RESEARCHARTICLE Socially Enforced Nepotism: How Norms and Reputation Can Amplify Kin Altruism DougJones* DepartmentofAnthropology,UniversityofUtah,SaltLakeCity,Utah,UnitedStatesofAmerica *[email protected] Abstract Kinselection,whichcanleadorganismstobehavealtruisticallytotheirgeneticrelatives, worksdifferentlywhen—asisoftenthecaseinhumansocieties—altruismcanbeboosted bysocialpressure.HereIpresentamodelofsocialnormsenforcedbyindirectreciprocity. a11111 Inthemodeltherearemanyalternativestableallocationsofrewards(“distributional norms”);astablenormisstableinthesensethateachplayerisbestofffollowingthenormif otherplayersdothesame.Stablenormsvarywidelyinhowequallytheyrewardplayers withunequalabilities.Inapopulationofmixedgroups(somegroupmembersfollowone norm,somefollowanother,andsomecompromise)withmodestwithin-groupcoefficientsof relatedness,selectionwithingroupsfavorsthosewhocompromise,andselectionbetween OPENACCESS groupsfavorsgenerousgeneralizedreciprocityratherthanbalancedreciprocity.Thus Citation:JonesD(2016)SociallyEnforced evolvedsocialnormscanamplifykinaltruism,givingrisetoauniquelyhumanmodeofkin- Nepotism:HowNormsandReputationCanAmplify basedsocialitydistinctfromspontaneousaltruismamongclosekin,orcooperationamong KinAltruism.PLoSONE11(6):e0155596. non-kin. doi:10.1371/journal.pone.0155596 Editor:Cheng-YiXia,TianjinUniversityof Technology,CHINA Received:November10,2015 Introduction:BeatingHamilton’sRule Accepted:May2,2016 Thisarticlepresentsasouped-upversionofthetheoryofkinselection.Inthestandardversion, Published:June15,2016 anorganismhasachancetoprovidebenefitbtooneofherkinatcostctoherself.Natural Copyright:©2016DougJones.Thisisanopen selectionfavorsthisaltruisticactaslongasHamilton’sRuleissatisfied,r(cid:1)b>c,whereristhe accessarticledistributedunderthetermsofthe coefficientofrelatednessofrecipienttodonor[1].Butinthetheorypresentedhere,altruism CreativeCommonsAttributionLicense,whichpermits towardkinisinfluencedbyawidersocialcontext,asmembersofagroupplayagameinwhich unrestricteduse,distribution,andreproductioninany medium,providedtheoriginalauthorandsourceare eachplayercanrewardothersforbehavinggenerouslytowardtheirmutualkin.Ishowthat credited. thiscanfavortheevolutionofhighlevelsofaltruism,intheformofunbalancedgeneralized reciprocityamongkin,evenwhenrissmall. DataAvailabilityStatement:Code(Mathematica)is availableattheOpenScienceFramework(osf.io) Thetheoryofsociallyenforcednepotismshouldbeofinteresttoscholarsinseveraldisci- repositorywithidentifiersDOI10.17605/OSF.IO/ plines[2,3].Itbearsonargumentsamongevolutionarytheoristsabouthowusefulinclusivefit- MXZ8H/ARKc7605/osf.io/mxz8h. nesstheoryisinaccountingforsocialbehavior,amongsocialscientistsabouttherelationship Funding:Theauthorhasnosupportorfundingto betweenrationalchoiceandsocialnorms,andamongculturalanthropologistsabouthowfar report. theirtheoriesofkinshipcanbereconciledwithevolutionarytheories. Intherestofthisintroduction,Isummarizetheoreticalandempiricalreasonsforwanting CompetingInterests:Theauthorhasdeclaredthat nocompetinginterestsexist. toaddamodelofsocialnormsandtheirenforcementtothetheoryofkinselection.Onthe PLOSONE|DOI:10.1371/journal.pone.0155596 June15,2016 1/13 SociallyEnforcedNepotism theoreticalside:Kinselectiontheoryissometimesequatedwiththepropositionthatorganisms areshapedbynaturalselectiontomaximizetheirinclusivefitness.Butthisresultrestsonthe assumptionthatforeachactorinagroup,wecanseparateoutanindependentcontribution thatshemakestothewell-beingofherkin[4].Thisamountstotreatingkinselectionasacol- lectionofone-persongames. Howeverkinselectiongetsmorecomplicatedwhenthereismoreinthewayofstrategic