ebook img

Soft Computing in Chemical and Physical Sciences: A Shift in Computing Paradigm PDF

429 Pages·2018·13.125 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Soft Computing in Chemical and Physical Sciences: A Shift in Computing Paradigm

SOFT-COMPUTING PHYSICAL IN AND CHEMICAL SCIENCES A SHIFT IN COMPUTING PARADIGM SOFT-COMPUTING PHYSICAL IN AND CHEMICAL SCIENCES A SHIFT IN COMPUTING PARADIGM Kanchan Sarkar Sankar Prasad Bhattacharyya CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-4987-5593-1 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copy- right holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged, please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho- tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www. copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging‑in‑Publication Data Names: Bhattacharyya, S. P. (Sankar Pradad), author. | Sarkar, Kanchan, author. Title: Soft computing in chemical and physical sciences : a shift in computing paradigm / S.P. Bhattacharyya, Kanchan Sarkar. Description: Boca Raton : CRC Press, Taylor & Francis, 2018. | Includes bibliographical references and index. Identifiers: LCCN 2017048154| ISBN 9781498755931 (hardback : alk. paper) | ISBN 9781315152899 (ebook) Subjects: LCSH: Chemical engineering--Data processing. | Physics--Data processing. | Soft computing. Classification: LCC TP184 .B43 2018 | DDC 660--dc23 LC record available at https://lccn.loc.gov/2017048154 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Dedicated to the loving memory of Professor Mihir Chowdhury Contents Preface ...........................................................................................................................................xiii Authors ...........................................................................................................................................xv 1. A New Computing Paradigm ...............................................................................................1 1.1 Introduction ...................................................................................................................1 1.2 What Is Soft Computing? .............................................................................................1 1.3 Why Soft Computing? ..................................................................................................3 1.4 Overview of the Topics Covered .................................................................................4 1.4.1 Genetic Algorithms .........................................................................................4 1.4.2 Evolutionary Algorithms and Genetic Computing ....................................5 1.4.3 Random Mutation Hill Climbing and Simulated Annealing ...................5 1.4.4 Artificial Neural Networks ............................................................................5 1.4.5 Swarm Intelligence Method ...........................................................................5 1.4.6 Fuzzy Logic and Fuzzy-Set-Based Systems .................................................6 1.4.7 Quantum Computing ......................................................................................6 1.5 Interfacing Soft Computing with Problem-Solving in Physics and Chemistry ........................................................................................................6 References .................................................................................................................................7 2. Genetic Algorithms ................................................................................................................9 2.1 Introduction ...................................................................................................................9 2.2 What Are Genetic Algorithms? .................................................................................12 2.3 How Do the GAs Work? .............................................................................................13 2.3.1 Representation of Solutions ..........................................................................14 2.3.2 Fitness and Fitness Landscapes ...................................................................15 2.3.3 The Crossover Operator ................................................................................18 2.3.4 Mutation Operator .........................................................................................18 2.3.5 The Selection Operator ..................................................................................19 2.3.6 A Specific Choice ...........................................................................................20 2.4 Why Does GA Work? ..................................................................................................25 2.4.1 The Schemas (Schematas) and Their Attributes........................................25 2.4.2 The Schema Theorem ....................................................................................27 2.4.3 Effects of Crossover .......................................................................................29 2.4.4 Effects of Mutation .........................................................................................30 2.5 Other Theoretical Models of GA ..............................................................................31 2.5.1 GA as a Dynamical System .........................................................................31 2.5.2 GA: A Statistical Mechanical View .............................................................36 2.6 Variants of GA .............................................................................................................37 2.6.1 Variants of Crossover Operators .................................................................38 2.6.1.1 Simple Crossover ............................................................................38 2.6.1.2 Uniform Crossover .........................................................................39 2.6.1.3 Heuristic Crossover .......................................................................39 2.6.1.4 Linear Crossover ............................................................................39 vii viii Contents 2.6.1.5 Arithmetic Crossover ....................................................................40 2.6.1.6 Simplex Crossover ..........................................................................40 2.6.1.7 BLX-α Crossover .............................................................................40 2.6.1.8 Similarity Crossover ......................................................................40 2.6.1.9 Cell Crossover .................................................................................41 2.6.1.10 Average Offspring Method ..........................................................41 2.6.1.11 Cut and Splice Crossover ..............................................................41 2.6.2 Variants of Mutation Operators ...................................................................42 2.6.2.1 Uniform Mutation ..........................................................................43 2.6.2.2 Nonuniform Mutation ...................................................................43 2.6.2.3 Gaussian Type Mutation ...............................................................44 2.6.2.4 Dynamic Random Mutation .........................................................44 2.6.2.5 Arithmetic Mutation ......................................................................45 2.6.2.6 Directed Random Mutation ..........................................................45 2.6.2.7 Wavelet Mutation ...........................................................................45 2.6.2.8 BGA Mutation .................................................................................46 2.6.2.9 Soft Mutation ..................................................................................46 2.6.3 Variants of Selection Operators ...................................................................47 2.6.3.1 Generational Replacement ............................................................47 2.6.3.2 Truncation Replacement ................................................................47 2.6.3.3 Stochastic Universal Sampling .....................................................47 2.6.3.4 Rank-Based Selection .....................................................................47 2.6.3.5 Tournament Selection ....................................................................48 2.6.3.6 Clonal Selection ..............................................................................48 2.6.3.7 Sexual Selection ..............................................................................48 References ...............................................................................................................................49 3. Evolutionary Computing ....................................................................................................53 3.1 Introduction .................................................................................................................53 3.2 Evolutionary Programming ......................................................................................54 3.2.1 The Basic Architecture ..................................................................................54 3.3 Evolutionary Strategy .................................................................................................56 3.4 Genetic Programming ................................................................................................58 3.4.1 The Parse Tree and Lisp Program ...............................................................59 3.5 Differential Evolution .................................................................................................62 3.6 Parallel GAs .................................................................................................................64 3.6.1 Designing an Optimal Master Slave GA ....................................................65 References ...............................................................................................................................68 4. Random Mutation Hill Climbing and Simulated Annealing Methods ...................71 4.1 Introduction .................................................................................................................71 4.2 The Random Mutation Hill Climbing Method (RMHCM) ...................................72 4.2.1 RMHC Pseudocode .......................................................................................72 4.2.2 Adaptive RMHC ............................................................................................73 4.2.3 Variants of RMHC .........................................................................................74 4.2.4 Analysis of RMHCM .....................................................................................76 4.3 The Simulated Annealing Method ...........................................................................78 4.4 The Method of Quantum Annealing (QA) ..............................................................87 Contents ix 4.5 Elementary Applications of SAM in Quantum Mechanics...................................88 4.5.1 The Generator Coordinate Method .............................................................95 4.5.2 (Multiconfiguration) Self-Consistent Field Calculation and the SAM ............................................................................................96 4.6 Elementary Applications of RMHC in Cluster Physics .......................................100 4.6.1 The Problem and the Method ....................................................................101 4.7 Search for the Minima (Local and Global) in Model Potentials and Spin Systems ......................................................................................................104 References .............................................................................................................................107 5. Swarm Intelligence ............................................................................................................109 5.1 Introduction ...............................................................................................................109 5.2 Particle Swarm Optimization .................................................................................111 5.2.1 The Algorithm ..............................................................................................112 5.3 Particle Swarm Optimization for Discrete Search Variables .............................114 5.4 Convergence of the PSO Algorithm .......................................................................116 5.5 The Fireflies Algorithm ............................................................................................118 5.5.1 The Algorithm ..............................................................................................118 5.6 Artificial Bee Colony Algorithms ...........................................................................121 5.6.1 Introduction ..................................................................................................121 5.7 Ant Colony Optimization Algorithms ..................................................................125 5.7.1 Introduction ..................................................................................................125 5.7.2 The Bridge Experiment ..............................................................................126 5.7.3 A Simple Ant Colony Algorithm ..............................................................128 5.8 Continuous Ant Colony Optimization ..................................................................131 References .............................................................................................................................133 6. Application of Soft Computing in Physics ....................................................................135 6.1 Introduction ..............................................................................................................135 6.2 Variational Principle, Energy Extremalization, and Diagonalization of Hamiltonian by GA ..............................................................................................136 6.2.1 Stochastic or Soft Diagonalization by GA ................................................137 6.2.2 The Algorithm for Calculating the Lowest Eigenvalue .........................139 6.2.3 Computing the Largest Eigenvalue of H ..................................................142 6.2.4 Algorithms for Extracting Multiple Eigenvalues by GA ........................143 6.3 GA in solving the Partitioned Matrix Eigenvalue Problem ................................145 6.3.1 Energy-Dependent Partitioning: Search for the Ground State .............146 6.3.2 Applications ..................................................................................................150 6.3.3 Evolutionary Computing and Energy-Independent Partitioned Matrix Eigenvalue Problem ...................................................151 6.3.4 Applications ..................................................................................................154 6.4 Computing Eigenvalues and Eigenvectors of a Hamiltonian Matrix by GA Rayleigh Quotient Method ..........................................................................154 6.4.1 Sequential Search for Eigenvalues and Vectors.......................................155 6.4.1.1 Notes on Different Steps .............................................................156 6.4.2 Sequential Search for Higher Eigenvalues ...............................................157 6.4.3 Simultaneous Search for Multiple Eigenvalues .......................................158

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.