DraftversionJanuary17,2017 PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 SOLARELLERMANBOMBSIN1-DRADIATIVEHYDRODYNAMICS A.Reid1,4,M.Mathioudakis1,A.Kowalski2,3,J.G.Doyle4,J.C.Allred5 1.AstrophysicsResearchCentre,SchoolofMathematicsandPhysics,Queen’sUniversityBelfast,BT71NN,NorthernIreland,UK;e-mail: [email protected] 2.DepartmentofAstrophysicalandPlanetarySciences,UniversityofColoradoBoulder,2000ColoradoAve,Boulder,CO80305,USA. 3.NationalSolarObservatory,UniversityofColoradoBoulder,3665DiscoveryDrive,Boulder,CO80303,USA 4.ArmaghObservatoryandPlanetarium,CollegeHill,Armagh,BT619DG,UK 5.NASA/GoddardSpaceFlightCenter,Code671,Greenbelt,MD20771 7 1 DraftversionJanuary17,2017 0 2 ABSTRACT n Recent observations from the Interface Region Imaging Spectrograph (IRIS) appear to show impulsive a brighteningsinhightemperaturelines,whichwhencombinedwithsimultaneousgroundbasedobservationsin J Hα, appear co-spatialto Ellerman Bombs(EBs). We use the RADYN 1-dimensionalradiativetransfer code 6 inanattempttotryandreproducetheobservedlineprofilesandsimulatetheatmosphericconditionsofthese 1 events.CombinedwiththeMULTI/RHlinesynthesiscodes,wecomputetheHα,CaII8542Å,andMgIIh& klinesforthesesimulatedeventsandcomparethemtopreviousobservations. Ourfindingshintthatthepres- ] enceofsuperheatedregionsinthephotosphere(>10,000K)isnotaplausibleexplanationfortheproduction R ofEBsignatures.WhileweareabletorecreateEB-likelineprofilesinHα,CaII8542Å,andMgIIh&k,we S cannotachieveagreementwithallofthesesimultaneously. . h Subjectheadings:Sun:Activity—Hydrodynamics—Sun:Photosphere p - o 1. INTRODUCTION versionsof these events show evidence for flux cancellation r t Ellerman Bombs (EBs henceforth) were first noticed in (Reidetal.2016),withmagneticenergiescomparabletothat s of the radiative energy losses. EBs have been estimated a Ellerman (1917), who noted brightenings in the wings of [ the Hα, Hβ, and Hγ lines. These events have also been to form in the temperature minimum region (Nelsonetal. 2015), with foot-points reported to form as low as 300 km observed in the wings of Ca II 8542 Å (Fangetal. 2006; 1 (Watanabeetal.2011). As such, they are thoughtto appear v Socas-Navarroetal. 2006; Pariatetal. 2007; Vissersetal. duetophotosphericmagneticreconnection,occurringaround 3 2015; Lietal. 2015), as well as in Ca II H images thetemperatureminimumregion,wherethisprocessismost 1 (Matsumotoetal.2008a;Hashimotoetal.2010). Theyshow efficient(Litvinenko 1999). 2 noobservableenhancementinthecoreoftheselineprofilesas Three-dimensionalnumericalmodelingofphotosphericre- 4 theseareformedintheoverlyingchromosphericcanopy.EBs connectionhasshownlocaltemperatureincreasesinthepho- 0 are considered a solely photospheric/lower chromospheric tosphere by a factor of 1.1-1.5 relative to quiet Sun, along . phenomenon(Vissersetal.2013). 1 withadensityincreasebyafactorof4atthemagneticinver- EBbrighteningsarealsoobservableintheSolarDynamics 0 sionline(Archontis&Hood 2009). TheArchontis&Hood 7 Observatory(SDO) 1700Å and 1600Å channels(Qiuetal. (2009) model has also shown bi-directional flows in the re- 1 2000;Georgoulisetal.2002;Pariatetal.2007;Berlickietal. gion, with values of 2-4 km s−1. Semi-empirical models : 2010; Vissersetal. 