interactionamongactors.Considerasimplemodelwhichcombinesgametheoryandpopula- tiongenetics,theBrothersKaramazovGame[5].Thegameisplayedamongthreebrothers, withacoefficientofrelatednessr=1/2foreachpair.Onebrotherisapotentialrecipientof altruism,andtheothertwoarepotentialdonors,sowearelookingatatwo-persongame betweenthetwodonorsregardinghowtheytreatthethird.Toestablishabenchmarkfor comparison,webeginwitheachofthetwopotentialhelpersdecidingindependentlyofthe otheronewhethertohelptheirneedysibling.Inthiscase,theevolutionofaltruismisgov- ernedbyHamilton’sRule.Eachbrothershouldhelpaslongashiscostcandtheneedybroth- er’sbenefitbsatisfy1/2(cid:1)b>c.Butnowconsiderthecasewherethetwopotentialhelpers adoptastrategyofconditionalnepotism:eachwillprovideextrahelpaslongastheotherdoes thesame.Itistemptingtoanalyzethispackagedealusinginclusivefitnesstheory,withcosts andbenefitstoone’ssiblingscountingforhalfasmuchascoststooneself.Bythisaccounting, withtwobrotherstakingturns,eachonhisturnpayingcostcandprovidingbenefitbtothe third,theruleforaltruismis2/3(cid:1)b>c.Butamorecarefulanalysisusinggeneandgenotype frequenciesgivesadifferentanswer:theconditionfortheevolutionofaltruismisrC(cid:1)b>c, whererC=(1+6p)/(2+8p),withpbeingthefrequencyofthealleleforconditionalaltruism. TheconditionalcoefficientofrelatednessrCincreasesfrom1/2to7/10aspincreasesfrom0 to1.Aconditionalnepotismgenecannotinvadeapopulationwhenveryrare,butcanspread onceitgainsafoothold. TheBrothersKaramazovGamedemonstratesseveralthings.First,itshowsthelimitations ofinclusivefitnessaccounting.Thecalculationbasedonthegenealogicalcoefficientofrelated- nessof1/2betweensiblingsdoesn’twork,becausetheprobabilitythatthetwohelpersareiden- tical-by-descentfortheconditionalnepotismalleleisrelatedinacomplicatedwaytothe strategieseachchooses.Whileinclusivefitnesstheorycanofferqualitativeinsights,ittakesan explicitpopulationgeneticcalculationtogetthecorrectanswer.Second,themodelprovidesa proof-of-conceptthatasociallyenforcedrulecanamplifykinaltruism.Theconditionalstrat- egycanleadeachdonorbrothertobehaveasifhewerecloserkinthanabrother.Onewayto understandthisistonotethataltruismtowardkinisapublicgood.Whenonebrotherprovides help,heisalsogivingafreeboosttotheinclusivefitnessoftheotherpotentialhelper,andvice versa.Aswithotherpublicgoods,moreisprovidedwhenplayersreducefree-ridingbyenforc- ingagreed-uponrules.Inthiscase,ifwegaugekinaltruismbyc/b,thenconditionalnepotism beatsindividualnepotismfollowingHamilton’sRulebyupto40percent. TheBrothersKaramazovGameisperhapsthesimplestpossiblemodelofsociallyenforced nepotism.Thebulkofthisarticleexploresamoregeneralmodelofann-persongamethat differsfromtheBrothersKaramazovGameinseveralrespects.First,themodelhereisnot builtaroundasimpletwo-folddivisionofplayersintothosewhohelpandthosewhoare helped.Insteaditincludesplayerswitharangeofhelpingabilities.Second,playersinthe modeldonotrelyonasimpleconditionalstrategytoboostaltruismtokin.Suchastrategy (“I’llhelpifyoudotoo”)worksfortwohelpers.Butthen-personconditionalstrategy(“I’ll helpifeveryoneelsedoestoo”)breaksdownfornmuchgreaterthantwo,becauseitimposes animpossiblystringentunanimityrequirement[6].Instead,playersrelyonindirectreciproc- ityandhonestadvertisingofabilitytoenforcenormsofsharing.Themodelletsusexplore thecontrast,andtheevolutionarycontest,betweennormsofbalancedreciprocity(where PLOSONE|DOI:10.1371/journal.pone.0155596 June15,2016 2/13 SociallyEnforcedNepotism playerjhelpsplayeriasmuchasihelpsj)andgeneralizedreciprocity(wherej,concerned