Soft-matter Arti(cid:1661)cial Muscle by Electrochemical Surface Oxidation of Liquid Metal Thesisby Jiahe Liao SubmittedtotheRoboticsInstitute inpartialful(cid:1661)llmentoftherequirementsforthedegreeof Master of Science in Robotics at C M U ThesisCommittee: ProfessorCarmelMajidi,Chair ProfessorMatthewTravers EricMarkvicka,Ph.D. August 2018 Soft-matter Arti(cid:1661)cial Muscle by Electrochemical Surface Oxidation of Liquid Metal Jiahe Liao TheRoboticsInstitute CarnegieMellonUniversity ProfessorCarmelMajidi,Chair Abstract Naturalmuscles,aresultofmorethan500millionsyearsofevolution,areelegantmachines thatgenerateforceandmotionelectrochemically. Thebriefhistoryofroboticsdoesnothave theluxuryofmillionsofyearstoreverse-engineermanyaspectsoflife. Thedevelopmentof arti(cid:1661)cialmusclesthereforeseekstobuildmoremuscle-likeactuatorsforrobots. Recentad- vancesintheengineeringofsoftmaterialshaveledtotheexplorationofnewparadigmsfor buildingarti(cid:1661)cialmusclesfrommattersthatsharesimilarpropertieswithbiologicaltissues. A diversity of physical phenomena has also been used to drive an actuator. Among those are the control of the surface energy of a liquid metal, which often has a signi(cid:1661)cant sur- ∼ ∼ facetensionwhichbecomespredominantatverysmall( mmand µm)scales. Thiswork formulates a paradigm for building arti(cid:1661)cial muscles that utilizes eutectic gallium-indium (EGaIn),aliquidmetalalloy(meltingpoint∼15.5○C)whichhasaverylargesurfacetension ∼ ( 624 mN/m) in the absence of surface gallium oxide (Ga O ), as an active material and 2 3 demonstrateskeypointsintherealizationanewclassofarti(cid:1661)cialmusclesbasedonthere- markable controllability of surface tension by electrocapillarity and surface oxidation with ∼ small voltages ( 1 V). Two different form factors are demonstrated. First, a hybrid struc- tureofcoilspringandEGaInthatiscapableofcontractioninanaqueoussodiumhydroxide (NaOH)solutionismodeledandexperimentallycharacterized. Second,acore-shellhybrid of EGaIn and polyacrylamide-potassium-hydroxide (PAAm-KOH) hydrogel as an equiva- lent device is hypothesized and validated. Limitations and issues are discussed. A broader perspectiveisalsoprovidedontheroleanduniquenessofthisarti(cid:1661)cialmuscleparadigmin thecurrentroboticslandscape. Acknowledgements IamdeeplygratefultoProf. CarmelMajidiforhiscontinualguidanceandsupport. Ithasbeenaprivilegetoworkwithandlearnfrommypreviousandcurrentlabmates. In particular,IwouldliketoacknowledgeDr. EricMarkvickaforhiskindencouragementand support,Dr. AlexiCharalambidesforhissharingofexperienceduringmy(cid:1661)rstyear,Hesham Zainiforourcountlessall-nighters,and(cid:1661)nallyYun-SikOhmforourinspiringcollaboration. Finally, I wish to thank my family for their love and my friends Yan-Jen Huang and AshwinKhadkefortheirin(cid:1661)nitesupport. I Contents Acknowledgements I Contents II ListofFigures III ListofTables VII 1 Introduction 2 1.1 MusclesinNature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Arti(cid:1661)cialMusclesforRobots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 OverviewofSoftActuators . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.2 ActuatorPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 OverviewofSurfaceTensionBasedActuation . . . . . . . . . . . . . . . . . . 18 1.3.1 Electrocapillarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.2 SurfaceOxidationofLiquidMetal . . . . . . . . . . . . . . . . . . . . 20 1.4 ThesisObjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2 HelicalSpring-LiquidMetalActuator 25 2.1 DesignandFabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2 ExperimentalSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.1 Quasi-staticResponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.2 DynamicResponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.3 PerformanceofSpring-LiquidMetalActuators . . . . . . . . . . . . . 34 II 2.4 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Hydrogel-LiquidMetalHybrids 37 3.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 DesignandFabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 GelPreparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.2 EGaInDeposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 ResultandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 ConclusionandFutureResearch 46 Bibliography 48 III List of Figures 1.1 Illustrationofnaturalandarti(cid:1661)cialmusclesasstimuli-responsivemachines thattransformsomeformofenergyintomechanicalwork. Adielectricelas- tomeractuator(DEA)isusedasanexampleofarti(cid:1661)cialmuscles. . . . . . . . 3 1.2 Imagesofadropletofeutecticgallium-indium(EGaIn)immersedinpotas- siumhydroxide(KOH)solution. (A)Thedropletisnearlysphericaldueto highsurfaceenergy. (B)Whengalliumoxideisformedonthesurface, the ∼ droplet(cid:1662)attensduetodrasticallylowered( 0)surfacetension. . . . . . . . . 5 1.3 Imagesofthehierarchyofskeletalmuscle. (a)Caterpillar(b)Muscletissue (c)AMusclecell(muscle(cid:1661)ber)isabasiccellularunit,whichisabundleof even smaller (cid:1661)bers called myo(cid:1661)brils. (d) Myo(cid:1661)bril (e) A sarcomere is the basiccontractileunit. (f)Actin(thin)andmyosin(thick)(cid:1661)lamentsarere- sponsibleforthemicroscopicslidingandmacroscopiccontractionofmus- cles. Titin(elastic)(cid:1661)lamentsanchormyosins. Imagesources: (a)from[81], (b)from[8],(c,d)from[84],(e)from[42],(f)from[114]. . . . . . . . . . . . 6 IV 1.4 Imagesofpreviousworkonarti(cid:1661)cialmuscles,categorizedbymaterials(A1- A4), energy sources (B1-B4) and actuation principles (C1-C4). (A1) Elas- tomers(A2)Shape-memoryalloys(A3)Liquidcrystals(A4)Hydrogels(B1) Electricity (B2) Magnetic Field (B3) Heat (B4) Chemical (C1) Coulomb forces (C2) Ionic diffusion (C3) Phase transition (C4) Magnetic gradients. From[109,59,98,137,88,41,90]. . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5 Plotofstressvs. strainoutputofnaturalmuscles,electricmotor,andelectri- calarti(cid:1661)cialmuscles. Notethatsomevaluesarecitedfromdifferentsources andapproximateasinTable1.3. Plotscalesarelogarithmic. . . . . . . . . . . 16 1.6 Plot of work density vs. strain rate of natural muscles, electric motor, and electrical arti(cid:1661)cial muscles. Note that some values are cited from different sourcesandapproximateasinTable1.3. Plotscalesarelogarithmic. . . . . . 17 1.7 Plot of operating voltage vs. bandwidth (highest operating frequency) of natural muscles, electric motor, and electrical arti(cid:1661)cial muscles. Note that some values are cited from different sources and approximate as in Tables 1.4and1.5. Plotscalesarelogarithmic. . . . . . . . . . . . . . . . . . . . . . . 17 1.8 Illustration of the formation of an electrical double layer on the metal sur- faceinanelectrolyte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.9 Illustrationofthedissolutionofgalliuminasolutionofsodiumhydroxide (NaOH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.10 Illustration of gallium oxide skin which effectively acts as a surfactant be- tweentheEGaInandNaOHduetothehydrophilicityofGa O . . . . . . . . 22 2 3 V 1.11 Comparison of the interfacial tension-potential relationship using electro- capillarityonlyandusingelectrocapillaritywithsurfaceoxidation. Datare- producedfrom[60].. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1 Hill-type model for muscle contraction. The nonlinearlity is abstracted by three black boxes: a contractile element (CE) and two spring-like elastic elementsinseries(SE)andinparallel(PE). . . . . . . . . . . . . . . . . . . . . 26 2.2 Illustrationofthedesignofthespring-LMactuator. WorkbyHeshamZaini. 27 2.3 Imageofthefabricationresultandtheexperimentalsetupofthespring-LM actuator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4 Images of (A) full contraction and (B) full expansion of a spring-LM ac- tuator. The full contraction corresponds to -0.5 V and the full expansion correspondsto1.0VrelativetoNaOHsolution. Theimageanalysisisdone bytrackingthelowertip(redline)ofthehelix. Scalebarrepresents10mm. 29 2.5 Plotofactuatorlengthvs. potentialoftheelectroderelativetoNaOHsolu- tionwithatrianglewave(period: 120s). Theactuatorwasloadedwithzero washers. DatareproducedfromtheimageanalysisbyHeshamZaini. . . . . 30 2.6 Quasi-staticanalysisofaspring-LMactuator. (A)Plotofactuatorlengthvs. voltageforloadsvaryingfromzerowashers(F = 0)tofourwashers(F = 7:67 mN). (B-D) Work vs. load, length vs. voltage, work vs. voltage taken overtherangefrom0to1.5V.Datareproducedfromtheimageanalysisby HeshamZaini. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 VI 2.7 Stepresponseofaspring-LMactuatorshowing(A)step-upfrom-0.5to1V and(B)step-downfrom1Vto-0.5V.t representsthesettlingtimeforthe s actuatortiptoenterwithin5%ofitssteady-stateposition. Datareproduced fromtheimageanalysisbyHeshamZaini.. . . . . . . . . . . . . . . . . . . . . 33 2.8 Comparison of spring-LM actuators to other actuators in terms of stress output vs. strain output. Values are approximated (Source are the same as Figure1.5). Stressoutputisapproximatedusingthecross-sectionalareaof EGaInbridges,notthespring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.9 Comparison of spring-LM actuators to other actuators in terms of work density vs. strain rate. Values are approximated (Source are the same as Figure1.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1 Conceptoftheproposedcaviar-likehydrogel-LMstructure. . . . . . . . . . . 39 3.2 AnEGaIndropletbeingdepositedintoasampleofcuredPAAm-KOHhy- drogel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 DemonstrationofEGaInheartbeatsinsidethePAAm-KOHhydrogel. Hy- drogengasbubblescanbeseenattheelectrodes. . . . . . . . . . . . . . . . . . 43 VII List of Tables 1.1 Summaryofthehierarchyofmammalskeletalmuscles. Theshortestmuscle ∼ inhumanisthestapedius( 1mm)inthemiddleearandthelargestisthe ∼ sartorius( 600mm)alongthethigh. Theexactlengthofthelongestmuscle inbluewhales,duetolackofdata,isapproximatedtotheirwholebodylength. 7 1.2 Propertiesofskeletalmuscles. Thelengthscaleoflongestmammalianmus- cleisapproximatedbythewholebodylengthofbluewhales. . . . . . . . . . 9 1.3 Properties of selected electrical arti(cid:1661)cial muscles. Values marked with † areapproximate. The(peak) stressrepresentsthemaximumforceperunit cross-sectionalareathatanarti(cid:1661)cialmuscleisabletogenerate. Thepower- to-massratioofIPMCsiscalculatedbytakingthemeasurement870W/m3 3 from[7]andthedensity1,500kg/m from[86]. . . . . . . . . . . . . . . . . . 14 VIII
Description: