ebook img

Solar Energy Conversion Systems In The Built Environment PDF

391 Pages·2020·18.533 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solar Energy Conversion Systems In The Built Environment

Green Energy and Technology Ion Visa · Anca Duta · Macedon Moldovan · Bogdan Burduhos · Mircea Neagoe Solar Energy Conversion Systems in the Built Environment Green Energy and Technology Climate change, environmental impact and the limited natural resources urge scientific research and novel technical solutions. The monograph series Green Energy and Technology serves as a publishing platform for scientific and technological approaches to “green”—i.e. environmentally friendly and sustain- able—technologies. While a focus lies on energy and power supply, it also covers “green” solutions in industrial engineering and engineering design. Green Energy and Technology addresses researchers, advanced students, technical consultants as well as decision makers in industries and politics. Hence, the level of presentation spans from instructional to highly technical. **Indexed in Scopus**. More information about this series at http://www.springer.com/series/8059 Ion Visa Anca Duta Macedon Moldovan (cid:129) (cid:129) (cid:129) Bogdan Burduhos Mircea Neagoe (cid:129) Solar Energy Conversion Systems in the Built Environment 123 Ion Visa Anca Duta R&D Centre: RenewableEnergy R&D Centre: RenewableEnergy Systems andRecycling Systems andRecycling Transilvania University of Brașov Transilvania University of Brașov Brașov,Romania Brașov,Romania MacedonMoldovan Bogdan Burduhos R&D Centre: RenewableEnergy R&D Centre: RenewableEnergy Systems andRecycling Systems andRecycling Transilvania University of Brașov Transilvania University of Brașov Brașov,Romania Brașov,Romania Mircea Neagoe R&D Centre: RenewableEnergy Systems andRecycling Transilvania University of Brașov Brașov,Romania ISSN 1865-3529 ISSN 1865-3537 (electronic) Green Energy andTechnology ISBN978-3-030-34828-1 ISBN978-3-030-34829-8 (eBook) https://doi.org/10.1007/978-3-030-34829-8 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature SwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The concept of sustainable development was never contested since 1987 when it was firstly introduced. However, the measures required to implement this concept were not quickly identified and were even more slowly implemented in the development strategies, all over the world. The main reasons are relying in the complexityandspecificityofthesemeasuresthataremainlyfocusingontheenergy requiredtofeedtheproductionprocesses,thebuiltenvironment,theagricultureand inanyotheractivities inanysociety.Thisspecificity depends onobjective factors, as the availability of certain natural resources that can be used to produce energy, mainly renewable energy sources, but also on the features of the implementation locationandoftheimplementingsociety.Thisiswhyonlyrecentlythesustainable development implementation was practically approached, as e.g. by planning and developing sustainable energy buildings or sustainable communities. In these applications, the role of solar energy is highly important, as this is a cost-free energy source that is readily available in any location on the Earth. However, the daily and seasonal variability of the solar energy, that does not necessarily follow the rhythm of the humans’ life and the associated energy demand,raisessignificantbarriersinimplementingandoperatingasustainablebuilt environmentbasedonlyonsolarenergyconversionsystems,inanylocationinthe world.Thus,solutionshavetobeidentifiedtosolvespecificissuesthatcansupport the development of a built environment with a high solar energy share and these solutions have to be feasible, affordable and well suited to communities with dif- ferent development levels and different levels offinancial resources. Considering the real need for optimized solutions based on solar energy con- version systems implemented in the built environment, the authors of this book developed a complex material, focusing on the mostly used systems (photovoltaic and solar-thermal systems) and on the specific problems that are faced when implementing these in various locations. Further on, case studies are analysed as thesecanbefurtherimprovedandreplicatedtogetapositiveresultinthequestfor sustainability. v vi Preface Thus, this book addresses the professionals working in the design and devel- opment of solar energy conversion systems to be implemented in the built envi- ronmentandaimsatprovidingstructuredinformationonthecurrentknowledgeand main issues that do not have well-accepted solutions yet. Thebookcontentwasdevelopedbyagroupofauthorsthatareworkingonthese type of systems since many years and who are familiar with the trends and the expectationsforthefutureinthefieldofsolarenergyconversionsystems.Thebook includesresultsrecordedontheindoorandoutdoortestingrigsintheR&DCentre Renewable Energy Systems and Recycling (RESREC), in the Transilvania UniversityofBrașov,Romania,wherealltheauthorsareworking.Relevantin-field results are included, coming from other research groups all over the world, with many of which the authors have direct collaboration activities. Each three years, teams working on sustainable energy present their results in the frame of the International Conference on Sustainable Energy, CSE. We invite you to read this book and contact us for any new idea or any coop- eration youmight consider,asthis represents theviablepath towards theextended implementation of the sustainable development concept, at different community levels. Brașov, Romania Ion Visa 2019 Anca Duta Macedon Moldovan Bogdan Burduhos Mircea Neagoe Contents 1 The Built Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Building, Built Environment, Community . . . . . . . . . . . . . . . . . . 1 1.2 Energy Demand in the Built Environment . . . . . . . . . . . . . . . . . . 11 1.2.1 Energy Demand at Building Level . . . . . . . . . . . . . . . . . . 11 1.2.2 Energy Demand at Community Level. . . . . . . . . . . . . . . . 21 1.3 The Energy Consumption in the Built Environment . . . . . . . . . . . 25 1.4 Indicators for Buildings Efficiency and Sustainability . . . . . . . . . . 35 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2 Renewable Energy Sources and Systems. . . . . . . . . . . . . . . . . . . . . . 59 2.1 Solar Energy in the Built Environment . . . . . . . . . . . . . . . . . . . . 59 2.1.1 Solar Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.1.2 Solar Energy Available in the Built Environment . . . . . . . 82 2.2 Other Renewable Energy Sources in the Built Environment . . . . . 103 2.2.1 Geothermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 2.2.2 Bioenergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 2.2.3 Wind Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 2.2.4 Hydro-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 2.3 Solar Energy Conversion Systems . . . . . . . . . . . . . . . . . . . . . . . . 120 2.3.1 Solar Thermal Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 120 2.3.2 Photovoltaic Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 2.4 Energy Mixes Based on Solar Energy Conversion Systems. . . . . . 144 2.4.1 Solar Thermal–Heat Pump Systems . . . . . . . . . . . . . . . . . 145 2.4.2 Solar Thermal–Biomass Systems . . . . . . . . . . . . . . . . . . . 148 2.4.3 Solar PV–Wind Systems . . . . . . . . . . . . . . . . . . . . . . . . . 149 2.4.4 Solar PV–Micro-hydro Systems . . . . . . . . . . . . . . . . . . . . 151 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 vii viii Contents 3 Increasing the Solar Share in Electricity Production in the Built Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 3.1 Photovoltaic Systems at Building and Community Level . . . . . . . 159 3.2 Design of the PV Systems Implemented in the Built Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 3.2.1 Special Requirements for Installing PV Systems . . . . . . . . 166 3.2.2 The Design Algorithm of PV Systems . . . . . . . . . . . . . . . 172 3.3 Increasing the Electrical Output of PV Systems by Using Solar Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 3.3.1 Solar Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 3.3.2 Solar Tracking Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 194 3.3.3 Solar Tracking Algorithms and Programmes . . . . . . . . . . . 198 3.3.4 Case Study: Tracked Versus Fixed Tilted PV Systems. . . . 204 3.4 Exploitation and Maintenance of the PV Systems. . . . . . . . . . . . . 210 3.4.1 Exploitation of the PV Systems in the Built Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 3.4.2 Maintenance of the PV Systems Implemented in the Built Environment . . . . . . . . . . . . . . . . . . . . . . . . . 215 3.5 Photovoltaic—Wind Energy Mixes in the Built Environment . . . . 220 3.5.1 Examples of Photovoltaic—Wind Hybrid Systems. . . . . . . 221 3.5.2 Sizing the PV-Wind Hybrid Systems . . . . . . . . . . . . . . . . 222 3.6 Economic and Financial Aspects of the PV Systems. . . . . . . . . . . 225 3.7 Integrating the Renewable Energy Systems in the Urban Electrical Distribution and Transmission Infrastructure . . . . . . . . . 231 3.7.1 General Protection Requirements . . . . . . . . . . . . . . . . . . . 232 3.7.2 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 232 3.7.3 Monitoring Requirements. . . . . . . . . . . . . . . . . . . . . . . . . 233 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 4 Increasing the Solar Share for Domestic Hot Water, Heating and Cooling in the Built Environment . . . . . . . . . . . . . . . . . . . . . . . 241 4.1 Solar Thermal Systems in Buildings and at Community Level . . . 241 4.2 Design of the Solar Thermal Systems Implemented in the Built Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 4.3 Optimizing the Thermal Output of Solar Thermal Systems by Using Solar Tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 4.3.1 Increasing the Thermal Energy Output by Forward Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 4.3.2 Protection Against Overheating by Inverse Tracking . . . . . 269 4.3.3 Tracking Solar Thermal Collectors Applied on the Buildings’ Facades. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 4.4 Increasing the Solar Energy Share in Meeting the Thermal Energy Demand of a Building Through Solar Thermal Facades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 Contents ix 4.5 Exploitation and Maintenance of the Solar Thermal Systems Implemented in the Built Environment. . . . . . . . . . . . . . . . . . . . . 296 4.6 Renewable Energy Mixes Based on Solar Energy in nZEB. . . . . . 301 4.6.1 Solar Thermal–Geothermal Energy Mixes in Buildings . . . 303 4.6.2 Solar Thermal–Geothermal–Photovoltaic Energy Mixes . . . 306 4.7 Economic and Financial Aspects of Solar Thermal Systems Implemented in the Built Environment. . . . . . . . . . . . . . . . . . . . . 318 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 5 Increasing the Solar Share for Electrical and Thermal Energy Production in the Built Environment . . . . . . . . . . . . . . . . . . . . . . . . 327 5.1 PVT Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 5.1.1 PVT Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 5.2 PVT Integration in the Built Environment . . . . . . . . . . . . . . . . . . 332 5.3 Economic and Financial Aspects of Building Integrated PVT Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 6 Sustainable Communities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 6.1 Nearly Zero Energy Community . . . . . . . . . . . . . . . . . . . . . . . . . 345 6.2 Steps in Implementing Renewable Energy Systems in NZEB and in NZEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 6.3 Operation and Energy Management. . . . . . . . . . . . . . . . . . . . . . . 360 6.4 Case Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 6.4.1 Rural Sustainable Communities, Europe . . . . . . . . . . . . . . 364 6.4.2 Frederikshavn, Denmark . . . . . . . . . . . . . . . . . . . . . . . . . 365 6.4.3 University of California Davis, West Village, California, USA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 6.4.4 Sino-Singapore Tianjin Eco-City, China . . . . . . . . . . . . . . 366 6.4.5 Saerbeck, Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 6.4.6 The Genius Campus in the Transilvania University of Brasov, Romania. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 6.5 Emergent Trends in Using Solar Energy at Community Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.