withherreputationamongotherplayers,helpsievenificannotreciprocate).Manyanthro- pologistsregardgeneralizedreciprocity,orcommunalsharing[7],asahallmarkofrelations amongkin. Thisbringsustotheempiricalmotivationforthepresentwork.Longbeforeevolutionary biologistsdevisedthetheoryofkinselection,culturalanthropologistsdevelopedtheirown theoryofkinship—perhapsthediscipline’ssinglegreatestcontributiontothehumansci- ences.Thestudyofkinshipisimportantbecause,asonescholarwrites,“Inmanysocieties, bothprimitiveandsophisticated,relationshipstoancestorsandkinhavebeenthekeyrela- tionshipsinthesocialstructure;theyhavebeenthepivotsonwhichmostinteraction,most claimsandobligations,mostloyaltiesandsentiments,turned”[8].Thestudyofkinshiphas resultedinanumberofimportantfindings;ofspecialinteresthereisageneralizationregard- ingtheconnectionbetweenkinshipandaltruism:“Kindredandkindnessgotogether—two wordswhosecommonderivationexpresses...oneofthemainprinciplesofsociallife”[9]. Inotherwords, thecentralvaluepremiseassociatedwith[thenotionofkinship]isuniform.Kinshippredi- catestheaxiomofamity,theprescriptivealtruismexhibitedintheethicofgenerosity.... [T]heruleposits...that“kinsfolk”haveirresistibleclaimsononeanother’ssupportand consideration...simplybyreasonofthefactthattheyarekin.Kinsfolkmustideallyshare ...andtheymust,ideally,dosowithoutputtingapriceonwhattheygive.[10] Theobservationthatpeopleactaltruisticallytowardtheirkinevenwhentheycanexpect nothinginreturnsoundslikewhatthetheoryofkinselectionpredicts.Butthereisacrucial complication:humankinshiphasanormativeside,asimpliedbythewords“prescriptive,” “ethic,”“rule,”and“ideally”above.Howonepersontreatsothers,includingherkin,ispartly guidedbyherpersonalfeelingstowardthembutalsopartlydictatedbysocialconventions. Thismeans,accordingtomanyanthropologists,thathumankinaltruismcomesintwovarie- ties.(Muchoftheevidenceregardingthetwovarietiesofnepotismcomesfromalargebodyof qualitativeethnographicstudies,butthedistinctionhasalsobeenupheldbyrecentquantitative research[11,12].)Onevariety(callitindividualnepotism)ismotivatedbybenefactors’feelings ofattachmenttotheirbeneficiaries.Itislargelydirectedtoclosekin(consistentwithinclusive fitnesstheory,sincecoefficientsofrelatednessfalloffrapidlywithgenealogicaldistance).The secondvariety(callitsociallyenforcednepotism)isgovernedbyconventionsabouthowkin oughttobetreated,andismotivatedbysocialpressureandconcernforone’sstandingina moralcommunity.Itcanextendeventodistantkin.“[T]hemostconvincingevidence...of kinshipamity[isfoundin]situationswherekinshipissotenuousastobeonlynominal,as whenpersonsseekoutremoteclansfolk...andwithoutfurtheradoclaimandreceivehospital- ityandprotection.”[10]Itissociallyimposednepotismthathelpsmakekinshipimportantnot justforfamilylife,butforsocialorganizationonalargerscale. Individualnepotismlooksalotlikekinaltruisminotherspecies[13].Sociallyenforcednep- otismisdifferent.Itdependsonthemoralregulationofbehavioraccordingtosociallytrans- mittednorms—somethingregardedbymanysocialscientists,includingsomeevolution- mindedones,asadistinguishingfeatureofourspecies[14–16].Hencethemodelbelow,com- bininggametheoryandpopulationgenetics,inwhichthestartingpointisnotanindividual decidingonherownhowmuchtohelpherkin,butagroupofunequalindividualssettlingon andenforcinganormdeterminingwhogetshowmuch. PLOSONE|DOI:10.1371/journal.pone.0155596 June15,2016 3/13 SociallyEnforcedNepotism Results Distributionalnorms,reputation,andincentives Imaginesociallifeasadrama[17].Eachindividualplaystherole(s)appropriatetoherstatus, treatingotherplayersasdirectedbyherroleandtheirs,withallplayersactingfromashared