptionAir 19.1 SimulationPrograms 653 Conditioning 591 19.2 UtilityofSimulations 654 Contents ix 19.3 InformationfromSimulations 655 23 DesignofPhotovoltaicSystems 745 19.4 TRNSYS:ThermalProcessSimulation 23.1 PhotovoltaicConverters 746 Program 656 23.2 PVGeneratorCharacteristics 19.5 SimulationsandExperiments 663 andModels 747 19.6 MeteorologicalData 663 23.3 CellTemperature 757 19.7 LimitationsofSimulations 666 23.4 LoadCharacteristicsandDirect-Coupled References 667 Systems 759 23.5 ControlsandMaximumPowerPoint 20 DesignofActiveSystems:f-Chart 668 Trackers 763 23.6 Applications 764 20.1 ReviewofDesignMethods 668 23.7 DesignProcedures 765 20.2 Thef-ChartMethod 669 23.8 High-FluxPVGenerators 770 20.3 Thef-ChartforLiquidSystems 673 23.9 Summary 771 20.4 Thef-ChartforAirSystems 679 References 771 20.5 ServiceWaterHeatingSystems 683 20.6 Thef-ChartResults 685 20.7 ParallelSolarEnergy-HeatPump 24 WindEnergy 774 Systems 686 20.8 Summary 690 24.1 Introduction 774 References 690 24.2 WindResource 778 24.3 One-DimensionalWindTurbineModel 786 24.4 EstimatingWindTurbineAveragePowerand 21 DesignofActiveSystemsbyUtilizability EnergyProduction 791 Methods 692 24.5 Summary 796 References 796 21.1 HourlyUtilizability 693 21.2 DailyUtilizability 696 21.3 Theφ,f-ChartMethod 699 APPENDIXES 797 21.4 Summary 709 References 710 A Problems 797 22 DesignofPassiveandHybridHeating Systems 711 B Nomenclature 856 22.1 ApproachestoPassiveDesign 711 22.2 Solar-LoadRatioMethod 712 C InternationalSystemofUnits 861 22.3 UnutilizabilityDesignMethod:Direct Gain 721 D MeteorologicalData 863 22.4 UnutilizabilityDesignMethod:Collector-Storage Walls 727 22.5 HybridSystems:ActiveCollectionwithPassive E AverageShadingFactorsfor Storage 736 Overhangs 870 22.6 OtherHybridSystems 742 References 743 Index 887 Preface This fourth edition emphasizes solar system design and analysis using simulations. The designofmanysystemsthatuseconventionalenergysources(e.g.,oil,gas,andelectricity) use a worst-case environmental condition—think of a building heating system. If the systemcanmaintainthebuildingtemperatureduringthecoldestperiod,itwillbeableto handlealllesssevereconditions.Tobesure,evenbuildingheatingsystemsarenowusing simulationsduringthedesignphase.Inadditiontokeepingthebuildingcomfortableduring theworstconditions,variousdesignchoicescanbemadetoreduceannualenergyuse. This and earlier editions of this book describe TRNSYS (pronounced Tran-sis), a generalsystemsimulationprogram(seeChapter19).Likeallheatingandairconditioning systems, a solar system can be thought of as a collection of components. TRNSYS has hundreds of component models, and the TRNSYS language is used to connect the components together to form a system. Following the Preface to the First Edition is the Introduction where a ready-made TRNSYS program (called CombiSys) is described that simulates a solar-heated house with solar-heated domestic hot water. TRANSED, a front-end program for TRNSYS is used so it is not necessary to learn how to develop TRNSYS models to run CombiSys. CombiSys can be freely downloaded from the John Wileywebsite(http://www.wiley.com/go/solarengineering4e). CombiSys provides an input window where various design options can be selected (e.g.,thecollectortypeanddesign,storagetanksize,collectororientation,andavarietyof otherchoices).Aseriesofsimulationproblems(identifiedwithaprefix‘‘S’’followedbya chapternumberandthenaproblemnumber)havebeenaddedtothestandardproblemsof manychapters.The‘‘S0’’problems(thatis,Chapter0,theIntroduction)requirerunning CombiSysandansweringgeneralquestionsthatmayrequireperformingenergybalances anddoingsimpleeconomiccalculations.Asnewtopicsarediscussedinthistextnew‘‘S’’ problemsareintroduced,oftenwiththeobjectivetoduplicatesomeaspectofCombiSys. With this approach it is hoped that the student will understand the inner workings of a simulationprogramandbemadeawareofwhycertaintopicsareintroducedanddiscussed inthetext. The purpose of studying and understanding any topic in engineering is to make the nextsystembetterthanthelast.PartIinthisstudyofsolarsystemscontains11chapters devoted to understanding the operation of components (e.g., the sun, collectors, storage systems,loads,etc.).Theresultsoftheseearlychaptersaremathematicalmodelsthatallow thedesignertoestimatecomponentperformance(intheTRNSYSlanguage,theoutputs) for a given set of component conditions (i.e., TRNSYS inputs). It is easy to think of collectors,storagetanks,photovoltaicarrays,andbatteriesascomponents, buthereeven the sun and economics are treated as components. The sun component manipulates the available(generallymeasuredbutsometimesestimated)solarradiationdatatoobtainthe neededsolarradiationdataonanarbitrarilyorientedsurfaceandinadesiredtimeinterval. Thetimescaleofreportedsolardatarangesfromafewsecondstoyearly.Sometimeswe even need to estimate the solar energy in a wavelength interval. The available measured solar radiation data is typically energy rates (i.e., power) from a specified and easily xi xii Preface calculated direction such as the ‘‘beam’’ radiation that comes directly from the sun and the ‘‘diffuse’’ radiation that has been scattered in some generally unknown manner over all parts of the sky. The mathematical model of the sun component must accommodate thesevariousinputandoutputrequirements.ThefinalchapterinPartIcoverseconomics. Generallytheobjectiveofasolarsystemistoproduceenvironmentallyfriendlypowerat an acceptable cost. The familiar calculations of levelized cost per unit of energy and/or life-cycle savings (versus some energy alternative) are not trivial since the time horizon ofasolarsystemcanbemultipledecades,requiringtheestimatesoffar-futureeconomic conditions.Theeconomicimpactofexternalitiessuchasreducedpollutantsisdifficultto evaluatesincethesecostsarenoteasilymonetized. PartII,chapters12through18,discussesvariousthermalsystemsthathavebeenbuilt, theperformancemeasuredandtheresultspublished.Theyaredescriptivechapterswiththe intentofprovidingthereaderwithafeelingofwhatcanbeaccomplished.Manyofthese systemswerebuiltandtestedduringatimewhengovernmentswerefundinguniversities andlaboratorieswherearequirementwastomaketheresultspublic.Mostsolarsystems todayareprivatelyfundedandperformancedataisoftendifficultorimpossibletoobtain. Chapters 19 through 22 of Part III are devoted to system design (sometimes called systemsizing).Beforethelate1970spersonalcomputerswerenotavailablesosimulations were done either by hand or on large main-frame computers and were very expensive. Researchinto‘‘designmethods’’focusedonthedevelopmentofshort-cutdesignassistance toreplaceexpensivesimulations.Theearliestexampleisfromtheearly1950s,whichused a radiation statistic called ‘‘utilizability’’ to assist in solar sizing (see Section 2.22 and Chapter21).Thenextstep,thef-chartmethod(seeChapter21)isfromthemid-1970sand usednumericalexperimentstodevelopcorrelationsofthevariousnondimensionalgroups. Thisprocessisnotunlikelaboratoryexperimentsthatareusedtocorrelatedimensionless heat transfer results (the Nusselt number) to dimensionless fluid parameters (Reynolds, Prandtl,andGrashofnumbers).Thesignificantdifferenceisthattheexperimentalresults in the f-chart development were hundreds of detailed main-frame computer simulations and were validated with a few year-long experiments. These design methods still have a place in today’s engineering practice. They are extremely fast and thus provide an inexpensive alternative to annual simulations, especially for small systems. Large (and thereforeexpensive)systemscanaffordtobelookedatusingdetailedsimulations.Some of the problems in these chapters compare the detailed simulations using TRNSYS with thevariousdesignmethods. Chapters 23 and 24 of Part III cover sizing of photovoltaic (PV) and wind energy systems. It is obvious that the solar radiation processing developed in Chapter 2 is very important in the design and analysis of PV systems. The detailed physics of a solar cell iscomplex,butitisnotnecessarytounderstandthesedetailstodesignaPVsystem.The current-voltage (I-V) characteristics of cells are discussed in detail and a mathematical I-V modelispresentedthatisusefulindesign.Windenergysystemsareintroducedwitha simpleanalysisthatleadstounderstandingofmanufacturerswindturbinecharacteristics. Theperformanceofanisolatedturbineisdiscussed,butinterferenceofthewindpatterns withclose-packedmultipleturbinesisnotdiscussed. WILLIAMA.BECKMAN Madison,Wisconsin