ebook img

Soft-matter Arti cial Muscle by Electrochemical Surface Oxidation of Liquid Metal Jiahe Liao Master PDF

74 Pages·2017·38.56 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Soft-matter Arti cial Muscle by Electrochemical Surface Oxidation of Liquid Metal Jiahe Liao Master

Soft-matter Arti(cid:1661)cial Muscle by Electrochemical Surface Oxidation of Liquid Metal Thesisby Jiahe Liao SubmittedtotheRoboticsInstitute inpartialful(cid:1661)llmentoftherequirementsforthedegreeof Master of Science in Robotics at C M U ThesisCommittee: ProfessorCarmelMajidi,Chair ProfessorMatthewTravers EricMarkvicka,Ph.D. August 2018 Soft-matter Arti(cid:1661)cial Muscle by Electrochemical Surface Oxidation of Liquid Metal Jiahe Liao TheRoboticsInstitute CarnegieMellonUniversity ProfessorCarmelMajidi,Chair Abstract Naturalmuscles,aresultofmorethan500millionsyearsofevolution,areelegantmachines thatgenerateforceandmotionelectrochemically. Thebriefhistoryofroboticsdoesnothave theluxuryofmillionsofyearstoreverse-engineermanyaspectsoflife. Thedevelopmentof arti(cid:1661)cialmusclesthereforeseekstobuildmoremuscle-likeactuatorsforrobots. Recentad- vancesintheengineeringofsoftmaterialshaveledtotheexplorationofnewparadigmsfor buildingarti(cid:1661)cialmusclesfrommattersthatsharesimilarpropertieswithbiologicaltissues. A diversity of physical phenomena has also been used to drive an actuator. Among those are the control of the surface energy of a liquid metal, which often has a signi(cid:1661)cant sur- ∼ ∼ facetensionwhichbecomespredominantatverysmall( mmand µm)scales. Thiswork formulates a paradigm for building arti(cid:1661)cial muscles that utilizes eutectic gallium-indium (EGaIn),aliquidmetalalloy(meltingpoint∼15.5○C)whichhasaverylargesurfacetension ∼ ( 624 mN/m) in the absence of surface gallium oxide (Ga O ), as an active material and 2 3 demonstrateskeypointsintherealizationanewclassofarti(cid:1661)cialmusclesbasedonthere- markable controllability of surface tension by electrocapillarity and surface oxidation with ∼ small voltages ( 1 V). Two different form factors are demonstrated. First, a hybrid struc- tureofcoilspringandEGaInthatiscapableofcontractioninanaqueoussodiumhydroxide (NaOH)solutionismodeledandexperimentallycharacterized. Second,acore-shellhybrid of EGaIn and polyacrylamide-potassium-hydroxide (PAAm-KOH) hydrogel as an equiva- lent device is hypothesized and validated. Limitations and issues are discussed. A broader perspectiveisalsoprovidedontheroleanduniquenessofthisarti(cid:1661)cialmuscleparadigmin thecurrentroboticslandscape. Acknowledgements IamdeeplygratefultoProf. CarmelMajidiforhiscontinualguidanceandsupport. Ithasbeenaprivilegetoworkwithandlearnfrommypreviousandcurrentlabmates. In particular,IwouldliketoacknowledgeDr. EricMarkvickaforhiskindencouragementand support,Dr. AlexiCharalambidesforhissharingofexperienceduringmy(cid:1661)rstyear,Hesham Zainiforourcountlessall-nighters,and(cid:1661)nallyYun-SikOhmforourinspiringcollaboration. Finally, I wish to thank my family for their love and my friends Yan-Jen Huang and AshwinKhadkefortheirin(cid:1661)nitesupport. I Contents Acknowledgements I Contents II ListofFigures III ListofTables VII 1 Introduction 2 1.1 MusclesinNature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Arti(cid:1661)cialMusclesforRobots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 OverviewofSoftActuators . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.2 ActuatorPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 OverviewofSurfaceTensionBasedActuation . . . . . . . . . . . . . . . . . . 18 1.3.1 Electrocapillarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.2 SurfaceOxidationofLiquidMetal . . . . . . . . . . . . . . . . . . . . 20 1.4 ThesisObjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2 HelicalSpring-LiquidMetalActuator 25 2.1 DesignandFabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2 ExperimentalSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.1 Quasi-staticResponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.2 DynamicResponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.3 PerformanceofSpring-LiquidMetalActuators . . . . . . . . . . . . . 34 II 2.4 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Hydrogel-LiquidMetalHybrids 37 3.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 DesignandFabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 GelPreparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.2 EGaInDeposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 ResultandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 ConclusionandFutureResearch 46 Bibliography 48 III List of Figures 1.1 Illustrationofnaturalandarti(cid:1661)cialmusclesasstimuli-responsivemachines thattransformsomeformofenergyintomechanicalwork. Adielectricelas- tomeractuator(DEA)isusedasanexampleofarti(cid:1661)cialmuscles. . . . . . . . 3 1.2 Imagesofadropletofeutecticgallium-indium(EGaIn)immersedinpotas- siumhydroxide(KOH)solution. (A)Thedropletisnearlysphericaldueto highsurfaceenergy. (B)Whengalliumoxideisformedonthesurface, the ∼ droplet(cid:1662)attensduetodrasticallylowered( 0)surfacetension. . . . . . . . . 5 1.3 Imagesofthehierarchyofskeletalmuscle. (a)Caterpillar(b)Muscletissue (c)AMusclecell(muscle(cid:1661)ber)isabasiccellularunit,whichisabundleof even smaller (cid:1661)bers called myo(cid:1661)brils. (d) Myo(cid:1661)bril (e) A sarcomere is the basiccontractileunit. (f)Actin(thin)andmyosin(thick)(cid:1661)lamentsarere- sponsibleforthemicroscopicslidingandmacroscopiccontractionofmus- cles. Titin(elastic)(cid:1661)lamentsanchormyosins. Imagesources: (a)from[81], (b)from[8],(c,d)from[84],(e)from[42],(f)from[114]. . . . . . . . . . . . 6 IV 1.4 Imagesofpreviousworkonarti(cid:1661)cialmuscles,categorizedbymaterials(A1- A4), energy sources (B1-B4) and actuation principles (C1-C4). (A1) Elas- tomers(A2)Shape-memoryalloys(A3)Liquidcrystals(A4)Hydrogels(B1) Electricity (B2) Magnetic Field (B3) Heat (B4) Chemical (C1) Coulomb forces (C2) Ionic diffusion (C3) Phase transition (C4) Magnetic gradients. From[109,59,98,137,88,41,90]. . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5 Plotofstressvs. strainoutputofnaturalmuscles,electricmotor,andelectri- calarti(cid:1661)cialmuscles. Notethatsomevaluesarecitedfromdifferentsources andapproximateasinTable1.3. Plotscalesarelogarithmic. . . . . . . . . . . 16 1.6 Plot of work density vs. strain rate of natural muscles, electric motor, and electrical arti(cid:1661)cial muscles. Note that some values are cited from different sourcesandapproximateasinTable1.3. Plotscalesarelogarithmic. . . . . . 17 1.7 Plot of operating voltage vs. bandwidth (highest operating frequency) of natural muscles, electric motor, and electrical arti(cid:1661)cial muscles. Note that some values are cited from different sources and approximate as in Tables 1.4and1.5. Plotscalesarelogarithmic. . . . . . . . . . . . . . . . . . . . . . . 17 1.8 Illustration of the formation of an electrical double layer on the metal sur- faceinanelectrolyte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.9 Illustrationofthedissolutionofgalliuminasolutionofsodiumhydroxide (NaOH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.10 Illustration of gallium oxide skin which effectively acts as a surfactant be- tweentheEGaInandNaOHduetothehydrophilicityofGa O . . . . . . . . 