script.Aspartofthedrama,realcostsarepaidandbenefitsreceived,soaplayerhasanextrin- sicmotivetosticktothescript:ifshebreakscharacter,otherplayersreactsoastoleaveher withlowernetbenefits.HereItranslatethisdramaturgicalmetaphorintoagame-theoretical modelinwhichplayersuseindirectreciprocityandreputationtogetoneanothertoplaytheir parts.Inthemodel,playersdifferintheirabilitytohelpothers(=status);theyhelpandare helpedbasedontheiradvertisedabilities(=assumedroles);andeachhasanincentivetohon- estlyadvertiseherabilitybyfollowingadistributionalnorm(=sharedscript). Consideragameamongagroupofnplayers.Ineachroundofplay,eachplayerhasthe opportunitytohelpsomerandomlyselectedtargetplayers.Costsandbenefitsofhelpingare relatedbytheproductionfunction b ¼a1(cid:3)tct ð1Þ ij j ji wherebijisthebenefitthatireceivesfromj,cjiisthecostthatjincursinhelpingi(bothaver- agedoveralongspanofplay),αjisameasureofj’sproductiveability,andτgeneratesdimin- ishingmarginalreturnstohelping,withbij,cji,andαj(cid:4)0,and0<τ<1. Weareinterestedinindirectreciprocity,whereplayerjproducesbenefitsforplayeribased onthebenefitsihasproducedforotherplayersinearlierroundsofplay[18–25].Whopro- duceshowmuchforwhom—thevalueofbij—dependsondistributionalnormsandreputa- tions.Let’sassumeinitiallythatmembersofagroupagreeonasingledistributionalnorm,call itA,definedbyafunctionbA[x,y]overx(cid:4)0,y(cid:4)0.Thisfunctiondictateshowmuchbenefita playerwithabilityxoughttogetfromaplayerwithabilityy.Ifiandjhaveabilitiesαiandαj, andjfollowsthenorm,thenbij=bA[αi,αj].Supposehoweverthatjcannotassessi’sability directly,butmustactaccordingtoanascribedability,orreputation,fori.Toachievethis,the functionbAmustmadetooperateintwodirections,determiningboththebenefitsjproduces forotherplayersandthereputationothersassignher.First,ifjknowsherownability,αj,and ascribesabilitysitoplayeri,shecanrewardiaccordingtobij=bA[si,αj].Second,ifsomeplayer kknowswhatbenefitsjhasproducedforotherplayers,andhasascribedabilitiesforthem,she canworkbackwardtoassignanewreputation,sj,toj,wheresjisimplicitlygivenbybA(as spelledoutbelow).Thismeansthatreputationisdefinedrecursively:thereputationofeach playerdependsonthebenefitsshebestowsonothersandontheirreputations.Theresult,at equilibrium,isthatreputationequalsability(sj=αj)andplayersreceivebenefitsaccordingto bij=bA[αi,αj]andpaycostsaccordingtocji ¼a(cid:3)j 1(cid:3)ttbA½ai;aj(cid:5)1=t,foralliandj. Inprinciple,anynormwithnon-negativebA[x,y]isallowed,includinganormofpure altruism,“fromeachaccordingtohisability,toeachaccordingtohisneed”(Fig1A).Buthere weareespeciallyinterestedintheclassofincentive-compatiblestablenorms,whichmotivate eachself-interestedplayertohonestlyadvertiseherabilitybyfollowingthenorm,provided othersdolikewise.Astablenormandassociatedreputationfunctionmustsatisfyseveral conditions. (i)Positivenetbenefits.Foreachactiveplayerj,summedbenefitsminussummedcostsaver- agedovermanyroundsofplaymustbegreaterthanzero. X X bA½a;a (cid:5)(cid:3)a(cid:3)1(cid:3)tt bA½a;a(cid:5)1=t >0 ð2Þ j k j i j k i PLOSONE|DOI:10.1371/journal.pone.0155596 June15,2016 4/13 SociallyEnforcedNepotism Fig1.Threedistributionalnorms.Howbenefitsshouldbedistributedasafunctionofrecipient(x)anddonor(y)ability,according tonormsof(A)PureAltruism,(B)AlmostBalancedReciprocity,and(C)GeneralizedReciprocity.Onleft,benefits,b[x,y];onright, recipientnetbenefits,b[x,y]−c[x,y].Colorsscalewithbenefitsornetbenefits,1.0isred,0.0islightblue.Blacklinesshowwhere netbenefitsequalzero. doi:10.1371/journal.pone.0155596.g001 (ii)Penaltyforimpersonation.Foreachactiveplayerj,hersummednetbenefitsmustbe greaterifshehonestlyadvertisesherability,αj,thanifshe“impersonates”aplayeroflesseror greaterability,y: X X bA½a;a (cid:5)(cid:3)a(cid:3)1(cid:3)tt bA½a;a(cid:5)1=t j k j i j Xk Xi ð3Þ > bA½y;a (cid:5)(cid:3)a(cid:3)1(cid:3)tt bA½a;y(cid:5)1=t k j i k i fory6¼αj.Sosummednetbenefitsmustincrease,neithertooslowlynortooquickly,with donorability. (iii)Penaltyforinconsistency.Playerjmightbelessgeneroustosomeplayersandmoregen- eroustoothersthanisconsistentwithhonestlyadvertisingherabilityajorimpersonatinga playerwithabilityy:theremightnotbeanyoneysuchthatbij=bA[si,y]foralli.Inthiscase,j isassignedanintermediateweightedaveragereputation,sj,chosensothatbij<bA[si,sj]for PLOSONE|DOI:10.1371/journal.pone.0155596 June15,2016 5/13 SociallyEnforcedNepotism someiandbij>bA[si,sj]forotheri.Theaimisnottomakesjanaccurateestimateofαj,butto penalizejforbehavinginconsistently.Forexample,let X(cid:2) (cid:3) 0¼ b1=t(cid:3)bA½s;s(cid:5)1=t oðb1ij=t(cid:3)bA½si;sj(cid:5)1=tÞ ð4Þ ij i j i Thisgivessjasanimplicitfunctionofthebenefitsjproduces,bij,andthereputationsofher P beneficiaries,si.Supposeω=1.Thentheωtermdropsout,andj’sactualcost,a(cid:3)j 1(cid:3)tt ibi1j=t,is P equaltothecost,a(cid:3)1(cid:3)tt bA½s;s(cid:5)1=t,shewouldpayifsheconsistentlyimpersonatedaplayer j i i j withabilitysj.Soinconsistentplaygetsherthesamereputation,forthesamecost,asconsistent play.Butsupposeinsteadthat0<ω<1.Thenjpaysthesamecostasbefore,butherreputa- tionisnowlower,becausesubparbij’saremoreheavilyweighted,andreducesjmorethan excessivebij’sincreaseit.Sowemake0<ω<1:eitherjisconsistent,andgetstheappropriate sjforhonestadvertisingorconsistentimpersonation,orjisinconsistent,andpaysareputa- tionalpenalty. Withadistributionalnormandareputationfunctionthatsatisfytheseconditions,consis- tenthonestadvertisingisthebeststrategyforeachplayer,aslongasothersfollowthenorm.So thehonestadvertisingconstraintssetlimitsonwhatdistributionalnormsarestableamong self-interestedplayers—forexample,thenormmatchingthepayoffsunderpurealtruismisnot stable.Butwithintheselimits,thereisawiderangeofstablenorms,includingthetwobelow, whichdifferinhowwelltheytreatweakplayers,andaremeanttocapturetheanthropologist’s distinctionbetweenbalancedandgeneralizedreciprocity. AlmostBalancedReciprocity Onefamilyofdistributionalnormsassignsequalpayoffsinbothdirections,bA[x,y]=bA[y,x] forallxandy.Playersgetonlyasmuchtheygive,and“thereain’tnosuchthingasafree lunch.”Wecanpickonememberofthisfamilybyallowingtheweakerplayertoset bA[x,y]=bA[y,x]toherpreferredvalue,t(cid:3)1(cid:3)ttxforx(cid:6)y.Thisnormisstableunderdirectrec- iprocity,andalsounderindirectreciprocitywhereplayersestimatereputationsaccordingto Condition4. There’sahitch,however.Exactbalancedreciprocity,directorindirect,isnotdynamically stable.Ifplayersstartsomewhereotherthanatequilibrium,andestimateoneanother’sabilities basedonpastplay,thenreputationsandbenefitsproduceddon’tconvergeontheequilibrium. Evensmallperturbationsaredestabilizing.TheunderlyingproblemisfamiliarfromtheIter- atedPrisoner’sDilemmagame:twotit-for-tatplayersdon’tgettothecooperativeequilibrium iftheyaren’talreadythere.Intheprisoner’sdilemmacase,thiscanbefixedwithaforgiving amendmenttothetit-for-tatstrategy[26].Inthepresentcase,theanalogousfixistoset bA[x,y]slightlyhigherthanbA[y,x]forx<y,withthedifferenceadjustedtosatisfyCondition 3.WecalltheresultingstabledistributionalnormAlmostBalancedReciprocity,orB,with definingfunctionbB(Figs1Band2). GeneralizedReciprocity WithAlmostBalancedReciprocity,astrongplayercouldprovideaweakplayerwithgreater