ebook img

Soft-Fermion-Pole Mechanism to Single Spin Asymmetry in Hadronic Pion Production PDF

0.05 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Soft-Fermion-Pole Mechanism to Single Spin Asymmetry in Hadronic Pion Production

Soft-Fermion-Pole Mechanism to Single Spin Asymmetry in Hadronic Pion Production Yuji Koike and Tetsuya Tomita 9 DepartmentofPhysics,NiigataUniversity,Ikarashi,Niigata950-2181,Japan 0 0 2 Abstract. Single spin asymmetry (SSA) is a twist-3 observable in the collinear factorization ap- proach.Wepresentatwist-3single-spin-dependentcrosssectionformulaforthepionproductionin n pp-collision,p p p X,relevanttoRHICexperiment.Inparticular,wecalculatethesoft-fermion- a ↑ → pole (SFP) contributionto the crosssection from the quark-gluoncorrelationfunctions.We show J thatitseffectcanbeaslargeasthesoft-gluon-pole(SGP)contributionowingtothelargeSFPpar- 9 tonichardcrosssection,eventhoughthederivativeoftheSFPfunctiondoesnotparticipateinthe 1 crosssection. ] Keywords: Singlespinasymmetry,Twist-3,Soft-fermion-pole h PACS: 12.38.Bx,13.88.+e,13.85.Ni p - p e The observed large single spin asymmetry (SSA) in p p hX (h = p ,K etc) can ↑ h → not be explained by the usual parton model and perturbative QCD. In the framework [ of collinear factorization, SSA is a twist-3 observable and can be described in terms of 1 thetwist-3quark-gluon-correlationcorrelationfunctionsin thenucleonand/orpion[1]- v 6 [9]. Among various components of the twist-3 cross sections, a large contribution is 5 expected to come from the twist-3 distribution functions in the transversely polarized 7 nucleon.(See[4],however.)Therearetwoindependenttwist-3distributionsGa(x ,x ) 2 F 1 2 1. andGaF(x1,x2)whicharedefinedfromalight-conecorrelationfunctioninthenucleon 0 y¯aFa +y a wherey a isthequarkfieldofflavoraandFa + isthegluon’sfieldstrengt∼h. 9 h i Forteheexplicitdefinitionof Ga(x ,x ),Ga(x ,x ) and therelation between different 0 F 1 2 F 1 2 { } : expressions for the twist-3 distribution functions, see [5, 7]. Due to the naively T-odd v i nature of SSA, the relevant cross sectioneoccurs as a pole contribution of an internal X propagator in the partonic hard part. For p p p X, two kinds of poles contribute: ↑ r → a soft-gluon-pole(SGP) leading to x1 =x2 and soft-fermion-pole(SFP) leading to xi =0 (i = 1 or 2). Thus the contribution to the cross section from these functions can be schematicallywrittenas dG (x,x) D s tw3 = G (x,x) x F f(x ) D(z) sˆ F ′ SGP − dx ⊗ ⊗ ⊗ (cid:18) (cid:19) + G (0,x) f(x) D(z) sˆ +G (0,x) f(x) D(z) sˆ , (1) F ′ SFP F ′ S′FP ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ where we have used the fact that the SGP contribution appears in the combination e of G (x,x) xdGF(x,x) [6, 9]. Note only G (x,x) contributes through the SGP, since F − dx F G (x,x)=0 due to the anti-symmetric nature of G (x ,x ) under x x . The origin F F 1 2 1 2 ofthiscombinationandtheconnectionofsˆ tothetwist-2crosssec↔tionwasclarified SGP ien [9, 8]. Previous analyses[2, 6] focussed on theeSGP contribution (first term of (1)), assumingthatthisoneisadominantcontribution.However,thereisnocluethattheSFP functionsG (0,x)andG (0,x)themselvesaresmall,anditsimportancedependsonthe F F behaviorofthepartonichard cross sectionssˆ and sˆ . SFP S′FP The purpose of this