22 2 3 V 1.11 Comparison of the interfacial tension-potential relationship using electro- capillarityonlyandusingelectrocapillaritywithsurfaceoxidation. Datare- producedfrom[60].. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1 Hill-type model for muscle contraction. The nonlinearlity is abstracted by three black boxes: a contractile element (CE) and two spring-like elastic elementsinseries(SE)andinparallel(PE). . . . . . . . . . . . . . . . . . . . . 26 2.2 Illustrationofthedesignofthespring-LMactuator. WorkbyHeshamZaini. 27 2.3 Imageofthefabricationresultandtheexperimentalsetupofthespring-LM actuator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4 Images of (A) full contraction and (B) full expansion of a spring-LM ac- tuator. The full contraction corresponds to -0.5 V and the full expansion correspondsto1.0VrelativetoNaOHsolution. Theimageanalysisisdone bytrackingthelowertip(redline)ofthehelix. Scalebarrepresents10mm. 29 2.5 Plotofactuatorlengthvs. potentialoftheelectroderelativetoNaOHsolu- tionwithatrianglewave(period: 120s). Theactuatorwasloadedwithzero washers. DatareproducedfromtheimageanalysisbyHeshamZaini. . . . . 30 2.6 Quasi-staticanalysisofaspring-LMactuator. (A)Plotofactuatorlengthvs. voltageforloadsvaryingfromzerowashers(F = 0)tofourwashers(F = 7:67 mN). (B-D) Work vs. load, length vs. voltage, work vs. voltage taken overtherangefrom0to1.5V.Datareproducedfromtheimageanalysisby HeshamZaini. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 VI 2.7 Stepresponseofaspring-LMactuatorshowing(A)step-upfrom-0.5to1V and(B)step-downfrom1Vto-0.5V.t representsthesettlingtimeforthe s actuatortiptoenterwithin5%ofitssteady-stateposition. Datareproduced fromtheimageanalysisbyHeshamZaini.. . . . . . . . . . . . . . . . . . . . . 33 2.8 Comparison of spring-LM actuators to other actuators in terms of stress output vs. strain output. Values are approximated (Source are the same as Figure1.5). Stressoutputisapproximatedusingthecross-sectionalareaof EGaInbridges,notthespring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.9 Comparison of spring-LM actuators to other actuators in terms of work density vs. strain rate. Values are approximated (Source are the same as Figure1.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1 Conceptoftheproposedcaviar-likehydrogel-LMstructure. . . . . . . . . . . 39 3.2 AnEGaIndropletbeingdepositedintoasampleofcuredPAAm-KOHhy- drogel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 DemonstrationofEGaInheartbeatsinsidethePAAm-KOHhydrogel. Hy- drogengasbubblescanbeseenattheelectrodes. . . . . . . . . . . . . . . . . . 43 VII List of Tables 1.1 Summaryofthehierarchyofmammalskeletalmuscles. Theshortestmuscle ∼ inhumanisthestapedius( 1mm)inthemiddleearandthelargestisthe ∼ sartorius( 600mm)alongthethigh. Theexactlengthofthelongestmuscle inbluewhales,duetolackofdata,isapproximatedtotheirwholebodylength. 7 1.2 Propertiesofskeletalmuscles. Thelengthscaleoflongestmammalianmus- cleisapproximatedbythewholebodylengthofbluewhales. . . . . . . . . . 9 1.3 Properties of selected electrical arti(cid:1661)cial muscles. Values marked with † areapproximate. The(peak) stressrepresentsthemaximumforceperunit cross-sectionalareathatanarti(cid:1661)cialmuscleisabletogenerate. Thepower- to-massratioofIPMCsiscalculatedbytakingthemeasurement870W/m3 3 from[7]andthedensity1,500kg/m from[86]. . . . . . . . . . . . . . . . . . 14 VIII

Description:
Performance of Spring-Liquid Metal Actuators . 34 (a) Caterpillar (b) Muscle tissue. (c) A Muscle CRC handbook of chemistry and physics. CRC press . [84] Elaine N. Marieb and Suzanne M. Keller. “Essentials of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.