benefitsatlittleaddedcosttoherself,butdoesn’tdosobecauseitwouldbetoocostlyforthe weakplayerto(almost)matchtheextrabenefits.Discardingtheprinciplethatexchangesmust balanceallowsforamoreevendistributionofbenefitsandgreatertotalnetbenefits.Consider thenormthatmaximizesgroupnetbenefits,subjecttothehonestadvertisingconstraints. Withthisnorm,astrongplayergivessubstantialhelptoweakplayers,evenentirelyhelpless PLOSONE|DOI:10.1371/journal.pone.0155596 June15,2016 6/13 SociallyEnforcedNepotism Fig2.ReachingequilibriumwithAlmostBalancedReciprocity.Inagroupof40players,eachplayerj producesbenefitsforarandom5playersiineachround,followingbBandbeginninginround1usingrandom privateestimatesofsi.Foreachj,everyotherplayerkcalculatesarevisedsjofherown,afterobservinga random3ofj’s5randomactsofkindness,bypluggingthe3bij’sandher3unrevisedsi’sintotheimplicit functiongivenbyCondition4.Foreachj,playerkthenaveragesherrevisedandunrevisedsj’stogeneratenew sj’sthatwilldeterminehowmuchshehelpsarandom5playersinthenextround.Chartshowsatypicalresult forarandomplayer’sprivateestimatesofsj’sfor10otherrandomplayersj:hersj’sconvergeonαj’s. (GeneralizedReciprocitygivessimilarresults.) doi:10.1371/journal.pone.0155596.g002 playerswithα=0,inordertoupholdherreputationandberewardedbyotherstrongplayers. Thisissociallyenforcedaltruism.Itislessgenerousthanpurealtruism,becausestrongplayers needtodobetterthanweakplayerstoencouragehonestadvertising,butmoregenerousthan AlmostBalancedReciprocity. Anevenmoregenerousdistributionispossibleifwemaximizetotalnetbenefits,butallowj someknowledge,notjustofthebenefitsiproduces,butofthecostsipays.Inthiscase,aweaki helpingothersatsomecosttoherselfcanreceivemorecreditthanastrongerplayerproviding thesamebenefitsatlesscost[27],makingitpossibletoenforcemoregenerositytowardweak playerswithoutmotivatingshirkingamongstrongplayers.Hereweuseaversionofadistribu- tionalnormwithsomeknowledgeofcosts,callingitGeneralizedReciprocity,orG,withdefin- ingfunctionbG(Fig1C). Mixedgroups,compromise,andkinselection Eithernorm,AlmostBalancedReciprocity(B)orGeneralizedReciprocity(G),isstableif everyoneagreestoit.Butwhathappensifplayersdon’tagree?Evolutionaryconsiderationscan helpanswerthisquestion. Consideramixedgroup,inwhichsomeplayersfollownormBandsomefollowG.Insuch agroup,eachplayerjcanbeassignedtworeputations,sBandsG,dependingonthebenefitsshe j j producesandthereputations,sBandsG,ofherbeneficiaries.Wecannumericallycalculatean i i equilibrium,atwhichtypeBplayersrewardotherplayersaccordingtotheirsBreputationsand typeGplayersrewardaccordingtosG(Table1).Wecanfurthercalculatethemeannetbenefits accruingtoeachtype.SimulationsshowthatingroupswithagivenfrequencyoftypesBand G,themorecommontypeusuallygetsgreatermeannetbenefits;butinacollectionofgroups withdifferentfrequenciesofBandG,bothtypesusuallygetgreatermeannetbenefitsinthose groupswhereBislessfrequentandGmorefrequent(Fig3,lowerportion). PLOSONE|DOI:10.1371/journal.pone.0155596 June15,2016 7/13 SociallyEnforcedNepotism Table1.Reputationinamixedgroup.Equilibriumreputations,sBandsG,calculatedforamixedgroupof 40playersofvaryingability(α).Arandom20playersfollownormBand20followG;resultsaregivenfor threerepresentativeplayersofeachtype.Playersaccuratelyassessabilitiesofthoseoftheirowntype,but under-oroverestimateabilitiesofthoseofunliketype.) Type α sB sG B 1.925 1.925 1.156 B 1.025 1.025 .934 B .325 .325 .229 G 1.725 1.958 1.725 G .925 .968 .925 G .125 .178 .125 doi:10.1371/journal.pone.0155596.t001 Nowconsideralargepopulationofgroups,eachofsizenandaveragewithin-grouprelated- nessr,wheretheoverallfrequencyoftypeBinthepopulationispB.Onaverage,aBplayer