ebook img

Solar Cells Based on Colloidal Nanocrystals PDF

236 Pages·2014·5.939 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solar Cells Based on Colloidal Nanocrystals

Springer Series in Materials Science 196 Holger Borchert Solar Cells Based on Colloidal Nanocrystals Springer Series in Materials Science Volume 196 Series editors Robert Hull, Charlottesville, VA, USA Chennupati Jagadish, Canberra, ACT, Australia Richard M. Osgood, New York, USA Jürgen Parisi, Oldenburg, Germany Shin-ichi Uchida, Tokyo, Japan Zhiming M. Wang, Chengdu, People’s Republic of China For furthervolumes: http://www.springer.com/series/856 The Springer Series in Materials Science covers the complete spectrum of materialsphysics,includingfundamentalprinciples,physicalproperties,materials theory and design. Recognizing the increasing importance of materials science in future device technologies, the book titles in this series reflect the state-of-the-art in understanding and controlling the structure and properties of all important classes of materials. Holger Borchert Solar Cells Based on Colloidal Nanocrystals 123 Holger Borchert Department of Physics Carl-von-Ossietzky University ofOldenburg Oldenburg Germany ISSN 0933-033X ISSN 2196-2812 (electronic) ISBN 978-3-319-04387-6 ISBN 978-3-319-04388-3 (eBook) DOI 10.1007/978-3-319-04388-3 Springer ChamHeidelberg New YorkDordrecht London LibraryofCongressControlNumber:2014932969 (cid:2)SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Solar cells involving colloidal nanocrystals are a rapidly developing field of research. Many physical and chemical properties of crystalline solids can signif- icantly change when the spatial dimensions of the crystallites are reduced to the nanometersizeregime.Thisopenspossibilitiestotunematerialpropertiesinview of specific applications. With respect to thin film photovoltaics, semiconductor nanocrystals have the potential to be used as tunable materials for efficient absorption of sunlight, either in combination with conductive polymer or also in inorganic absorber layers. Thereby, chemical approaches to synthesize the nano- particlesinliquidmediagiverisetothepossibilityofproducingabsorberlayersby deposition of the materials from solution. Therefore, similar as in the field of organic photovoltaics, relatively simple and cost-efficient processes like printing technologies may be used for the realization of corresponding thin films. Inthecaseoforganicphotovoltaicswhichitselfisacomparablyyoungandstill developing field, several books have appeared in recent years, giving good over- views and deep insight into that technology. Approaches to combine conductive polymer with inorganic semiconductor nanocrystals in hybrid systems are some- times treated as a side-aspect in books on organic photovoltaics or organic elec- tronics, but the literature specialized particularly on solar cells with inorganic nanocrystals is still rare. On the other hand, nanoparticle-based solar cells have made an impressive development in recent years, have their own particularities, and should merit more attention in terms of books focusing particularly on them. This was the main source for my motivation to write the present book. Researchonsolarcellswithcolloidalnanoparticlesisstronglyinterdisciplinary and covers many aspects of physics, chemistry, and materials science. The book aims at bridging gaps between the involved scientific disciplines andcollectsinto one work important fundamentals from different fields. The book reflects the current state of research on relevant materials and different types of nanoparticle- based solar cells. It addresses researchers, Ph.D. students, engineers, and others interestedintheapplicationofcolloidalnanoparticlesinphotovoltaics.Moreover, the book may also serve as an advanced textbook to accompany specialized lec- tures in physics, chemistry, materials science, and related areas. The book is organized into three parts, the first of them addressing specific propertiesofcolloidalnanocrystalsaswellasconductivepolymeringeneral.The secondpartfocusesonaselectionofcharacterizationmethodsrelevantforthefield. v vi Preface Thereby, short introductions to the different methods are given, and their appli- cation potential for exploring the properties of materials and solar cells is discussed.Thethirdpartofthebookdescribesdifferentconceptsforusingcolloidal nanocrystalsinsolarcellsandreviewsthestateoftheartandrecentdevelopments and tendencies in this research area. As the author, I would like to express my gratitude to all who supported the writingofthebook,eitherbyreadingpartsofthemanuscriptorhelpingmeinthe planning of the book. Namely, I would like to mention here my wife, Dr. Yulia Borchert, as well as my present, respectively, former colleagues Dr. Martin Knipper, Dr. Marta Kruszynska, Dr. Florian Witt, and Prof. Dr. Elizabeth von Hauff.IamalsoparticularlygratefultoProf.Dr.JürgenParisiforhisadviceinthe planning and in whose working group I got the opportunity to perform active research in the scientific field which the present book is focused on. I hope to provide with this book a useful and appealing work and hope the readers will enjoy it. Oldenburg, February 2014 Holger Borchert Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Part I Materials 2 Physics and Chemistry of Colloidal Semiconductor Nanocrystals . 15 2.1 Basic Concepts of Colloidal Synthesis . . . . . . . . . . . . . . . . . 15 2.2 Short Overview on Materials. . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Material Properties Depending on Particle Size . . . . . . . . . . . 20 2.4 Material Properties Related to the Surface of Colloidal Nanocrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Physics and Chemistry of Conductive Polymers. . . . . . . . . . . . . . 