reeport is to present the SFP cross section for p p p X and to ↑ → study its impact compared with the SGP contribution, assuming that the SFP functions G (0,x)and G (0,x)havethesameorderofmagnitudeas theSGPfunctionG (x,x). F F F For the calculation of the SFP contribution to p (p,S )+ p(p ) p (P )+X, we ↑ ′ h followed the eformalism in [7]. With the Mandelstam va⊥riables for→this process, S = (p+p )2,T =(p P )2 andU =(p P )2,theSFPcontributioncanbewrittenas[10]: ′ h ′ h − − E d3D s SFP = a s2MNp e +PhS (cid:229) 1 dz 1 dx′ dx 1 h dPh3 S 2 − ⊥a,b,cZzmin z3 Zx′min x′ Z x x′S+T/z d x −x′U/z (cid:229) Ga(0,x)+Ga(0,x) × −xS+T/z F F (cid:18) ′ (cid:19)"a,b,c (cid:16) (cid:17) e qb(x) Dc(z)sˆ +Dc¯(z)sˆ +qb¯(x) Dc(z)sˆ +Dc¯(z)sˆ ′ ab c ab c¯ ′ ab¯ c ab¯ c¯ × → → → → n o +(cid:229) (cid:0)Ga(0,x)+Ga(0,x) qb((cid:1)x)Dg(z)sˆ(cid:0) +qb¯(x)Dg(z)sˆ (cid:1) F F ′ ab g ′ ab¯ g a,b → → (cid:16) (cid:17)(cid:16) (cid:17) +(cid:229) Ga(0,x)+Gea(0,x) G(x) Dc(z)sˆ +Dc¯(z)sˆ F F ′ ag c ag c¯ → → a,c (cid:16) (cid:17) (cid:0) (cid:1) +(cid:229) Ga(0,x)+Gea(0,x) G(x)Dg(z)sˆ , (2) F F ′ ag g → a (cid:21) (cid:16) (cid:17) where the summation (cid:229) impelies that the sum of a is over all quark and anti-quark a,b,c flavors (a = u,d,s,u¯,d¯,s¯, ) and the sum of b and c is restricted onto quark flavors ··· when a is a quark and onto anti-quark flavors when a is an anti-quark. (For an anti- quark b, b¯ denotes quark flavor.) The integration region in the convolution formula is T/z (T+U) specified by x′min = S−+U/z and zmin = − S . G(x′) represents the gluon distribution andDg(z)isthegluonfragmentationfunctionforthepion.sˆ etcrepresentspartonic ab c hard cross sections where c is the flavor of the parton fragme→nting into the pion. They are functions of the Mandelstam variables in the parton level; sˆ=(xp+x p )2 =xx S, ′ ′ ′ tˆ=(xp P /z)2 = xT and uˆ=(x p P /z)2 = x′U and are givenas follows(N =3 is − h z ′ ′− h z thenumberofcolor): (N2sˆ+2tˆ)(sˆ2+uˆ2) (N2tˆ+uˆ sˆ)sˆ sˆ = − d +− − d d , ab→c N2tˆ3uˆ ac N3tˆuˆ2 ab ac sˆ = 0, ab c¯ → (N2uˆ+2tˆ)(sˆ2+uˆ2) (N2uˆ+2sˆ)(tˆ2+uˆ2) (N2 1)uˆ2 sˆab¯ c = N2tˆ3uˆ d ac+ N2sˆ2tˆuˆ d ab− N−3sˆtˆ2 d abd ac, → (N2tˆ+2sˆ)(tˆ2+uˆ2) N2sˆ+tˆ uˆ sˆab¯ c¯ = − N2sˆ2tˆuˆ d ab+− N3uˆ2− d abd ac, (3) → (N2sˆ+2tˆ)(sˆ2+uˆ2) 1 sˆ = + − N2(sˆ3+3sˆ2uˆ 2uˆ3)+sˆ3 sˆ2uˆ d , ab→g N2tˆ3uˆ N3sˆtˆuˆ2 − − ab (N2uˆ+2tˆ)(sˆ2+uˆ2) (cid:0) (cid:1) sˆab¯ g = − N2tˆ3uˆ → 1 uˆ 1 1 sˆ2+sˆtˆ+tˆ2 uˆ N(uˆ3 tˆ3)(tˆ2+uˆ2) + + + + − d , (4) N3 sˆtˆ uˆ N sˆuˆ2 −tˆ2 sˆ2tˆ2uˆ2 ab (cid:26) (cid:18) (cid:19) (cid:18) (cid:19) (cid:27) N2(sˆ3 uˆ3)(sˆ2+uˆ2) sˆ = − ag→c (N2 1)sˆtˆ3uˆ2 (cid:26) − sˆuˆ(sˆ2+sˆuˆ uˆ2) N2(sˆ4+sˆ3uˆ+sˆ2uˆ2+sˆuˆ3+uˆ4) (N2uˆ+2sˆ)(tˆ2+uˆ2) + − − d + , N2(N2 1)sˆtˆ2uˆ2 ac N(N2 1)sˆ2tˆuˆ − (cid:27) − sˆ+2tˆ N2sˆ (N2tˆ+2sˆ)(tˆ2+uˆ2) sˆ = − d +− , (5) ag→c¯ N2(N2 1)uˆ2 ac N(N2 1)sˆ2tˆuˆ − − N2 sˆ = − 4sˆ6+11sˆ5tˆ+19sˆ4tˆ2+22sˆ3tˆ3+19sˆ2tˆ4+11sˆtˆ5+4tˆ6 ag→g (N2 1)sˆ2tˆ3uˆ2 − (cid:16) (cid:17) 1 + sˆtˆuˆ2+N2(sˆ4+sˆ3tˆ+2sˆ2tˆ2+sˆtˆ3+tˆ4) . (6) N2(N2 1)sˆtˆ2uˆ2 − − (cid:8) (cid:9) A remarkable feature of (2) is that the partonic hard cross sections for G (0,x) and F G (0,x) are the same, even though each diagram gives different contributions for the F two functions[10]. Accordingly, they appear in the combination of Ga(0,x)+Ga(0,x) F F ien (2). We also note that some terms in the hard cross section (the first terms in sˆ , ab c sˆab g, sˆag c, sˆag g etc) accompany the large color factors compared to tehe S→GP cros→s sectio→n derive→d in [6], and show the steep rising behavior in the forward direction (i.e. large S/T). This suggests that the SFP contribution gives rise to the nonnegligible contributiontotheasymmetry. ToseetheimpactoftheSFPcontribution,wehaveperformedanumericalcalculation ofA for p p p X,assumingthat theSFP functionisofthesameorderofmagnitude N ↑ as the SGP fun→ction. Kouvaris et al. [6] have parametrized the SGP function Ga(x,x) F so that the SGP contribution reproduces the A data obtained from RHIC and FNAL N data. Their analysis shows that both data are reasonably well reproduced. In particular, they found that the derivativeterm in (1) brings dominant contributioncompared to the nonderivativecontribution.HereweadoptFit(I)of[6]andassumeGa(0,x)+Ga(0,x)= F F Ga(x,x) (a=u,d). Fig. 1 shows A for the pion at √S=200 GeV and P =1.5 GeV F N hT withand withoutSFP contribution.As is seen from thefigure that theSFP coentribution brings large effect in the positivex region, while its effect is negligiblein the negative F x region.FromthisfigureitisclearthattheSFPcontributioncanaffectA significantly F N eventhoughit doesnot receiveenhancement by thederivativeunlikeSGPcontribution, unlesstheSFP functionitselfis small. To summarize, we have calculated the SFP contribution to the cross section for p p hX associatedwiththetwist-3quark-gluoncorrelationfunctionsinthepolarized ↑ → A 0.4 N s = (200 GeV)2 P =1.5 GeV 0.2 T 0.0 + p (SGP) + p (SGP+SFP) - -0.2 p (SGP) - p (SGP+SFP) 0 p (SGP) -0.4 0 p (SGP+SFP) -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 x F FIGURE1. A for p p p X at√S=200GeVandP =1.5GeV.Solid,long-dashed,anddash-dot N ↑ hT lines are, respectively, A →for p +, p and p 0 obtained with only the SGP contribution. Dotted, short- N − dashed,anddash-double-dotlinesare,respectively,A forp +, p andp 0 obtainedwith bothSGP and N − SFPcontributions. nucleon, and have shown that its effect is significant and should be included in the analysis of A . For a more complete analysis, one needs to include the contribution N from the triple-gluontwist-3distributionfunction as well. Recent study[11] showsthat A for the open charm production has a potential to determine the function. We hope N that the global analysis of all those data including all the QCD effects will clarify the originofobservedSSA. ACKNOWLEDGMENTS TheworkofY.K.issupportedinpartbyUchidaEnergySciencePromotionFoundation. REFERENCES 1. J.QiuandG.Sterman,Nucl.Phys.B378(1992)52. 2. J.QiuandG.Sterman,Phys.Rev.D59(1999)014004. 3. Y.KanazawaandY.Koike,Phys.Lett.B478(2000)121;Phys.Lett.B490(2000)99. 4. Y.Koike,AIPConf.Proc.675(2003)449[hep-ph/0210396];Nucl.Phys.A721(2003)364. 5. H.Eguchi,Y.KoikeandK.Tanaka,Nucl.Phys.B752(2006)1. 6. C.Kouvaris,J.W.Qiu,W.VogelsangandF.Yuan,Phys.Rev.D74,114013(2006). 7. H.Eguchi,Y.KoikeandK.Tanaka,Nucl.Phys.B763193(2007). 8. Y.KoikeandK.Tanaka,Phys.Lett.B646,232(2007)[Erratum-ibid.B668,458(2008)] 9. Y.KoikeandK.Tanaka,Phys.Rev.D76,011502(2007) 10. Y.KoikeandT.Tomita,inpreparation. 11. Z.B.Kang,J.W.Qiu,W.VogelsangandF.Yuan,Phys.Rev.D78,114013(2008)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.