findsherselfinagroupwheretypeBnumbers1+(n−1)(r+pB−r(cid:1)pB),andaGplayerfinds herselfinagroupwheretypeBnumbers(n−1)(pB−r(cid:1)pB)(lowerarrowsinFig3).Ifnisnot verysmall,andrisnotverylarge,eithernumberiscloseton(cid:1)pB.Ifnetbenefitsarepropor- tionaltoincrementsinfitness,thenthecommontype(awayfromtheequalpayoffcrossover point)isexpectedtohavehigherfitnessinmostgroups.Selectionwithingroups,favoringthe commontype,isstrongerthanselectionbetweengroups,favoringG.Whicheverdistributional normstartsoutathighfrequencygoestofixation. Yetthesurvivalofthecommonestisnottheendoftheevolutionarystory.Theequilibrium wheresomegroupmembersplayBandothersGisnotaNashequilibrium.Individualsof Fig3.Mixedgroups.Averagenetbenefitsinmixedgroupsof40players,withnBplayingAlmostBalanced ReciprocityandnGplayingGeneralizedReciprocity—orwiththetwotypescompromisingonanintermediate norm—basedonrandomsamplingofplayerswithdifferingabilities.Linesshowquadraticbestfitstopoints. Arrowsshowthatwithamodestcoefficientofrelatedness(r=.06,suggestedby[5,28])andnocompromise, araretypeGdoesworsethanacommontypeB,butwithcompromise,araretypeGdoesbetter. doi:10.1371/journal.pone.0155596.g003 PLOSONE|DOI:10.1371/journal.pone.0155596 June15,2016 8/13 SociallyEnforcedNepotism eithertypecandobetteriftheydon’tsticktotheirpreferredstrategy,butadapttothepresence oftheothertype.Suchaccommodationwithinamixedgroupcantakevariousforms. First,allplayerscancompromiseonanintermediatestrategy.Acompromisedistributional norm(callitW)canbedefinedbyaparameterw ,with0<w <1,suchthatthesummednet 0 0 benefitreceivedbyaplayerwithabilityyisaweightedmeanofthesummednetbenefits receivedbyayplayerundernormsBandG,withweightsw and1−w .Foragivenw ,abene- 0 0 0 fitfunctionbWcanbedefinedsuchthatthecorrespondingnormWisstable,givingeachplayer anincentivetohonestlyadvertiseherabilitiesaslongasothersfollowthenorm.Hereweallow eachgrouptosettleonthew forwhichbW1/τgivesaleast-squaresbestfittob1=tfortypeBand 0 ij typeGplayers. Whenplayerscompromiselikethis,simulationsgivedifferentresultsthanwhentheydon’t (Fig3).BothtypesdobetterwhentheysettleonanintermediatenormW.Furthermore, amongcompromisinggroupswithagivenfrequencyoftypesBandG,Busuallydoesslightly betterthanG.Thisisbecausestrongplayershavemoreinfluenceonthevalueofw thanweak 0 players.IngroupswheremoreofthestrongplayersaretypeB,theB’s“vote”greaternetbene- fitsforthestrongestplayers,themselves;wheremoreofthestrongplayersaretypeG,theG’s “vote”greaternetbenefitsfortheaverageplayer.ButGcanstillprevail:withpositivewithin- grouprelatedness,typeGplayersaremorelikelytofindthemselvesingroupswithextratype Gplayers(upperarrowsinFig3).StrongGplayers’supportforhighermeannetbenefitsin thesegroupscangiveGagreateraveragefitness. Inanalternativeformofcompromise,typeBandGplayerspersistinplayingtheirrespec- tivestrategies,whileathirdtypeofplayer,typeW,adoptsthecompromisestrategycorre- spondingtothegroup’sleast-squaresw .Experimentationwitharangeofparametervalues 0 showsthatingroupswhereBandGplayersrefusetocompromise,typeW—amoralchame- leonwhotakesontheaveragecolorofhersurroundings—generallydoesbetter(Fig4).Once typeWreacheshighfrequency,selectionchanges,andtheraresttypeisnolongeratsuchadis- advantage.InapopulationwithaverycommontypeW,raretypeG,lessraretypeB,andmod- eratewithin-grouprelatedness,atypeGplayermayoftenfindherselfinagroupcontaining manytypeW’s,severaltypeGkin,andfewertypeB’s.Suchagroupwillleantowardenforcing agenerous,G-weightednorm,totheadvantageoftypeG. Socombiningasmallmeasureofprincipledrule-followingwithalargemeasureofself- interestedcompromiseopensupnewspaceforkinselection.WhentypesBandGcompromise