39 3.1 Electrical Conductivity in Organic Materials . . . . . . . . . . . . . 39 3.1.1 Hybridization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.2 Conjugated Double Bonds. . . . . . . . . . . . . . . . . . . . 42 3.1.3 The Structure and Conductivity of Trans-Polyacetylene . . . . . . . . . . . . . . . . . . . . . . 45 3.2 Different Types of Conductive Polymer . . . . . . . . . . . . . . . . 51 3.3 Physical and Chemical Properties of Conductive Polymer. . . . 54 3.3.1 Structural Properties: Chain Length and Regioregularity . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.2 Absorption Properties . . . . . . . . . . . . . . . . . . . . . . . 57 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 vii viii Contents Part II Characterization of Colloidal Nanocrystals and Thin Polymer Films 4 Electron Microscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.1 Basics of Electron Microscopy. . . . . . . . . . . . . . . . . . . . . . . 63 4.2 High-Resolution Transmission Electron Microscopy (HRTEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3 Fourier Analysis and Image Filtering . . . . . . . . . . . . . . . . . . 69 4.4 Particle Size Determination . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.5 Sample Preparation and Stability . . . . . . . . . . . . . . . . . . . . . 73 4.6 Scanning Electron Microscopy (SEM). . . . . . . . . . . . . . . . . . 74 4.7 Electron Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5 X-ray Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1 Basics of X-ray Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2 Particle Size Determination . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.3 Rietveld Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.4 Small Angle X-ray Scattering (SAXS) . . . . . . . . . . . . . . . . . 91 5.5 X-ray Diffraction of Soft Matter. . . . . . . . . . . . . . . . . . . . . . 92 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6 Photoelectron Spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.1 Fundamentals of X-ray Photoelectron Spectroscopy . . . . . . . . 95 6.2 Surface Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3 High-Resolution Photoelectron Spectroscopy of Semiconductor Nanocrystals . . . . . . . . . . . . . . . . . . . . . . 100 6.4 Quantitative Photoelectron Spectroscopy: Depth Profiles of the Chemical Composition. . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7 Cyclic Voltammetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.1 Fundamentals of Cyclic Voltammetry. . . . . . . . . . . . . . . . . . 111 7.2 Examples for the Study of Energy Levels in Organic Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.3 Analysis of Defect States in Colloidal Semiconductor Nanocrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8 Absorption and Photoluminescence Spectroscopy. . . . . . . . . . . . . 119 8.1 Fundamentals of Absorption Spectroscopy. . . . . . . . . . . . . . . 119 8.2 Fundamentals of Photoluminescence Spectroscopy. . . . . . . . . 121 8.3 Photoinduced Absorption Spectroscopy. . . . . . . . . . . . . . . . . 123 8.4 Time-Resolved Optical Spectroscopy . . . . . . . . . . . . . . . . . . 125 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Contents ix 9 Electron Spin Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 9.1 Fundamentals of Electron Spin Resonance Spectroscopy. . . . . 129 9.2 Light-Induced Electron Spin Resonance (L-ESR) Spectroscopy as a Probe for Charge Transfer Processes in Donor/Acceptor Systems . . . . . . . . . . . . . . . . . . . . . . . . . 132 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 10 Electrical Characterization of Solar Cells . . . . . . . . . . . . . . . . . . 139 10.1 Current–Voltage Measurements . . . . . . . . . . . . . . . . . . . . . . 139 10.1.1 Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 10.1.2 Measurement Conditions. . . . . . . . . . . . . . . . . . . . . 142 10.2 Quantum Efficiency Measurements. . . . . . . . . . . . . . . . . . . . 146 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 11 Charge Carrier Mobility Measurements . . . . . . . . . . . . . . . . . . . 149 11.1 General Aspects of Charge Transport . . . . . . . . . . . . . . . . . . 149 11.2 Organic Field Effect Transistors. . . . . . . . . . . . . . . . . . . . . . 151 11.3 Single Carrier Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Part III Solar Cells with Colloidal Nanocrystals 12 Hybrid Polymer/Nanocrystal Solar Cells. . . . . . . . . . . . . . . . . . . 159 12.1 Potential Advantages of Using Inorganic Nanocrystals as Alternative Electron Acceptors. . . . . . . . . . . . . . . . . . . . . 159 12.2 Material Combinations for Hybrid Solar Cells . . . . . . . . . . . . 162 12.2.1 Solar Cells Based on Cadmium Chalcogenides . . . . . 162 12.2.2 Solar Cells Based on Lead Chalcogenides. . . . . . . . . 169 12.2.3 Solar Cells Based on Ternary I–III–VI Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 12.2.4 Solar Cells Based on III–V Semiconductors. . . . . . . . 176 12.2.5 Solar Cells Based on Transition Metal Oxides. . . . . . 176 12.2.6 Solar Cells Based on Silicon Nanocrystals. . . . . . . . . 179 12.3 Elementary Processes in Hybrid Solar Cells and Strategies for Improvement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 12.3.1 Charge Separation at the Organic–Inorganic Donor–Acceptor Interface . . . . . . . . . . . . . . . . . . . . 180 12.3.2 Charge Transport in Organic–Inorganic Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 12.3.3 Defects and Charge Carrier Trapping in Hybrid Solar Cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 12.3.4 Alternatives to Ligand Exchange as Requirement for Hybrid BHJ Solar Cells . . . . . . . . . . . . . . . . . . . 195 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.