2013), though to a lesser degree than for EBs show localized temperature enhancements of 600- v the Hα line wings due to the broad passbands of these i 3000K aroundthe temperatureminimumregion(Fangetal. X filters encompassing a wide range of atmospheric heights 2006; Berlicki&Heinzel 2014). These temperature en- r (Vissersetal.2013). While the 1600 Å channel offers bet- hancements lead to intensity enhancements in the wings of a ter contrast than the 1700 Å channel (Ruttenetal. 2013; the Hα and Ca II 8542 Å lines. Other EB studies also find Vissersetal.2013), EB signatures are more difficult to ob- similartemperatureenhancements(200-3000K)inthephoto- serveinthe1600Åchannelduetocontaminationeffectsfrom sphere/temperatureminimumregion(Georgoulisetal.2002; CIVemissionwithtransitionregiontemperatures. Isobeetal.2007;Yangetal.2013;Hongetal.2014;Lietal. EBs typically last for a few minutes, and appear rather 2015). impulsivelyincomparisonwithotherphotosphericbrighten- EBs have also been foundwithin quiet Sun regionsof the ings such as moving magnetic features (MMFs). Reidetal. photosphere (Rouppevandervoortetal.2016). The obser- (2016) have shown that by introducing an impulsivity crite- vationalsignaturesoftheseQSEBsarenotaspronouncedas rion, it is possible to distinguish between pseudo-EBs and thosefoundinthevicinityofactiveregions,thoughtheyare EBs. EBs aregenerallyobservedwith co-spatialblue-shifts, stilllocatedinregionsofoppositepolaritymagneticflux.This or bi-directional Doppler shifts (Matsumotoetal. 2008a; suggeststhattheseeventsareidenticaltoEBsoccurringatlo- Watanabeetal.2011). cationsofweakermagneticfluxcancellation. EBs are generally found in regions of opposite polarity More recently, observations using the IRIS instrument in- magnetic flux (Georgoulisetal.2002; Watanabeetal.2008; dicate that EB signatures have been foundin the Mg II h & Matsumotoetal.2008b;Hashimotoetal.2010;Nelsonetal. k wings, Si IV, and C II lines (Peteretal.2014; Kimetal. 2013; Vissersetal. 2013). Recent spectropolarimetric in- 2015; Vissersetal.2015; Tianetal.2016). These lines are 2 Reidetal. Figure1. TopLeft:SynthesisedHαlineprofilesforenergiesdepositedatvariousheights,usingthequietSunstartingatmosphere.TopRight:Thecorresponding CaII8542Ålineprofiles.BottomLeft:Temperatureprofilesacrossthetemperatureminimumregion.BottomCenter:Verticalvelocityprofiles.BottomRight: Electrondensityprofiles. sensitivetomuchhighertemperatures(50,000-100,000K), 8542Å,andMgIIh&klineprofilestocomparewithobser- and sample the upper chromosphere and transition region. vations. Thecodealsohastheabilitytoapplyatimedepen- Vissersetal.(2015) suggest that they are formed below the dent heating function into the atmosphere, and thus is aptly chromosphericcanopyduetosuperheatingwithtemperatures suitedforthestudyofEBs. upto80,000K.Judge (2015)hasdebatedtheoriginsofthese Our RADYN simulationsuse the quietSun starting atmo- bombsonthebasisthattheUVphotonsdetectedintheSiIV sphere(QS.SL.LTinAllredetal.(2015)). Atimedependent linecannotescapeifformedbelow500kmabovethephoto- heatingfunctionisappliedto theatmosphere,allowingfora sphericfloor. rangeofenergydepositionratesovervariousportionsofthe The MURaM code used by Reidetal.(2015) shows Hα photosphere/lowerchromosphere. TheMULTIlinesynthesis wing enhancement at the magnetic inversion line of a bipo- code is used to synthesise the Hα and Ca II 8542Å lines to larstructure,co-spatialwithtemperatureenhancements.This attempt to replicate the signatures of the observed line pro- eventhasshownfluxcancellation,thoughthesimulationwas fileswithemissioninthewings,whileleavingthelinecores ofquietSun,andsowasmorelikelyaQSEB.Withthestrong unchanged. variance in temperatures required to produce the EB signa- PreviousestimatesofEBenergiesareinthe rangeof1024 tures, synthesising these line profiles from hydrodynamical -1027 ergs(Georgoulisetal.2002;Fangetal.2006;Lietal. simulations can help clarify the processes involved and also 2015; Reidetal.2016). If we assume a lifetime of ∼5 min- offersanalternativeapproachtoEBlineformationmodeling. utes,andanactivereconnectionareaof300km2, theenergy Inthisstudy,weusetheRADYNcodetomodelanEB-like deposition rate would need to be of the order of 100 - 1000 atmosphere,withcorrespondingsynthesisoftheHα(Section ergs/cm3/sec,assumingaverticalextentof∼200km. 2),CaII8542Å(Section2),andMgIIh&k(Section3)line A grid of models was set up, applying heating rates be- profiles for comparison with previous observational studies tweenthesevaluesover200kminthephotosphere(seeGrid (e.g.Vissersetal.(2015)). 1fromTable1). Theatmospheretakesroughly9secondsto stabilize after the heating is applied, with all measurements 2. HαANDCAII8542ÅMODELING taken at T=10s. A temperature enhancement appears at the locationofenergydeposition,rangingbetween300-2600K, The RADYN code (Carlsson&Stein 1992, 1994, 1995) with2600Krelatingtothe1000ergs/cm3/secdepositionrate. has been used extensively to study flare dynamics via beam This is accompanied by an associated local electron density heatingina1-dimensionalsolaratmosphere.RubiodaCosta enhancement. Duetothesuddeninjectionofenergy,ashock (2016)usedtheRADYNcodeinanattempttomodeltheat- forms at the deposition location. This creates bi-directional mosphere of an X1.0 solar flare, synthesising the Hα, Ca II INVESTIGATINGIRIS/ELLERMANBOMBSIN1-DRADIATIVEHYDRODYNAMICS 3 velocityflowsupto 2kms−1. Theupwardvelocityis atthe energydepositedaroundthetemperatureminimumexponen- leading edge of the shock and is stronger than the weaker, tially, between1000- 1 x106 ergs/cm3/sec(Grid3). Again, trailingdownflow. noenhancementisobservedintheMgIIh&klines,though With the associated synthesised Hα line profiles, it was strong continuum enhancement appears with these high en- apparent that although the 100 ergs/cm3/sec could create a ergydepositionrates. Theatmosphericresponseto thissud- smallenhancement,itwasnotsufficienttopushthelinewings denenergeticinjectiondidnotcreatedramaticallyhighertem- into emission. With energy deposition rates of 300 - 700 peratures.Infact,thepeaktemperatureinthe1x106ergs/cm3 ergs/cm3/sec, the Hαline wingenhancementwas 150%that modelreached9500K,withacorrespondingelectrondensity of the background profile, while a deposition rate of 1000 of1014cm−3andapeakshockvelocityof5kms−1. ergs/cm3/sec appeared to more than double the line wing ThecontributionfunctionoftheMgIIh&klinesappeared emissioninHα,whilealsoenhancingthecontinuumby20%, toshowalinecoreformationheightconcentratedintheupper whichiscontrarytoobservations. chromosphere,with little contributionfromthephotosphere. Anenergydepositionrateof500ergs/cm3/secwasthought The wings of the lines were formedslightly lower, closer to to be sufficient to replicate an EB-like enhancement in the thelinecoreformationregionofCaII8542Å.Iftheenergy wingsofHα. Thisenergywastheninjectedover200km,and depositionoccursin the lower-midchromosphere,enhanced placedacrossvariousregionsofthephotosphere/temperature emission in the Mg II h & k wings can be achieved, though minimumregioninanattempttolocatetheformationheight thiswillonlycauseflare-likeprofilesproducingfullemission of EBs (Grid 2). We also modeled the emission in the Ca inCaII8542ÅandHα(Grid4). II 8542 A line, because, by consideringtwo lines formed at It also became apparentthat the backgroundMg II h & k differentheights, we can better constrain the location of EB line profile of our model appeared in absorption rather than energy deposition. Fig. 1 shows the response of the atmo- in emission as is observed. In an attempt to rectify this is- sphere to the injected energy, along with the corresponding sue, a different starting atmosphere was adopted which has lineprofiles. it’s transition regionpushedto highercolumn masses, to re- Sincethedensitydecreaseswithincreasingheight,deposit- flect a more active, plage-like atmosphere (QS.SL.HT from ing energy higher in the atmosphere results in greater tem- (Allredetal.2015)). peratureenhancements. Amaximumtemperatureof9000K With this new starting atmosphere, the initial profile of wasgeneratedinGrid2.Bi-directionalflowsarealsoformed, withpeakvelocitiesupto5kms−1.Thesevaluesarestronger the Mg II h & k lines appear in emission, similar to the backgroundprofilesobserved(Peteretal.2014;Vissersetal. than thatof Grid 1. The electrondensity increase is notlin- 2015; Kimetal.2015; Tianetal.2016). However, the line ear with the heightof injected energy. The increase appears toplateauaround1.5x1013cm−3. Thisnon-linearbehaviour coresofCaII8542ÅandHαarealsoslightlyenhanced,with CaII8542Åbeingmoreprominent. is also apparent in the corresponding Hα and Ca II 8542 Å Again, two grids of models were run, one grid applying lineprofiles,withthegreatestdifferenceinthewingemission 1000ergs/cm3/secofheatingin200kmdepthsoverthepho- beingatthelowerinjectedheightswithinGrid2. AsmallHα tosphereandtemperatureminimum,similartoFig.1(Grid5). coreenhancementisalsoapparentinthesimulations.Thisef- Thesecondgridappliedthesameheatingfunctioninthechro- fectcouldbegreatlyreducedwiththeapplicationofaregular mosphere,upto2Mmabovethephotosphericfloor(Grid6). chromosphere(Rutten&Uitenbroek 2012). The lack of an Wefindthatinjectingtheenergyintothechromospherenow overlyingchromosphericcanopymakesthesmallcorecontri- butionfromthephotospherevisible. onlycausesstronglinecoreemissionintheHα,CaII8542Å, Fig. 2 shows contribution functionsfor the Hα and Ca II andMgIIh & kline profiles. Thisisaccompaniedbylarge 8542Ålineswhenanenergyof500ergs/cm3/secisdeposited Dopplershifts due to very strong velocities(>20 km s−1) in theleadingshockfront.ThestrongDopplervelocitiesappear between500-700kmabovethephotosphericfloor.Whenthe duetotheshockfrontinteractingwithtransitionregionwhich energyis deposited higherin the atmosphere, a strong Ca II is now at higher column masses. This forces the transition 8542 Å core enhancement is apparent (see Fig. 1). When regiontoshiftevenlowerintheatmosphere. the energyis injected lower in the atmosphere,the wing en- InGrid5,inwhichwevariedtheenergydepositionlocation hancementbroadensandbecomeslessintenseoverall,asthe over the photosphere and temperature minimum region, we energyis being injected into a regionwhere the outer wings findasimilaratmosphericresponsetothatofFig. 1(Grid2), areformedoverawiderrangeofheights. only slightly stronger due to the doubled heating rate. This canbeseeninFig. 3. 3. MGIIH&KLINEMODELING Fig. 4 shows the corresponding line profiles synthesised We have foundthat energydeposited in the 500 - 700 km for the atmospheres shown in Fig. 3. When the energy is layerresultedinthebestmatchtotypicallyobservedEBline depositedbelowthetemperatureminimumregion(300-500 profiles for the Hα and Ca II 8542 Å lines (e.g. Fig. 5 of kmabovethephotosphericfloor),thereisverylittleresponse Vissersetal.(2013)). In this Section, we consider the re- inallsynthesisedlines, buta noticeablecontinuumincrease, sponse of the Mg II h & k lines to similar EB heating. Re- andslightwingenhancementin Hα andCa II 8542Å. Sim- cent observations with the IRIS instrument hint at enhance- ilar to the quiet Sun model, the best fitting for the Hα and mentsinthewingsoftheselines(seeFig. 10of(Vissersetal. Ca II 8542 Å line profiles appears when the energy is in- 2015)).WeusetheRHlinesynthesiscode(Uitenbroek 2001; serted around the temperature minimum region (500 - 700 Pereira&Uitenbroek 2015) to calculate the line profiles in km). However, the Mg II h & k lines appear to have only partial redistribution (PRD). The 2 grids of models run for theirouterwingsshowingenhancement.TheresponseofMg HαandCaIIintheprevioussectionproducenoenhancement II h & k when the heating is applied between 700 - 900 km intheMgIIh&klines(Grids1and2). abovethephotosphericfloorismostsimilartothatofstrong A furthergridof modelswas created, which increases the 4 Reidetal. ∆λ(nm) ∆λ(nm) −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 −0.2 −0.1 0.0 0.1 0.2 τν = 1 Ci τν = 1 Ci v Time = 10.00s v Time = 10.00s z z 1.5 Iν 1.5 Iν m) 1.0 m) 1.0 M M ht ( ht ( g g Hei Hei 0.5 0.5 0.0 0.0 300 200 100 0 −100 −200 −300 50 0 −50 ∆ν (km s−1) ∆ν (km s−1) Figure2. Left: ContributionfunctionfortheHαline. Right: ContributionfunctionfortheCaII8542Ålineprofile. Darkregionsindicateareasofstrong contribution. Thegreenlinesshowthelineprofiles. Theredlinesshowtheτ=1location,andthebluedashedlineshowstheverticalvelocityasafunctionof height. Figure3. Left: Temperatureprofileacrossthetemperature minimumregionfor1000ergs/cm3/secdeposited atvarious heights, usingthepre-flarestarting atmosphere.Middle:Verticalvelocityprofiles.Right:Electrondensityprofiles.Thedashedlinesindicaterunswiththeinjectedenergydensityhalved. observed IRIS bombs (see Fig. 10 in (Vissersetal.2015)). chromospherecauses strong emission, especially in the core However, the Ca II 8542 Å line profile shows strong core ofCaII8542Å.WhenconsideringtheMgIIh&klinepro- emission with energy deposited at this height. When halv- files,thequietSunstartingatmosphereisnotviable,asitpro- ingtheenergydepositionratetotheidealrateidentifiedinthe ducedabackgroundprofileinabsorption.Insertingtheenergy previoussection,wefindtheenhancementsinthelinesreduce aroundthe temperatureminimum only enhancedthe contin- slightlyinCaII8542ÅandMgIIh&k,withaslightlylarger uum around these lines. The mid-upper chromosphere was differentialapparentintheHαlineprofile. thelocationofthemaincontributionoftheMgIIh&klines, To investigateif a largerdepth rangefor the energydepo- andsoonlybydepositingenergyherecouldonegetavisible sition is more appropriate, we also ran two larger modelsin responseintheselines,whichcouldovercomethecontinuum boththequietSunandpre-flareatmospheres(Grids7and8). enhancement. This would then only cause flare-like profiles These models inject 500 ergs/cm3/sec over ranges of 500 - intheHαandCaII8542Ålinecores. 1000 km and 500 - 1200 km. In all cases, strong core en- A pre-flare, plage-like starting model was used in an at- hancementswereseeninthesynthesisedCaII8542ÅandHα tempttoovercomethisandpushtheformationtoloweratmo- lineprofiles. TheMgIIh&klineprofilesappearedtoshow spheric heights. While this was the case, the Hα and Ca II flare-like profiles with the pre-flare atmosphere, and strong 8542Å line coreswereenhancedin comparisonto the quiet enhancementinthelinewingsinthequietSunatmosphere. Sunmodel,withtheCaII8542Åbackgroundprofileappear- ingparticularlyunrealisticincomparisontoobservations. 4. DISCUSSIONANDCONCLUSIONS However,itwas possibleto achieveMg IIh &k line pro- filessimilartoobservationsbydepositing500ergs/cm3/secat Wehaveused1-dimensionalradiativehydrodynamicalsim- 700-900 km above the photospheric floor. While the Mg II ulationsofthesolaratmospheretoinvestigatethelocationand profiles look similar to IRIS observations, the Ca II 8542 Å rate of energydeposition required to reproduceEB-like line cores appear in emission. If the energy is inserted 200 km profiles. Our findings based on a quiet Sun starting atmo- lower in the atmosphere (the ideal setup from the quiet Sun sphere suggest that the location of energydepositionis near the temperature minimum region, around 600 km above the models), the Hα and Ca II 8542 Å line profiles appear EB- photospheric floor. We find that placing the energy into the like, with wing emission and no core enhancement, relative INVESTIGATINGIRIS/ELLERMANBOMBSIN1-DRADIATIVEHYDRODYNAMICS 5 Figure4. Top:MgIIh&klineprofiles,calculatedinPRDfromtheatmospheresinFig. 3. BottomLeft: Hαlineprofiles. BottomRight: CaII8542Åline profiles.Thedashedlinesindicatethelineprofileswhentheenergydepositionishalved. tothebackgroundprofile. TheMgIIh&kprofileshowever bytheEuropeanCommissionsFP7CapacitiesProgramunder appearwithenhancementintheouterwings,muchunlikeob- the GrantAgreement312495. The research leadingto these servations. results has received funding from the European Communi- Wehaveshownthatbyconsideringthestartingatmosphere tys Seventh Framework Programme (FP7/2007-2013)under to bequietSun, we can obtainEB-like syntheticHα andCa grantagreementno. 606862(F-CHROMA). II 8542 Å line profiles. This results in bi-directional flows at the EB location due to the formation of a shock, with a REFERENCES stronger up-flow (2 - 5 km s−1), and weaker trailing down- flow (1 - 2 km s−1). This fits with observations reporting Allred,J.C.,Kowalski,A.F.,&Carlsson,M.2015,ApJ,809,104 bi-directional jets at EB locations (Matsumotoetal.2008a; Archontis,V.&Hood,A.W.2009,A&A,508,1469 Watanabeetal. 2011) and previous EB modeling attempts Berlicki,A.,Heinzel,P.,&Avrett,E.H.2010,MmSAI,81,646 (Archontis&Hood 2009).Alocaltemperatureenhancement Berlicki,A.,&Heinzel,P.2014,A&A,567,A110 of2000-3000Kalsoforms,andfitswithpreviousestimates Carlsson,M.,&Stein,R.F.1992,ApJ,397,L59 (Georgoulisetal. 2002; Fangetal. 2006; Isobeetal. 2007; Carlsson,M.,&Stein,R.F.1994,inChromosphericDynamics,ed.M. Carlsson,47 Archontis&Hood 2009;Lietal.2015). Thissituationhow- Carlsson,M.,&Stein,R.F.1995,ApJ,440,L29 ever did not accurately model the Mg II h & k lines, which Ellerman,F.1917Astrophys.,J46298 needed a more active starting atmosphere. While we could Fang,C.,Tang,Y.H.,Xu,Z.,Ding,M.D.,&Chen,P.F.2006,ApJ,643, recreateMgIIh&kprofilessimilartorecentIRISobserva- 1325 tions,wewereunabletoattainEB-likelineprofilesinall3of Georgoulis,M.K.,Rust,D.M.,Bernasconi,P.N.,&Schmieder,B.2002, ApJ,575,506 ourdiagnosticlinessimultaneously.WespeculatethatanEB- Hashimoto,Y.,Kitai,R.,Ichimoto,K.,etal.2010,PASJ,62,879 specificatmosphericmodelmaybeneeded,whichhasdiffer- Hong,J.,Ding,M.,Li,Y.,Fang,C.,&Cao,W.2014,ApJ,792,13 entatmospheric abundances,enabling the Ca II 8542Å line Isobe,H.,Tripathi,D.,&Archontis,V.2007,ApJ,657,L53 coreandMgIIh&klinewingstoformatdifferentheights. Judge,P.G.2015,ApJ,808,116 Kim,Y.,Yurchyshyn,V.,Bong,S.,etal.2015,ApJ,810,38 We also find that we were unable to super-heat the plasma Li,Z.,Fang,C.,Guo,Y.,Xu,Z.,&Cao,W.2015,RAA,15,9 to>10,000Kaspreviousworksspeculateinordertoexplains Litvinenko,Y.E.1999,ApJ,515,435 theMgIIh&klineformation(Peteretal.2014;Vissersetal. Matsumoto,T.,Kitai,R.,Shibata,K.,etal.2008a,PASJ,60,95 2015;Kimetal.2015;Tianetal.2016). Matsumoto,T.,Kitai,R.,Shibata,K.,etal.2008b,PASJ,60,577 AR thanksM. Carlsson for valuable commentson the pa- Nelson,C.J.,Shelyag,S.,Mathioudakis,M.,Doyle,J.G.,Madjarska,M.S., Uitenbroek,H.,Erde´lyi,R.2013b,ApJ,779125 per. Research at the Armagh Observatory is grant-aided by Nelson,C.,Scullion,E.M.,Doyle,J.G.,Freij,N.,&Erde´lyi,R.2015ApJ, the Northern Ireland Department of Communities. We ac- 798,19 knowledge support by STFC. This research was supported Pariat,E.,Schmieder,B.,Berlicki,A.,etal.2007,A&A,473,279 by the SOLARNET project (www.solarnet-east.eu), funded Pereira,T.M.D.,&Uitenbroek,H.2015,A&A,574,A3 Peter,H.,Tian,H.,Curdy,W.,etal.2014,Science,346,C315 6 Reidetal. GridNumber EnergyRate Height(km) Atmosphere Comments 1 100-1000 300-500 QuietSun 300-700ergs/cm3/secbestfitEBprofilesinHα. 2 500 300-1000(200kmstep) QuietSun 500-700kmbestfitEBprofilesinHαandCaII. 3 1000-1x106 300-500 QuietSun All<10,000K.Overwhelmedbycontinuumemissioninalllines. 4 500 1000-2000(200kmstep) QuietSun Flare-likeprofilesinCa&Hα.GoodMgIIresponse. 5 500/1000 300-900(200kmstep) Plage 500-700kmbestfitsEBCa&Hαprofiles.700-900kmbestfitsIBMgIIprofiles. 6 500/1000 1000-2000(200kmstep) Plage Flare-likeprofilesinalllines. 7 500 500-1000 Both StronglinecoreenhancementinCa,Hα.WeakMgIIresponseinQSatmosphere. 8 500 500-1200 Both Cainfullemission,Hαstrongenhancement.GoodMgIIresponseinQSatmosphere. Table1 Thegridsofmodelsusedinthisstudy.IB=IRISbombs.QS=QuietSunstartingatmosphere.Energyrateisinergs/cm3/sec. Qiu,J.,Ding,M.D.,Wang,H.,Denker,C.,&Goode,P.R.2000,ApJL, Socas-Navarro,H.,MartnezPillet,V.,Elmore,D.,etal.2006,Sol.Phys., 544,L157 235,75 Reid,A.,Mathioudakis,M.,Scullion,E.,etal.2015,ApJ805,64 Tian,H.,Xu,Z.,He,J.,&Madsen,C.2016,ApJ,824,96 Reid,A.L.,Mathioudakis,M.,Doyle,J.G.,etal.2016,ApJ,823,110 Uitenbroek,H.2001,ApJ,557,389 RouppevanderVoortL.H.M.,RuttenR.J.,VissersG.J.M.,2016,ArXiv Vissers,G.J.M.,vanderVoort,L.H.M.&Rutten,R.J.2013,ApJ77432 e-prints Vissers,G.J.M.,RouppevanderVoort,L.H.M.,Rutten,R.J.,Carlsson, RubiodaCosta,F.,Kleint,L.,Petrosian,V.,Liu,W.,&Allred,J.C.2016, M.,&DePontieu,B.2015,ApJ,812,11 ArXive-prints,arXiv:1603.04951 Watanabe,H.,Kitai,R,Okamoto,K.,Nishida,K.,Kiyohara,J.,Ueno,S., Rutten,R.J.,Vissers,G.J.M.,RouppevanderVoort,L.H.M.,Sutterlin,P., Hagino,M.,Ishii,T.T.&Shibata,K.2008,ApJ684736 &Vitas,N.2013,J.PhysicsConf.Series,440,1,012007 Watanabe,H.,Vissers,G.,Kitai,R.,vanderVoort,L.R.&Rutten,R.J. Rutten,R.J.&Uitenbroek,H.2012,A&A,540,A86 2011,ApJ,736,71 Yang,H.,Chae,J.,Lim,E.-K.,etal.2013,SoPh,288,39