onnormW,variancewithingroupsdecreases.WhenBandGdon’tcompromiseandthe compromisingtypeWbecomesmorefrequent,variancebetweengroupsincreases.Eitherway, compromisestrengthensselectionbetweengroupsrelativetoselectionwithinthem.With sociallyenforcedaltruism,alittlerelatednesscangoalongway. Discussion Abigmotivefordevelopingthetheoryofkinselectionwastheproblemofaltruism:Whydoes oneorganismsometimeshelpanotherwhenthathelpwillnotbereciprocated?Theanalogous motivefordevelopingatheoryofsociallyenforcednepotismistheproblemofdistribution: Howarethegainsfromcooperationdistributed?[29]Whydoessocialexchangesometimes shadeintouni-directionalgenerosity—balancedreciprocityintogeneralizedreciprocity? Previoustheory[19]andevidence[30,31]showthatindirectreciprocitycanmotivatecoop- erationintheformofcontributionstopublicgoods.Themodeldevelopedheregoesfurther.It issimultaneouslyaboutmotivatingcooperationandaboutdistributingthegainsfromcoopera- tionamongplayersofunequalabilities.Kinshipispartofthestorybecauseevenmodestcoeffi- cientsofrelatedness—toolowtomotivatemuchindividualnepotism—canturntheproblemof PLOSONE|DOI:10.1371/journal.pone.0155596 June15,2016 9/13 SociallyEnforcedNepotism Fig4.Threetypes.StreamplotofselectionvectorsforpopulationswithfractionspB,pG,andpWplaying AlmostBalancedReciprocity,GeneralizedReciprocity,andaWeightedCompromise.Fitnessesare proportionaltonetbenefits,averagedoverrandomsamplesofmixedgroupsof40playerswithcoefficientof relatednessr=.06.BluelineshowsaneutrallystablemixofBandWplayers,greenlineaneutrallystable mixofGandWplayers.Atswitchpoint,themixtureofBandWisunstable:populationleavesB/Wequilibrium forG/W,nevertoreturn.Group1:TypicalgroupcompositionexperiencedbyarareGplayerandherrelatives whentypeWisabsent.TypeG(greencircles;sizestandsforability)isoutnumberedbytypeB(bluecircles). Group2:TypicalgroupcompositionexperiencedbyarareGplayerandherrelativeswhentypeWis common.GplayerandherGrelativesoutnumbertypeB;typeWplayers(whitecircles)skewtheirplay towardGeneralizedReciprocity,amplifyingsmallr. doi:10.1371/journal.pone.0155596.g004 distributionfromaconstantsumgameintoapublicgoodsgame:allarebetteroffevolution- arilyifstrongplayersgiveuppotentialnetbenefitstohelpweakplayers.(Aruleofthumb:if r(cid:7)1/n,thenaplayercanexpectthatothergroupmemberscarrymorecopiesofhergenes thanshedoes,andsheshould“vote”forthenormthatisbestfortheaverageplayer,evenifit’s notbestforher.[5]) Theworkhereextendsearlierfindingsthatindirectreciprocitydependsonreputationand reputationmustbedefinedrecursively,sothateachplayer’sreputationdependsbothonthe benefitssheprovidesandonthereputationsofthebeneficiaries.Inthemodelhere,reputation isanindexofability,and,likeability,canvarycontinuously.Sothemodelfacestheproblemof assigninganumericalreputationtoeachplayerbasedonthereputationsofotherplayers.This ismorecomplicatedthansimplychoosingtocooperateornotbasedonwhethertheother playerisingoodorbadstanding.Itisclosetotheproblemofdesigningapage-rankingalgo- rithmthatranksacollectionofwebpagesbyassigningascoretoeachpagebasedonthescores ofthepagesthatlinktoit[32].Someofthesameissuesariseinbothcases:forexample, whetheragivendistributionalnormorpage-rankingalgorithmisdynamicallystableandcon- vergesonaconsistentresult. Themodelmustsatisfyafurthersetofconditions.Werequirethatadistributionalnormbe enforceable(orincentivecompatible):aplayerofwhateverabilityshoulddobetterstickingto thenorm,ratherthanimpersonatingastrongerorweakerplayerorplayinginconsistently,as PLOSONE|DOI:10.1371/journal.pone.0155596 June15,2016 10/13
Description: