ebook img

Social Network Data Analytics PDF

508 Pages·2011·4.36 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Social Network Data Analytics

Social Network Data Analytics Charu C. Aggarwal Editor Social Network Data Analytics 1 C Editor Charu C. Aggarwal IBM Thomas J. Watson Research Center 19 Skyline Drive Hawthorne, NY 10532, USA [email protected] ISBN 978-1-4419-8461-6 e-ISBN 978-1-4419-8462-3 DOI 10.1007/978-1-4419-8462-3 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011922836 © Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec- tion with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Contents Preface xiii 1 AnIntroductiontoSocialNetworkDataAnalytics 1 CharuC.Aggarwal 1. Introduction 1 2. OnlineSocialNetworks:ResearchIssues 5 3. ResearchTopicsinSocialNetworks 8 4. ConclusionsandFutureDirections 13 References 14 2 StatisticalPropertiesof 17 SocialNetworks MaryMcGlohon,LemanAkogluandChristosFaloutsos 1. Preliminaries 19 1.1 De(cid:191)nitions 19 1.2 Datadescription 24 2. StaticProperties 26 2.1 StaticUnweightedGraphs 26 2.2 StaticWeightedGraphs 27 3. DynamicProperties 32 3.1 DynamicUnweightedGraphs 32 3.2 DynamicWeightedGraphs 36 4. Conclusion 39 References 40 3 RandomWalksinSocialNetworksandtheirApplications:ASurvey 43 PurnamritaSarkarandAndrewW.Moore 1. Introduction 43 2. RandomWalksonGraphs:Background 45 2.1 RandomWalkbasedProximityMeasures 46 2.2 OtherGraph-basedProximityMeasures 52 2.3 Graph-theoreticMeasuresforSemi-supervisedLearning 53 2.4 Clusteringwithrandomwalkbasedmeasures 56 3. RelatedWork:Algorithms 57 3.1 AlgorithmsforHittingandCommuteTimes 58 3.2 AlgorithmsforComputingPersonalizedPagerankandSim- rank 60 vi SOCIALNETWORKDATAANALYTICS 3.3 AlgorithmsforComputingHarmonicFunctions 63 4. RelatedWork:Applications 63 4.1 ApplicationinComputerVision 64 4.2 TextAnalysis 64 4.3 CollaborativeFiltering 65 4.4 CombatingWebspam 66 5. RelatedWork:Evaluationanddatasets 66 5.1 Evaluation:LinkPrediction 66 5.2 PubliclyAvailableDataSources 68 6. ConclusionandFutureWork 69 References 71 4 CommunityDiscoveryinSocial 79 Networks:Applications,Methods andEmergingTrends S.Parthasarathy,Y.RuanandV.Satuluri 1. Introduction 80 2. CommunitiesinContext 82 3. CoreMethods 84 3.1 QualityFunctions 85 3.2 TheKernighan-Lin(KL)algorithm 86 3.3 Agglomerative/DivisiveAlgorithms 87 3.4 SpectralAlgorithms 89 3.5 Multi-levelGraphPartitioning 90 3.6 MarkovClustering 91 3.7 OtherApproaches 92 4. EmergingFieldsandProblems 95 4.1 CommunityDiscoveryinDynamicNetworks 95 4.2 CommunityDiscoveryinHeterogeneousNetworks 97 4.3 CommunityDiscoveryinDirectedNetworks 98 4.4 Coupling Content and Relationship Information for Com- munityDiscovery 100 5. CrosscuttingIssuesandConcludingRemarks 102 References 104 5 NodeClassi(cid:191)cationinSocialNetworks 115 SmritiBhagat,GrahamCormodeandS.Muthukrishnan 1. Introduction 116 2. ProblemFormulation 119 2.1 Representingdataasagraph 119 2.2 TheNodeClassi(cid:191)cationProblem 123 3. MethodsusingLocalClassi(cid:191)ers 124 3.1 IterativeClassi(cid:191)cationMethod 125 4. RandomWalkbasedMethods 127 4.1 LabelPropagation 129 4.2 GraphRegularization 132 4.3 Adsorption 134 5. ApplyingNodeClassi(cid:191)cationtoLargeSocialNetworks 136 5.1 BasicApproaches 137 5.2 Second-orderMethods 137 5.3 ImplementationwithinMap-Reduce 138 Contents vii 6. Relatedapproaches 139 6.1 InferenceusingGraphicalModels 139 6.2 Metriclabeling 140 6.3 SpectralPartitioning 141 6.4 GraphClustering 142 7. VariationsonNodeClassi(cid:191)cation 142 7.1 DissimilarityinLabels 142 7.2 EdgeLabeling 143 7.3 LabelSummarization 144 8. ConcludingRemarks 144 8.1 FutureDirectionsandChallenges 145 8.2 FurtherReading 146 References 146 6 EvolutioninSocialNetworks:ASurvey 149 MyraSpiliopoulou 1. Introduction 149 2. Framework 151 2.1 ModelingaNetworkacrosstheTimeAxis 151 2.2 EvolutionacrossFourDimensions 152 3. ChallengesofSocialNetworkStreams 154 4. IncrementalMiningforCommunityTracing 156 5. TracingSmoothlyEvolvingCommunities 160 5.1 TemporalSmoothnessforClusters 160 5.2 DynamicProbabilisticModels 162 6. LawsofEvolutioninSocialNetworks 167 7. Conclusion 169 References 170 7 ASurveyofModelsandAlgorithmsforSocialIn(cid:192)uenceAnalysis 177 JimengSunandJieTang 1. Introduction 177 2. In(cid:192)uenceRelatedStatistics 178 2.1 EdgeMeasures 178 2.2 NodeMeasures 180 3. SocialSimilarityandIn(cid:192)uence 183 3.1 Homophily 183 3.2 ExistentialTestforSocialIn(cid:192)uence 188 3.3 In(cid:192)uenceandActions 189 3.4 In(cid:192)uenceandInteraction 195 4. In(cid:192)uenceMaximizationinViralMarketing 200 4.1 In(cid:192)uenceMaximization 200 4.2 OtherApplications 206 5. Conclusion 208 References 209 8 ASurveyofAlgorithmsandSystemsforExpertLocationinSocialNetworks 215 TheodorosLappas,KunLiuandEvimariaTerzi 1. Introduction 216 viii SOCIALNETWORKDATAANALYTICS 2. De(cid:191)nitionsandNotation 217 3. ExpertLocationwithoutGraphConstraints 219 3.1 LanguageModelsforDocumentInformationRetrieval 219 3.2 LanguageModelsforExpertLocation 220 3.3 FurtherReading 221 4. ExpertLocationwithScorePropagation 221 4.1 ThePageRankAlgorithm 222 4.2 HITSAlgorithm 223 4.3 ExpertScorePropagation 224 4.4 FurtherReading 226 5. ExpertTeamFormation 227 5.1 Metrics 227 5.2 FormingTeamsofExperts 228 5.3 FurtherReading 232 6. OtherRelatedApproaches 232 6.1 Agent-basedApproach 233 6.2 In(cid:192)uenceMaximization 233 7. ExpertLocationSystems 235 8. Conclusions 235 References 236 9 ASurveyofLinkPrediction 243 inSocialNetworks MohammadAlHasanandMohammedJ.Zaki 1. Introduction 244 2. Background 245 3. FeaturebasedLinkPrediction 246 3.1 FeatureSetConstruction 247 3.2 Classi(cid:191)cationModels 253 4. BayesianProbabilisticModels 259 4.1 LinkPredictionbyLocalProbabilisticModels 259 4.2 NetworkEvolutionbasedProbabilisticModel 261 4.3 HierarchicalProbabilisticModel 263 5. ProbabilisticRelationalModels 264 5.1 RelationalBayesianNetwork 266 5.2 RelationalMarkovNetwork 266 6. LinearAlgebraicMethods 267 7. RecentdevelopmentandFutureWorks 269 References 270 10 PrivacyinSocialNetworks:ASurvey 277 ElenaZhelevaandLiseGetoor 1. Introduction 277 2. Privacybreachesinsocialnetworks 280 2.1 Identitydisclosure 281 2.2 Attributedisclosure 282 2.3 Sociallinkdisclosure 283 2.4 Af(cid:191)liationlinkdisclosure 284 3. Privacyde(cid:191)nitionsforpublishingdata 286 k 3.1 -anonymity 288 Contents ix l t 3.2 -diversityand -closeness 290 3.3 Differentialprivacy 291 4. Privacy-preservingmechanisms 292 4.1 Privacymechanismsforsocialnetworks 292 4.2 Privacymechanismsforaf(cid:191)liationnetworks 297 4.3 Privacymechanismsforsocialandaf(cid:191)liationnetworks 300 5. Relatedliterature 302 6. Conclusion 302 References 303 11 VisualizingSocialNetworks 307 CarlosD.CorreaandKwan-LiuMa 1. Introduction 307 2. ATaxonomyofVisualizations 309 2.1 StructuralVisualization 309 2.2 SemanticandTemporalVisualization 313 2.3 StatisticalVisualization 315 3. TheConvergenceofVisualization,InteractionandAnalytics 316 3.1 StructuralandSemanticFilteringwithOntologies 319 3.2 Centrality-basedVisualDiscoveryandExploration 319 4. Summary 322 References 323 12 DataMininginSocialMedia 327 GeoffreyBarbierandHuanLiu 1. Introduction 327 2. DataMininginaNutshell 328 3. SocialMedia 330 4. MotivationsforDataMininginSocialMedia 332 5. DataMiningMethodsforSocialMedia 333 5.1 DataRepresentation 334 5.2 DataMining-AProcess 335 5.3 SocialNetworkingSites: IllustrativeExamples 336 5.4 TheBlogosphere:IllustrativeExamples 340 6. RelatedEfforts 344 6.1 EthnographyandNetnography 344 6.2 EventMaps 345 7. Conclusions 345 References 347 13 TextMininginSocialNetworks 353 CharuC.AggarwalandHaixunWang 1. Introduction 354 2. KeywordSearch 356 2.1 QuerySemanticsandAnswerRanking 357 2.2 KeywordsearchoverXMLandrelationaldata 358 2.3 Keywordsearchovergraphdata 360 3. Classi(cid:191)cationAlgorithms 366 x SOCIALNETWORKDATAANALYTICS 4. ClusteringAlgorithms 369 5. TransferLearninginHeterogeneousNetworks 371 6. ConclusionsandSummary 373 References 374 14 IntegratingSensorsandSocialNetworks 379 CharuC.AggarwalandTarekAbdelzaher 1. Introduction 379 2. SensorsandSocialNetworks:TechnologicalEnablers 383 3. DynamicModelingofSocialNetworks 385 4. SystemDesignandArchitecturalChallenges 387 4.1 Privacy-preservingdatacollection 388 4.2 GeneralizedModelConstruction 389 4.3 Real-timeDecisionServices 389 4.4 RecruitmentIssues 390 4.5 OtherArchitecturalChallenges 390 5. DatabaseRepresentation:IssuesandChallenges 391 6. PrivacyIssues 399 7. SensorsandSocialNetworks:Applications 402 7.1 TheGoogleLatitudeApplication 402 7.2 TheCitysenseandMacrosenseApplications 403 7.3 GreenGPS 404 7.4 MicrosoftSensorMap 405 7.5 AnimalandObjectTrackingApplications 405 7.6 ParticipatorySensingforReal-TimeServices 406 8. FutureChallengesandResearchDirections 407 References 407 15 MultimediaInformationNetworks 413 inSocialMedia LiangliangCao,GuoJunQi,Shen-FuTsai,Min-HsuanTsai,AndreyDelPozo,Thomas S.Huang,XuemeiZhangandSukHwanLim 1. Introduction 414 2. LinksfromSemantics:Ontology-basedLearning 415 3. LinksfromCommunityMedia 416 3.1 RetrievalSystemsforCommunityMedia 417 3.2 RecommendationSystemsforCommunityMedia 418 4. NetworkofPersonalPhotoAlbums 420 4.1 Actor-CentricNatureofPersonalCollections 420 4.2 QualityIssuesinPersonalCollections 421 4.3 TimeandLocationThemesinPersonalCollections 422 4.4 ContentOverlapinPersonalCollections 422 5. NetworkofGeographicalInformation 423 5.1 SemanticAnnotation 425 5.2 GeographicalEstimation 425 5.3 OtherApplications 426 6. InferenceMethods 427 6.1 Discriminativevs.GenerativeModels 427 6.2 Graph-basedInference:Ranking,ClusteringandSemi-supervised Learning 428

Description:
Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive stream
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.