THEJOURNALOFBIOLOGICALCHEMISTRYVOL.284,NO.17,pp.11224–11236,April24,2009 ©2009byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PrintedintheU.S.A. SNAT2 Amino Acid Transporter Is Regulated by Amino Acids (cid:1) of the SLC6 -Aminobutyric Acid Transporter Subfamily in Neocortical Neurons and May Play No Role in Delivering Glutamine for Glutamatergic Transmission* Receivedforpublication,August20,2008,andinrevisedform,February6,2009Published,JBCPapersinPress,February24,2009,DOI10.1074/jbc.M806470200 SukhjeevanGrewal‡1,NorahDefamie‡1,XiongZhang‡,Ste´phanieDeGois‡,AliShawki§,BryanMackenzie§, ChuChen‡,He´le`neVaroqui‡,andJeffreyD.Erickson‡2 Fromthe‡NeuroscienceCenter,LouisianaStateUniversityHealthScienceCenter,NewOrleans,Louisiana70112andthe §DepartmentofMolecularandCellularPhysiology,UniversityofCincinnatiCollegeofMedicine,Cincinnati,Ohio45267-0576 SystemAtransportersSNAT1andSNAT2mediateuptakeof Centralneuronsexpressthesodium-coupledneutralamino neutral(cid:2)-aminoacids(e.g.glutamine,alanine,andproline)and acidtransportersSNAT1andSNAT2(alsoknownasSLC38A1, areexpressedincentralneurons.Wetestedthehypothesisthat GlnT,SAT1,orATA1andSLC38A2,SAT2,orATA2,respec- SNAT2 is required to support neurotransmitter glutamate tively) (1–10), two of the three SLC38 gene family members synthesisbyexaminingspontaneousexcitatoryactivityafter (reviewedinRef.11)thatcollectivelyaccountfortheSystemA inducingorrepressingSNAT2expressionforprolongedperi- aminoacidtransportactivityclassicallydescribedinmostcell ods.WestimulateddenovosynthesisofSNAT2mRNAand types(12,13).SystemAcatalyzestheunidirectionaluptakeof increased SNAT2 mRNA stability and total SNAT2 protein smallaliphaticneutralaminoacids,especiallyalanine,cysteine, andfunctionalactivity,whereasSNAT1expressionwasunaf- glutamine, glycine, methionine, proline, and serine. Among fected. Increased endogenous SNAT2 expression did not these, glutamine is around 10-fold more abundant than any affect spontaneous excitatory action-potential frequency otheraminoacidinextraneuronalspace(14–16),which,com- over control. Long term glutamine exposure strongly binedwiththehighaffinityofSystemAtransportersforgluta- repressedSNAT2expressionbutincreasedexcitatoryaction- mine(Km(cid:1)0.2–0.5mM),makesglutaminethepredominant potential frequency. Quantal size was not altered following substrateforSystemAinneuronsofthebrain.Glutamine,in SNAT2 induction or repression. These results suggest that additiontoglucose,isamajorprecursorforglutamate(17),and spontaneous glutamatergic transmission in pyramidal neu- manyneuronalcellbodiesinthebrainexpressphosphate-acti- ronsdoesnotrelyonSNAT2.Tooursurprise,repressionof vatedglutaminase(18,19)andcontainhighlevelsofglutamate. SNAT2activitywasnotlimitedtoSystemAsubstrates.Tau- WhereasSystemNtransportersmayservetheexodusofgluta- rine, (cid:1)-aminobutyric acid, and (cid:3)-alanine (substrates of the minefromtheastrocyte(9,20,21),theseobservationspresent SLC6 (cid:1)-aminobutyric acid transporter family) repressed thepossibilitythatSNAT1andSNAT2playaroleinproviding SNAT2 expression more potently (10(cid:4)) than did System A central neurons with the glutamine required for synthesis of transmitter glutamate (22), but the evidence is controversial substrates; however, the responses to System A substrates (23). weremorerapid.SinceATF4(activatingtranscriptionfactor HerewetestedthehypothesisthatSNAT2providesneurons 4)andCCAAT/enhancer-bindingproteinareknowntobind with glutamine required for neurotransmitter glutamate syn- to an amino acid response element within the SNAT2 pro- thesisbymeasuringspontaneousglutamatergicactivityinpri- moter and mediate induction of SNAT2 in peripheral cell mary neuronal cultures in which we altered endogenous lines, we tested whether either factor was similarly induced SNAT2expressionlevels.AdaptiveregulationofSystemA(up- byaminoaciddeprivationinneurons.Wefoundthatgluta- regulation in amino acid-deprived ((cid:2)AA)3 conditions and mineandtaurinerepressedtheinductionofbothtranscrip- repression of System A activity when substrates are reintro- tionfactors.OurdatarevealedthatSNAT2expressioniscon- duced)hasbeenwidelystudiedinperipheralcelltypes(12,13). stitutivelylowinneuronsunderphysiologicalconditionsbut Suchconditionshavenoeffectonglutaminetransportactivi- potently induced, together with the taurine transporter tiesattributedtoSystemsL,N,orASC(24).Innonneuronalcell TauT,inresponsetodepletionofneutralaminoacids. types in which only one System A isoform is expressed, increasedfunctionalactivityresultsfromdenovosynthesisof SNAT2mRNAandproteininresponseto(cid:2)AAtreatment(25– *Thisworkwassupported,inwholeorinpart,byNationalInstitutesofHealth Grants1P29RR16816(toH.V.)andNS36936(toJ.D.E.).Thisworkwasalso supportedbytheUniversityofCincinnati(toB.M.). 3Theabbreviationsusedare:(cid:2)AA,aminoaciddeprivation;AARE,aminoacid 1Bothauthorscontributedequallytothiswork. response element; ACD, actinomycin D; (cid:1)-AIB, (cid:1)-aminoisobutyric acid; 2Towhomcorrespondenceshouldbeaddressed:NeuroscienceCenter,Lou- C/EBP(cid:1), CCAAT/enhancer-binding protein; CHX, cycloheximide; GABA, isianaStateUniversityHealthSciencesCenter,2020GravierSt.,Ste.D, (cid:2)-aminobutyricacid;MeAIB,(cid:3)-methylaminoisobutyricacid;mEPSC,mini- New Orleans, LA 70112. Tel.: 504-599-0845; Fax: 504-599-0488; E-mail: atureexcitatorypostsynapticcurrent;PBS,phosphate-bufferedsaline;RT, [email protected]. reversetranscription. 11224 JOURNALOFBIOLOGICALCHEMISTRY VOLUME284•NUMBER17•APRIL24,2009 This is an Open Access article under the CC BY license. SNAT2,an(cid:2)-AminoAcidOsmolyteTransporterinNeurons? 27). Adaptive regulation of System A was considered to be culture medium with B27 is (cid:4)289 mosM, and that of Krebs- restrictedtotheeffectsofitsownsubstrates,sincetheaddition Ringer bicarbonate buffer used for (cid:2)AA treatment is 300 ofSystemAsubstratesblockstheincreaseintransportactivity mosM. observedinresponseto(cid:2)AAtreatment,whereasotheramino (cid:2)AA of Cultured Neuronal Cells—Regulation studies were acids(leucine,theclassicSystemLinhibitor2-aminobicyclo- conducted in differentiating neuronal cultures (12 days in (2,2,1)-heptane-2-carboxylicacid,anionic(glutamate),andcat- vitro),atthetimeoffunctionalexcitatorysynapsematuration ionic(arginine)aminoacids)producenosucheffect(24–31). andmajoronsetofregulatedglutamateexocytosisviaVGLUT1 At the genomic level, an intronic amino acid response ele- (vesicularglutamatetransporterisoform1(SLC17A7,BNPI)) ment (AARE) that is responsive to adaptive regulation and (42). To treat the cells with (cid:2)AA medium, the Neurobasal binds ATF4 (activating transcription factor 4, also known as mediumwasremovedandreplacedwithcompleteNeurobasal CREB-2)andtheCCAAT/enhancer-bindingprotein(C/EBP(cid:1)) medium or with Krebs-Ringer bicarbonate buffer: 119 mM hasbeenidentifiedintheSLC38A2genecodingforSNAT2(32, NaCl,5.9mMKCl,1.2mMMgSO ,2.5mMCaCl ,5.6mMglu- 4 2 33), and a role for SNAT2 as a nutrient amino acid sensor cose, 25 mM NaHCO , pH 7.4, for various periods of time at 3 (exertingitseffectupstreamofthesignalingmechanismsreg- 37°C.SomeexperimentswerealsoperformedusingEarle’sbal- ulating the adaptive regulatory response) has been proposed anced salt solution: 117.4 mM NaCl, 5.3 mM KCl, 0.81 mM (34,35).ThestimulationofSystemAby(cid:2)AAtreatmentmay MgSO ,1.8mMCaCl ,5.55mMglucose,26.2mMNaHCO ,pH 4 2 3 alternativelybestress-inducedandrelatedtocellvolumeres- 7.4.Variousconcentrationsofunlabeledaminoacidsordrugs torationthroughanexpansionoftheintracellularaminoacid were also added at this time. For refeeding experiments, the pool(36,37)(butseeRefs.38and39).Adaptiveregulationof Krebs-Ringerbicarbonatebufferwaschangedwithfreshbuffer System A has not previously been demonstrated in neurons, containingthedesiredconcentrationofaminoacid. which express both System A isoforms, SNAT1 and SNAT2. Immunocytochemistry—Primary neuronal cultures were TheeffectofincubationwithSystemAsubstrates,particularly fixedoniceincold((cid:2)20°C)methanolfor10min,rinsedthree glutamine, on neuronal levels of glutamine transporters timesinPBS,blockedin0.2%Triton,6%normalgoatserumin SNAT1andSNAT2hasalsonotbeenexamined. PBS at room temperature for 1 h, and incubated for 3 h in blockingbufferwitharabbitpolyclonalantibody(1:1000)made EXPERIMENTALPROCEDURES againstaglutathioneS-transferasefusionoftheNterminusof PrimaryNeuronalCulture—Primaryneuronalcultureswere SNAT1residues1–63(1)orSNAT2residues1–65(2).Cells preparedasdescribed(40,41)withminormodifications.Cer- werethenwashedinPBS,incubatedfor1hinsecondaryanti- ebral cortices were removed rapidly from rat embryos at bodiescoupledtoAlexa-488(highlycross-adsorbedanti-rab- embryonicday18understereomicroscopicobservation,inice- bit), diluted 1:200 in blocking buffer, washed, mounted with cold 1(cid:3) PBS containing 6% glucose, and the meninges were ProlongGoldantifadereagent(Invitrogen),andviewed.Epif- discarded. Cortical tissue was placed in Neurobasal medium luorescencemicroscopywasperformed,andimageswerecap- containing 0.02% bovine serum albumin, 0.1% papain, and 5 turedusinganRTsliderSpotcameraunderidenticalexposure mML-cysteineandincubatedwithgentleshakingat37°Cfor20 conditionsforcomparativeanalysis. min.Thetissuepieceswerethenremoved,rinsedthreetimes WesternAnalysis—Westernanalysiswasperformedonpost- withDMEMcontaining10%fetalbovineserumand2.5(cid:4)g/ml nuclearsupernatantfractionscontainingproteininhibitors(5 leupeptin, and dissociated by trituration using fire-polished (cid:4)g/mlpepstatin,5(cid:4)g/mlaprotinin,5(cid:4)g/mlleupeptin,1mM Pasteur pipettes in complete Neurobasal medium supple- phenylmethylsulfonyl fluoride) following brief sonication and mented with B27 (Invitrogen) and 0.5 mM Glutamax. Debris centrifugationat2,000(cid:3)g.Westernblottingwasperformedas was allowed to settle for 10 min, and the cells in suspension described (43) using antibodies against SNAT1 (1:1000) and were centrifuged for 10 min at 800 (cid:3) g and resuspended in SNAT2 (1:1000) and visualized using peroxidase-conjugated completeNeurobasalmediumsupplementedwith25(cid:4)ML-glu- anti-rabbitIgGsecondaryantibodies(Sigma)andSuperSignal tamate.Cellswerecountedinthepresenceoftrypanblueand West Pico chemiluminescent substrate (Pierce) followed by platedin6-wellclusters(0.75(cid:3)106cells/well)precoatedwith exposuretofilm. poly-D-lysine(25(cid:4)g/ml;Sigma).Cellsweremaintainedincul- Transport Assays in Cultured Neuronal Cells—We assayed turebyrefreshingthemedium(50%)twiceaweekwithNeuro- SystemAfunctionalactivity(attributabletobothSNAT1and basalmediumsupplementedwithB27and0.5mMGlutamax. SNAT2)attheplasmamembranebymeasuringuptakeof(cid:3)-[1- TheaminoacidcompositionofNeurobasalmediumisasfol- 14C]methylaminoisobutyric acid ([14C]MeAIB; PerkinElmer lows20(cid:4)Malanine,5(cid:4)Masparagine,10(cid:4)Mcysteine,500(cid:4)M LifeSciences)inprimaryneocorticalcellcultures.Weassigned glutamine,400(cid:4)Mglycine,200(cid:4)Mhistidine,200(cid:4)Mmethio- toSystemAactivitythe50(cid:4)M[14C]MeAIBtransportactivity nine, 67 (cid:4)M proline, 400 (cid:4)M serine, 800 (cid:4)M threonine. The sensitivetoinhibitionby4mMalanine,MeAIB,orglutamine. overallconcentrationofSNAT2substratesinneuronalculture Toinitiateuptake,cellswerefirstrinsedwithuptakemedium medium is 2.6 mM. Other chemicals not present in Krebs- (2 (cid:3) 1 ml) comprising 125 mM NaCl, 4.8 mM KCl, 1.2 mM Ringer amino acid deprivation medium are as follows: 8 (cid:4)M KH PO ,1.2mMMgSO ,1.2mMCaCl ,5.6mMglucose,25mM 2 4 4 2 calciumpantothenate,28(cid:4)Mcholinechloride,8(cid:4)Mfolicacid, HEPES (pH 7.4) and then incubated at 37°C with uptake 40(cid:4)Minositol,30(cid:4)Mniacinamide,20(cid:4)Mpyridoxal,1(cid:4)Mribo- mediumcontaining1(cid:4)l/ml[14C]MeAIB(50.5mCi/mmol)and flavin, 10 (cid:4)M thiamine, 0.2 (cid:4)M vitamin B12, 230 (cid:4)M sodium 50(cid:4)MunlabeledMeAIB(intheabsenceorpresenceofinhibitor pyruvate,25,000(cid:4)MHEPES.Thetotalosmolalityofcomplete amino acids or drugs). At the end of the uptake period, we APRIL24,2009•VOLUME284•NUMBER17 JOURNALOFBIOLOGICALCHEMISTRY 11225 SNAT2,an(cid:2)-AminoAcidOsmolyteTransporterinNeurons? removed the uptake medium, rinsed the cells with ice-cold end of each experiment to verify that a single product per uptakemedium(2.5ml),andsolubilizedthecellsin1mlof1% primerpairwasamplified.ThesizeoftheamplifiedDNAfrag- SDS.Fromthesesamples,weremoved30-(cid:4)laliquotsforpro- ment was verified by gel electrophoresis on a 3% agarose gel. tein determination using the Micro BCA kit (Pierce); to the Samples were compared using the relative C method. The T remainder,weadded7.5mlofEcoScintandmeasured14Ccon- -foldincreaseordecreasewasdeterminedrelativetoavehicle- tentbyliquidscintillationcounting. treatedcontrolafternormalizingtoahousekeepinggeneusing ElectrophysiologicalRecordingsinCulturedNeuronalCells— 2(cid:2)(cid:7)(cid:7)CT,inwhich(cid:7)C represents(geneofinterestC )(cid:2)((cid:1)-ac- T T WholecellpatchclamprecordingsweremadeusingAxopatch tinC )and(cid:7)(cid:7)C is((cid:7)C treated)(cid:2)((cid:7)C control).The(cid:1)-ac- T T T T 200Bamplifiers.Externalsolutionscontained140mMNaCl,5 tin-normalizing control was always included in the real time mMKCl,1.25mMNaH PO ,10mMHEPES,2.5mMCaCl ,1.0 RT-PCRexperiments. 2 4 2 mMMgCl ,10mMglucose.Wholecellrecordingpipettes(3–5 ExpressionandAnalysisofSNAT2inXenopusOocytes—We 2 (cid:4)M) were pulled from borosilicate glass. The internal pipette performedlaparotomyandovariectomyonadultfemaleXeno- solutionscontained120mMpotassiumgluconate,20mMKCl,4 pus laevis frogs under 2-aminoethylbenzoate methanesulfon- mMNaCl,10mMHEPES,0.1mMEGTA,4.0mMMg ATP,0.3 ate anesthesia (0.1% in 1:1 water/ice, by immersion). Ovarian 2 mM Tris GTP, and 14 mM phosphocreatine (pH 7.25 with tissue was isolated and treated with collagenase A (Roche 2 KOH).Werecordedspontaneousfiringundercurrentclamp. Applied Science), and defolliculate oocytes were isolated and Thefrequencyandamplitudeofminiatureexcitatorypostsyn- storedat17°CinmodifiedBarthsmedium,asdescribed(44). aptic currents (mEPSC) recorded under voltage clamp (at a SNAT2wasexpressedinoocytesasdescribed(2).Weanalyzed holding potential of (cid:2)70 mV) were obtained using the Mini- SNAT2 activity in oocytes by measuring amino acid-evoked Analysissoftware.Bicuculline(10(cid:4)M)wasaddedtotheexter- currents and transport of 100 (cid:4)M [14C]MeAIB as described nalsolutiontoeliminateGABAreceptor-gatedcurrentswhen (2,6). measuring spontaneous excitatory activity. When mEPSCs Chemicals—Cycloheximide(CHX)wasdissolvedinethanol, wererecorded,bothbicucullineandtetrodotoxin(1(cid:4)M)were and actinomycin D (ACD) was dissolved in DMSO. Solvents includedintheexternalsolution. (0.05%)alonehadnoeffectonSNAT2expressionincontrolor RealTimeRT-PCR—TotalRNAwasisolatedfrom0.75(cid:3)106 (cid:2)AA conditions (data not shown). Amino acids were pur- cells using commercial silica-based filter binding methods chasedfromSigmaanddissolvedinwaterorbuffer,adjusting (RNeasyminikit;Qiagen).Wereversetranscribed1(cid:4)gofRNA pH with NaOH when necessary. Radiochemicals were pur- using a mixture of oligo(dT) and random hexamers (iScript chased from PerkinElmer Life Sciences. (S)-SNAP 5114 and cDNA synthesis kit; Bio-Rad). Real time PCR was performed NNC711wereobtainedfromTocrisBioscience. using the iCycler iQ detection system (Bio-Rad) according to StatisticalAnalyses—Dataareexpressedasmean(cid:8)S.E.from themanufacturer’sinstructions.Reactionswereperformedin samplesofsizen.Statisticalanalyses(Student’sttest,nonlinear triplicateina25-(cid:4)ltotalvolumewith2(cid:4)loftemplate,200nM regressionorone-wayanalysisofvariancefollowedbyposthoc primers,and12.5(cid:4)lofSYBRgreenPCRMasterMix(Applied multiplecomparisonsusingtheHolm-Sidakmethod)wereper- Biosystems).ThePCRcyclewasasfollows:95°Cfor8minand formedusingPrism3(Graphpad)orSigmaStat3.5(SystatSoft- 40cyclesof95°Cfor15sand60°Cfor45s.Theefficiencyofthe ware)withcriticalsignificancelevelp(cid:9)0.05.Nonlinearregres- reactionforeachtargetwasfirsttestedusing10-foldserialdilu- sion analysis used the least squares method, and errors tionsofplasmidcontainingthecognategene(104to109copies) presentedaretheS.E.oftheestimates. to ensure (cid:5)90% efficiency. Specific primer sets, designed to amplify(cid:4)200-bpfragments,wereforSNAT1(5-cgttgtttgagct- RESULTS ggccaagaagacg (forward) and 5(cid:6)-gtattcttgtctccatcctggttcgtg SystemAUndergoesAdaptiveRegulationinPrimaryNeuro- (reverse)), SNAT2 (5(cid:6)-gcatgaagaagaccgaaatgggaagg (forward) nal Cultures—To assess System A transport activity at the and 5(cid:6)-cctggatgaaagtctgtttcgtacttc (reverse)), TauT (SLC6A6) plasmamembrane,weassayed[14C]MeAIBuptakeinratneo- (5(cid:6)-tggcggtgataacttatatgacggtattg(forward)and5(cid:6)-gcagaggag- corticalneuron-enrichedculturesat12daysinvitro.Transport gatgacaatgaccaag (reverse)), ATF4 (5(cid:6)-cctgactctgctgcttatat- of50(cid:4)M[14C]MeAIBwasinhibitedby(cid:4)95%inthepresenceof tactctaac(forward)and5(cid:6)-actccaggtgggtcataaggtttg(reverse)), saturating (10 mM) cold alanine. The remaining fraction was C/EBP(cid:1) (5(cid:6)-caacctggagacgcagcacaag (forward) and 5(cid:6)-ctag- largelyattributabletobackgroundlabeling,sowetooktheala- cagtgacccgccgagg (reverse)), and (cid:1)-actin (5(cid:6)-taggcaccaggg- nine-sensitive [14C]MeAIB uptake as an index of System A tgtgatggtggg (forward) and 5(cid:6)-cgcagctgattgtagaaggtgtggtg activity.WefoundthatSystemAtransportactivitywassignif- (reverse)). 18 S primers (TaqMan Ribosomal RNA control icantly up-regulated 5-fold following 8 h of incubation in reagents)werepurchasedfromPerkinElmerLifeSciences.The Krebs-Ringerbuffercontaining5.6mMglucose((cid:2)AA)(Fig.1). PCRamplificationofeachproductwasfurtherassessedusing The increased System A transport activity was completely 10-folddilutionsofaratbraincDNAlibraryasatemplateand blocked in the presence of glutamine, alanine, or MeAIB (4 foundtobelinearover5ordersofmagnitudeand(cid:5)95%effi- mM).Weperformedkineticanalysesoftheuptakeprocessand cient.Duplicatereactionsweresetupina25-(cid:4)ltotalvolume found that the increase in System A activity resulted from a with5pmolofeachprimer,12.5(cid:4)lof2(cid:3)SYBRgreenMaster 2-fold increase in V following acute (1-h) (cid:2)AA treatment max Mix(AppliedBiosystems),and2(cid:4)loftemplate.ThePCRcycle (datanotshown)anda5-foldincreaseinV followinglong max was95°Cfor3min,42cyclesof95°Cfor30s,60°Cfor30s,and term(8-h)(cid:2)AAtreatment,withouteffectonK (Fig.1,Band m 72°Cfor30s,andameltcurveanalysiswasperformedatthe C),consistentwiththeeffectsof(cid:2)AAtreatmentinperipheral 11226 JOURNALOFBIOLOGICALCHEMISTRY VOLUME284•NUMBER17•APRIL24,2009 SNAT2,an(cid:2)-AminoAcidOsmolyteTransporterinNeurons? FIGURE 2. Induction of SNAT2 but not SNAT1 protein synthesis in response to (cid:5)AA treatment. A, Western analysis of SNAT1 and SNAT2 expressionincontrol(Con)conditions(Neurobasalmedium),(cid:2)AA,and(cid:2)AA inthepresenceofGln(4mM),CHX(75(cid:4)g/ml),orACD(7.5(cid:4)g/ml).Control conditionswithACDarealsoshown.Blotswereprobedwithanti-SNAT1or -SNAT2rabbitantibodies.B,selectiveup-regulationofSNAT2by(cid:2)AAtreat- mentwasblockedbyglutamine.NotethatSNAT2inductionoccurredprinci- pallyinneuronalsomataanddendriticprocesses.Resultsshownarefroma representativeexperimentthatwasrepeatedinanindependentculturewith similarresults. The increase in SNAT2 protein was blocked by both agents (Fig.2A),suggestingthat(cid:2)AAtreatmentinducesdenovosyn- thesis of SNAT2 protein. These observations are consistent FIGURE1.ThenumberoffunctionalSystemAtransportersontheplasma membrane(V )isup-regulatedby(cid:5)AAtreatmentinneuron-enriched with the “derepression” of System A as previously described max cultures.A,initialvelocity(3min)ofMeAIBuptakeasafunctionofconcen- (12).AcutechangesinSystemAactivity(2-foldincrease)fol- tration(0.1–3.0mM)incontrolandfollowinglongterm(8-h)(cid:2)AAtreatment. lowing(cid:2)AAtreatmentwerenotaffectedbyCHXorACD(data BandC,datainAwerefittedbytheMichaelis-Mentenequationusingnon- linearregression,revealinganincreaseinV following8-h(cid:2)AAtreatment not shown). We also visualized subtype-specific regulation of (a,p(cid:9)0.001)withouteffectonKm(b,p(cid:1)0m.8ax3).Resultsshownaretheaver- SystemAbyfluorescencemicroscopywithconstantexposure ages of duplicate measurements in one representative experiment; we obtainedsimilarresultswhentheexperimentwasrepeatedinasecondneu- times (Fig. 2B). SNAT2 immunoreactivity was prominently ronalpreparation. observedinmostneuronsinresponsetolongterm(cid:2)AAtreat- mentbutnotinsimilarculturestowhichweadded4mMglu- cells(12).SystemAactivityisthereforesubjecttoadaptivereg- tamine and not in control neurons (amino acid-replete). We ulationinprimaryneuronalcultures. observednochangeinfluorescenceintensityforSNAT1incor- Whereas a multiplicity of glutamine transport systems are tical neurons following long term (cid:2)AA treatment. Adaptive expressedinratbrainprimarycultures,namelyNa(cid:10)-independ- regulation of System A in neurons is therefore selective for entSystemL(45),Na(cid:10)-dependentSBAT1/B0AT2(SLC6A15), SNAT2. (46,47),D-aspartatesensitivetransporter(48),andsystemA(7, Down-regulation of SNAT2 in the Presence of SNAT2 49),onlythatfractionofthe[3H]glutamineuptakethatisinhib- Substrates—Sincetheup-regulationofSystemAfollowinglong ited by MeAIB was increased by (cid:2)AA treatment (data not term(cid:2)AAtreatmentisdueentirelytoSNAT2,weusedmanip- shown).Therefore,SystemAistheonlyneuronalglutamine- ulationofincubationconditionstostudytheaminoacidspec- transportsystemthatundergoesadaptiveregulationfollowing ificityofSNAT2adaptiveregulationinprimaryneurons.Glu- aminoaciddeprivation. tamineat4mMcompletelyreversedthelongterm(8-h(cid:2)AA Adaptive Regulation of System A in Neurons Is Isoform- treatment)adaptiveregulationofSNAT2(Fig.2),andat(cid:4)0.5 specific—Centralnervoussystemneuronsexpresstwoisoforms mM,glutamineresultedin50%repression(seeTable1andFig. ofSystemAtransporter,soweexaminedthelevelofexpression 7).TheIC valuesestimatedforrepressionofSNAT2expres- 50 of SNAT1 and SNAT2 protein following (cid:2)AA treatment. By sion by glutamine (Table 1) and also by alanine (data not Western analysis, SNAT1 immunoreactivity levels were rela- shown) matched the half-maximal concentrations we have tivelyconstant,whereasSNAT2proteinlevelswereselectively observedforSNAT2-andSNAT1-mediatedtransportofthese up-regulated in response to 8 h of(cid:2)AA treatment (Fig. 2A). substrates(i.e.K of0.2–0.5mM)(1–3,50). 0.5 Thisup-regulationofSNAT2wascompletelyabolishedinthe SNAT2ExpressionLevelsDoNotAffectSpontaneousGluta- presence of 4 mM glutamine. To determine whether the matergicActivity—Havingdeterminedthatwecanmanipulate increaseinSystemAactivityfollowinglongterm(cid:2)AAtreat- SNAT2expressionlevelsbyexploitingtheadaptiveregulation mentwasduetochangesinmRNAandproteinsynthesis,we propertyofSNAT2,wetestedwhetherSNAT2playsanimpor- examinedtheeffectsofCHX(75(cid:4)g/ml)orACD(7.5(cid:4)g/ml). tantroleinprovidingexcitatoryneuronprecursorsforneuro- APRIL24,2009•VOLUME284•NUMBER17 JOURNALOFBIOLOGICALCHEMISTRY 11227 SNAT2,an(cid:2)-AminoAcidOsmolyteTransporterinNeurons? FIGURE3.AlteringendogenousSNAT2levelsdoesnotaffectspontaneousexcitatoryactionpotentialsinneuronalculturedcells.A–E,typicaltraces recordedfromneuronspretreatedfor8hwithcontrol(cid:10)0.5mMGln,control(cid:10)4mMGln,(cid:2)AA,(cid:2)AA(cid:10)4mMGln,and(cid:2)AA(cid:10)4mMMeAIB.Spontaneousaction potentialswereeliminatedinthepresenceofDNQX(10(cid:4)M),anAMPAglutamatereceptorantagonist.F,meanfrequenciesofspontaneousfiring(normalized tothecontrol)undervariousconditions(a,p(cid:9)0.05versus(cid:2)AAtreatment).Con,control. transmitterglutamatebymeasuringspontaneousglutamater- control and (cid:2)AA conditions (Fig. 3, D–F). Since System A gicactivityinneuronalculturesinthepresenceandabsenceof transport is rheogenic (2, 6, 52), currents can be detected by aminoacids.Althoughlowinabundance(andnondividingin transientapplicationofglutaminetoneurons(5).Theeffectof Neurobasalmedium),astrocyteswerepresentinourcultures MeAIBwaslessrobust(Fig.3,CandF),andthismayrelateto (GFAPstaining)toprovideendogenousglutaminetoneurons thefactthat,whereasMeAIBisaspecificsubstrateofSystemA, forneurotransmission(datanotshown).Weusedratneocorti- it is poorly transported, particularly true for SNAT1 (6). We calneuron-enrichedcultures(12daysinvitro)duringthemajor foundnorelationshipbetweenSNAT2levelsandspontaneous developmentalperiod(7–18daysinvitro)inwhichfunctional action potentials. Glutamine also enhanced the frequency of maturation of glutamate vesicular storage and release in syn- mEPSCs(Fig.3,A–C)andspontaneousactionpotentialfiring apsesoccurs(42)inordertoexaminetherelationshipbetween (Fig.4,DandE);however,wefoundnodifferenceintheampli- SNAT2expressionandspontaneousglutamatergicactivity.We tudeofmEPSCsfollowing(cid:2)AAtreatmentorinthepresenceof firstexaminedthespontaneousglutamatergicactivityofneu- 4mMglutamine(Fig.4,BandC). rons in control cultures and following adaptive regulation to SNAT1 mRNA Is More Stable than Is SNAT2 mRNA—We assessactiveneuronalconnectivityandintegrityofourprep- assessed the molecular response of adaptive regulation of arations and to correlate levels of SNAT2 and glutamine SNAT2inneuronsbyrealtimeRT-PCR.SNAT2mRNAlevels withexcitatorytransmission.Wefoundnodifferenceinthe increased(cid:4)10-foldfollowing(cid:2)AAtreatment,whereasSNAT1 frequencyofspontaneousactionpotentialsorthefrequency mRNA expression was unchanged (Fig. 5A). SNAT1 mRNA andmagnitudeofmEPSCsbetweencontrolneuronsandneu- wasmorestablethanSNAT2mRNAundercontrolconditions ronsdeprivedofaminoacids(includingglutamine)for8h(Fig. andwasnotaffectedbyadaptiveregulation(Fig.5B).SNAT2 3,A,B,andF).Theseresultsareconsistentwitharecentreport mRNA stability is increased significantly in (cid:2)AA conditions indicatingthatglutaminesuppliedexogenouslyisnotnecessary (Fig.5C).NotingalsothatSNAT2proteinstabilityisincreased for glutamatergic transmission in acute hippocampal slices by (cid:2)AA treatment in muscle cells (35), we speculate that (51). In contrast, incubation with 4 mM glutamine for 8 h SNAT2proteinlevelsshouldbelowintheabsenceofdenovo resulted in a marked increase in spontaneous firing in both SNAT2mRNAsynthesis. 11228 JOURNALOFBIOLOGICALCHEMISTRY VOLUME284•NUMBER17•APRIL24,2009 SNAT2,an(cid:2)-AminoAcidOsmolyteTransporterinNeurons? FIGURE4.GlutamineenhancesmEPSCs.A,representativesweepsofmEPSCsrecordedinculturedcorticalneuronstreatedwithvehicle,Gln(4mM),(cid:2)AA,and (cid:2)AA(cid:10)Gln(4mM).Themembranepotentialwasheldat(cid:2)70mV.Bicuculline(10(cid:4)M)andtetrodotoxin(TTX)(0.5–1(cid:4)M)wereincludedintheexternalsolution. ThesynapticeventswereanalyzedusingtheMiniAnalysisprogram.B,cumulativeprobabilityofmEPSCamplituderecordedinneuronsunderdifferent treatments.C,meanpercentagechangesintheamplitudeofmEPSCs.D,cumulativeprobabilityofmEPSCfrequency.E,meanpercentagechangesinthe frequencyofmEPSCs.a,p(cid:9)0.05comparedwiththevehiclecontrol;b,p(cid:9)0.05comparedwith(cid:2)AAtreatment. Rapid Down-regulation of SNAT2 in Response to Refeeding System A Substrates—We assessed SNAT2 stability following adaptiveregulationinducedbyglutaminerefeeding(4mM).We used as a reference the non-System A substrate taurine, an importantosmolyteinneurons.Weobservedmorerapiddis- appearanceofSNAT2proteininresponsetoglutaminethanto taurine (Fig. 6). At 2 h ofincubation, glutamine repressed SNAT2mRNAexpressionmorestronglythantaurine,butat 5h,bothaminoacidsreducedSNAT2mRNAtocontrollevels (Fig. 6A). Taurine also down-regulated SNAT2 protein and activity; however, the effect was delayed compared with the effectofglutamine(Fig.6,BandC).Ourresultsthereforeindi- catethatSNAT2proteinhasarelativelyshorthalf-lifeinthe presenceofSystemAsubstrates. Reexamination of the Substrate Profile of System A—Since 8-h refeeding with taurine resulted in the disappearance of FIGURE5.SNAT2mRNAstabilityisconstitutivelylowbutincreasedfol- SNAT2 mRNA and protein expression (Fig. 6, A and B) and lowing(cid:5)AAtreatment.A,realtimeRT-PCRshowsthatSNAT2mRNAwas System A functional activity (Fig. 6C), we reexamined the selectivelyanddramaticallyup-regulatedcomparedwithSNAT1mRNAfol- lowing(cid:2)AAtreatment.B,SNAT1mRNAstabilitywasrelativelyconstantfol- gamutofaminoacidscapableofadaptivelyregulatingSystemA lowingtheadditionofACDandunaffectedby(cid:2)AAtreatment.C,SNAT2 inneurons.Inadditiontotaurine,wetestedthesimilarcom- mRNAstabilitywaslowincontrolconditionsandgreatlyincreasedin(cid:2)AA pounds (cid:1)-alanine and (cid:1)-aminoisobutyric acid ((cid:1)-AIB), other treatment.Startinglevelsareatt(cid:1)0aftertheadditionofACD.ResultsinAare fromthreeindependentcultures.ResultsinBandCareaveragesofduplicates known osmolytes (betaine, myo-inositol, and sorbitol), and intwoindependentexperiments.Con,control. APRIL24,2009•VOLUME284•NUMBER17 JOURNALOFBIOLOGICALCHEMISTRY 11229 SNAT2,an(cid:2)-AminoAcidOsmolyteTransporterinNeurons? stratesglutamineandalanineinblockingtheadaptiveincrease inSNAT2mRNA(Fig.7,AandB).myo-Inositolandsorbitoldo notrepressSNAT2expression,indicatingthatonly(cid:3)-and(cid:1)- aminoacidsareeffective. These findings prompted us to examine whether SNAT2 maybecapableofalsotransportingtaurine,GABA,or(cid:1)-ala- nine, so we extended our previous analyses (2, 6) of the sub- strateprofileofSNAT2tothesecandidatesubstrates.Over- expression of SNAT2 in Xenopus oocytes stimulated the uptakeof100(cid:4)M[14C]MeAIB60-foldoverthatobservedin control oocytes (Fig. 8A). SNAT2-mediated [14C]MeAIB transportwasinhibited81(cid:8)1%by1mML-alanine,whereasno inhibitionwasobservedinthepresenceof(cid:1)-alanine,GABA,or taurine(eachat1mM).WhereasL-glutamineandL-alanine(10 mM)evokedlargecurrentsinoocytesexpressingSNAT2(Fig. 8B),taurineevokednocurrentandGABA,onlyatinycurrentif atall.InoocytesexpressingSNAT2,(cid:1)-alanineevokedonlyvery small currents that were (in three oocytes) 7.5 (cid:8) 1.6% of the currentevokedbyL-alanine.Thesedatademonstratethattau- rineandGABAarenotSNAT2substratesandsuggestthatno significant transport of (cid:1)-alanine (at best a weak substrate of SNAT2) will proceed in the presence of physiological gluta- mineconcentrations.WealsofoundthatGABAand(cid:1)-alanine werenotsubstratesforSNAT1(datanotshown). TodeterminewhethertheregulationofsystemAbynonsub- stratesisuniquetoneuronsorisobservedinotherperipheral cells,weexaminedtheeffectof(cid:2)AAtreatmentinHeLacells, a human epithelial carcinoma cell line. We found that [14C]MeAIB uptake increased 5-fold following 8 h of(cid:2)AA treatment,whichwasblockedby4mMglutamineorMeAIB,as in neurons. However, taurine and GABA (4 mM) could not repressadaptiveregulationofsystemAfollowing(cid:2)AAtreat- mentinHeLacells(datanotshown). Regulation of SNAT2 by Transporters in the SLC6 GABA Transporter Subfamily—Transporters in the GABA trans- portersubfamily(SLC6)includethoseservingforthetransport ofneurotransmitters(GABA),osmolytes(taurine,betaine,and GABA),andfuel(creatine)(53,54).WefoundthatGABA,(cid:1)-al- anine,andtaurineinhibitedtheup-regulationofSNAT2with roughlyequivalentIC values((cid:9)50(cid:4)M),whichwereone-tenth 50 theIC forglutamine((cid:4)500(cid:4)M)(Fig.7andTable1).Wehave 50 rankedinTable1thepotenciesofarangeofpotentialSystemA repressorsatthemRNAlevel(fromdatainFig.7,AandB)and FIGURE6.ThedecayinSNAT2mRNA,totalprotein,andfunctionalactiv- thefunctionallevel(fromdatainFig.7,CandD). ityinresponsetoglutaminerefeedingof(cid:5)AA-treatedculturesisfaster SinceGABAisamajorinhibitorytransmitterinthebrain,we thanbythenon-SystemAsubstratetaurine.Cellswereaminoacid-de- privedfor8h,andthenfresh(cid:2)AAmediumcontaining4mMglutamineor investigated whether its ability to repress SNAT2 expression taurinewasadded.CellsweresampledformRNA,protein,andfunctional may be GABA receptor-mediated. We found that the 90% analyseswithtime.A,realtimeRT-PCRanalysisofSNAT1andSNAT2mRNA reduction in SNAT2 expression (at the level of RNA and levelsfollowingglutamineortaurinerefeedingofculturespre-exposedto (cid:2)AAconditionsfor8h.B,Westernblotanalysis;C,[14C]MeAIBuptakefollow- [14C]MeAIBtransportactivity)inducedby200(cid:4)MGABAwas ing8-h(cid:2)AAtreatmentandrefeedingwithglutamineortaurine.Resultspre- unchanged in the presence of the GABA receptor blockers sentedinAandCareaveragesoftwoindependentexperiments. A bicuculline (100 (cid:4)M) or picrotoxin (100 (cid:4)M) or the GABA - B receptor blocker baclofen (100 (cid:4)M) (data not shown). There GABA. When neuronal cultures were incubated with these existintheratfourdistinctproteinsencodingGABAtransport- compounds(at1mMinKrebs-Ringerbicarbonatebuffer)(Fig. ers, namely GAT-1 (GABA transporter 1; SLC6A1), GAT-2 7,AandC),wefoundthateachoftheseaminoacids(allsub- (GABAtransporter2;SLC6A13),GAT-3(GABAtransporter3; strates of the SLC6 GABA transporter subfamily) effectively SLC6A11), and BGT-1 (betaine-sensitive GABA transporter repressSNAT2(Fig.7).Infact,GABA,(cid:1)-alanine,(cid:1)-AIB,and (SLC6A12)) (53, 54). In our neuronal cultures, GABA trans- taurinearemorepotentthanarethepreferredSystemAsub- porter-selective compounds block only a portion of the total 11230 JOURNALOFBIOLOGICALCHEMISTRY VOLUME284•NUMBER17•APRIL24,2009 SNAT2,an(cid:2)-AminoAcidOsmolyteTransporterinNeurons? (cid:4)M).Instead,theGAT-2/3-specific blocker,SNAP-5114(100(cid:4)M)sup- presses by (cid:4)50% the repression of SNAT2mRNAby(cid:1)-alanineand,to a lesser extent, that induced by GABA (data not shown). Whereas (cid:1)-alanine is not a substrate for GAT-1,itistransportedbyGAT-2 andGAT-3andweaklytransported by BGT-1 (57–59). Hence, GABA and (cid:1)-alanine are probably being taken up through the same GABA transporters, which may include GAT-3,andsuppressadaptivereg- ulation of SNAT2. The taurine transporter also efficiently trans- ports(cid:1)-alanine(60).Sincetaurineis the most potent repressor of SNAT2mRNA(Fig.5andTable1), we conjecture that the action of (cid:1)-alaninetorepressSNAT2induc- tion can be accounted for both by GABAtransportandtaurinetrans- portsystemsinneurons.Betaine,a substrate of BGT-1 and a well rec- ognizedosmolyteinthekidney(61), also represses SNAT2 mRNA induction, but higher concentra- FIGURE7.RepressionofSNAT2byneutralaminoacidosmolytesoftheSLC6GABAtransportersubfam- ily.A,adaptiveregulationwasnotrestrictedtoSystemAsubstrates.TotalcDNAwaspreparedfrommRNA tionsarerequired(Fig.7).Infurther isolatedfrom(cid:2)AA-treatedculturesincubatedwithvariousaminoacids,aminoacidanalogues,andother supportofNa(cid:10)-coupledandsolute compoundsfor8h.RealtimeRT-PCRofcDNA(1(cid:4)g)wasusedtoassesstheactivityandrelativepotencyof thesecompoundstorepressSNAT2mRNAinduction.B,dose-responsecurvesofneutralaminoosmolytesof co-transport-mediated regulation theSLC6GABAtransportersubfamily,comparedwithglutamine,addedtoculturesfollowing(cid:2)AAtreatment. ofSNAT2expression,wefoundthat C,thereductionofSNAT2functionalactivitybyincubatingcultureswiththesevariouscompoundsfollowed transporter-selective substrates (1 thesameorderasSNAT2mRNArepressioninA.D,dose-responsecurvesoftheeffectofneutralaminoacid osmolytesofSLC6GABAtransportersubfamilyandglutamineonreducingSNAT2functionalactivityin(cid:2)AA mM) such as nipecotic acid (a sub- conditions. strate for GAT-1 and GAT-3 (mouse GAT-4) (58)) and guanidi- TABLE1 noethylsulfonate (a substrate of the taurine transporter (62)) PotencyofvariouscompoundstorepressSNAT2 areeffectiverepressorsofSNAT2up-regulationatthemRNA IC a level(Fig.7A)and,lessso,attheproteinlevel(Fig.7C). Compound 50 RT-PCR (cid:11)14C(cid:12)MeAIB RegulationofSNAT2expressioninneuronsthereforecom- (cid:4) prisesrepressionofSNAT2mRNAsynthesisbynonsubstrates, M Taurine 19 18 namelyGABA,andseveral(cid:1)-aminoacids,suchastaurine,(cid:1)-al- (cid:1)-Alanine 28 14 anine,and(cid:1)-AIB,andaccelerationofSNAT2mRNAandpro- GABA 39 16 Glutamine 496 570 teindegradationbySystemAsubstrates.Thus,SNAT2expres- Betaine 819 1497 sion is expected to be constitutively low under normal aDataareaveragesoftwoindependentexperiments. conditions but potently induced in response to depletion of neutral(cid:3)-and(cid:1)-aminoacids. [3H]GABAtransport;GAT-1(NNC-711-sensitive)andGAT- MechanismofRepressionofSNAT2mRNAInductionbyGlu- 2/3 (SNAP-5114 sensitive) each comprise at least 40%, and tamineandTaurineinNeurons—TodeterminewhetherNa(cid:10)- BGT-1 (betaine-sensitive) only a minor portion (10%) of the coupled transport of solutes by neutral amino acid osmolyte total[3H]GABAtransport(datanotshown).Interestingly,GAT-3 transportersoftheSLC6GABAsubfamilyleadstorepression is abundantly expressed in pyramidal neurons during develop- of the SLC38A2 gene coding SNAT2 in neurons in the same mentinratbrainandaccountsforalargefractionofGABAtrans- way as does System A-mediated transport of glutamine, we portinvivo(55).GAT-1,theprincipleGABAreuptaketransporter examinedthemechanismofSNAT2mRNArepression.Previ- in GABAergic nerve endings (56), does not appear to be ous studies have indicated that ATF4 mRNA transcription is involvedinGABAblockadeofincreasedSystemAactivityseen increased by adaptive regulation. This transcription factor in adaptive regulation, because the GAT-1-specific blocker binds to the AARE of SNAT2 and is selectively repressed by NNC711(100(cid:4)M)couldnotreversetheeffectofGABA(200 SystemAsubstrates(32).WefoundthattheinductionofATF4 APRIL24,2009•VOLUME284•NUMBER17 JOURNALOFBIOLOGICALCHEMISTRY 11231 SNAT2,an(cid:2)-AminoAcidOsmolyteTransporterinNeurons? Asubstratesasrepressors.AmongtheGABAtransporters,only BGT-1 (also known as mGAT-2) mRNA levels were signifi- cantly up-regulated ((cid:4)2-fold) by (cid:2)AA treatment in our cul- tures(datanotshown);however,TauTmRNAlevelsincreased (cid:4)6-fold following prolonged (cid:2)AA treatment (Fig. 9B). As expected,theinclusionoftaurineinKrebs-Ringerbicarbonate bufferblockedtheinductionofTauTmRNA(Fig.9B).Surpris- ingly,theinclusionofglutaminealsoblockedadaptiveregula- tion of TauT (Fig. 9B). Induction of both SNAT2 and TauT mRNA is blocked by actinomycin D (data not shown) and cycloheximide (Fig. 9B). Similar results were also observed using Earle’s balanced salt solution as the (cid:2)AA treatment instead of Krebs-Ringer bicarbonate buffer (Fig. 9C). Collec- tively, our results indicate that these neutral (cid:3)- and (cid:1)- aminoacidsmayserveacommonroleincentralneuronsthat convergeatthelevelofgeneregulationoftheirrespectiveneu- ronaltransporters. DISCUSSION AdaptiveRegulationofSNAT2mRNAExpressionbyAmino Acid Deprivation in Neurons Is Not Selective for System A FIGURE8.Aminoacidtransportandevokedcurrentsinoocytesoverex- Substrates—We have demonstrated for the first time that pressingSNAT2.A,uptakeof100(cid:4)M[14C]MeAIBwasmeasuredover20min (in100mMNaClmedium,pH7.5)incontroloocytesandoocytesexpressing SNAT2issubjecttoadaptiveregulationfollowingtotalamino SNAT2;amongSNAT2:a,p(cid:1)0.003;b,notsignificant(p(cid:5)0.23)compared aciddeprivationinneuronsandthatsuchadaptiveregulation withnoinhibitoraminoacid.B,aminoacid-evokedcurrentsinanoocyte ofSNAT2isnotlimitedtotheeffectsofSystemAsubstrates.In expressingSNAT2(i)andacontroloocyte(ii).Oocytesweresuperfusedin100 mMcholinechloridemedium(pH7.5)andthen,fortheperiodsshownbythe fact,substratesoftheSLC6GABAtransporterfamily,including hatchedbars,inNaClmedium.Aminoacids(10mM)weresuperfusedforthe GABA, (cid:1)-alanine, (cid:1)-AIB, and taurine, block SNAT2 mRNA periodsshownbythesolidbars.(TauandGABAevokednocurrentsinthis induction(cid:4)10-foldmorepotentlythandoSystemAsubstrates. controloocyte(datanotshown).) We confirmed, in the oocyte overexpression system, that mRNA((cid:4)50%)wasrepressedbyglutamineortaurinefollowing GABAandthe(cid:1)-aminoacidsdescribedarenotSystemAsub- (cid:2)AAinneurons(Fig.9A). strates.Notsurprisingly,weuncoveredanearlyreportindicat- Toexaminewhethermultiplepathwaysmayconvergeupon ingthat(cid:1)-alaninerepressestheadaptiveregulationofSystemA the SNAT2 promoter during the adaptive response to (cid:2)AA inChinesehamsterovarycells(65),andanevenearlierreport treatment in neurons, we examined the mRNA expression of showedthatthehydrophobicaminoacidstryptophan,pheny- other related transcription factors. The AARE sequence (5(cid:6)- lalanine,andtyrosine(butnotleucine)couldrepressadaptive ATTGCATCA-3(cid:6)) shows significant homology with the spe- regulationofSystemAinanestablishedlineofrathepatoma cific binding sequences of two transcription factor families, cells(66).Nevertheless,confusionastothenatureofcontrolof namelyATF4/CREB-2andC/EBP(cid:1)(33).Wethereforeexam- SNAT2expressionisstillapparentintheliterature.(cid:1)-Alanine inedtheexpressionofC/EBP(cid:1)following(cid:2)AAtreatmentand andGABAaresubstratesofthetaurinetransporterTauT(67, itsrepressionbyglutamineandtaurine.LikeATF4,wefindan 68) as well as of rat GAT-2/3 (57–59); orphan transporters increase ((cid:4)2-fold) of C/EBP(cid:1)mRNA following (cid:2)AA treat- whosesubstratesincludeGABAandtaurinemayalsoexist(69). ment,andthisisrepressedbyglutamineandtaurine(Fig.9A). In support of transport-mediated regulation of SNAT2, we InductionofbothATF4andC/EBP(cid:1)following(cid:2)AAtreatment foundthattransporter-selectivesubstrates,suchasguanidino- isblockedbyactinomycinDasexpected(datanotshown)but ethylsulfonate (taurine transporter), nipecotic acid (GABA notbycycloheximide(Fig.9A).Bothtranscriptionfactorsare transporter),andMeAIB(SystemA),butnot2-aminobicyclo- increasedby(cid:2)AA,andthebZIPfamilyoftranscriptionfactors (2,2,1)-heptane-2-carboxylicacid(SystemL),repressedadapt- maybindtogenomicelementsasheterodimers(63,64).Thus, iveregulationofSNAT2. ATF4-C/EBP(cid:1)maybothberequiredforSNAT2geneinduc- Our present findings support the concept that amino acid tioninneurons.Blockadeoftheincreasedexpressionofeither deprivation releases neuronal SNAT2 from its constitutive transcription factor (or both) may be sufficient to repress repression(i.e.“derepression”)atthegenomiclevel.Wefound SNAT2mRNAsynthesis. thatthisadaptiveregulationisapropertyonlyofSNAT2and Adaptive Regulation of the Taurine Transporter TauT Is not of SNAT1. Amino acid deprivation results in parallel RepressedbyTaurineandGlutamine—Sincetransportedsub- increasesinSNAT2mRNA,plasma-membraneproteinexpres- stratesoftheaminoacidosmolytetransporterswithintheSLC6 sion,andSystemAactivity(V effect).Thepresenceofany max GABAtransportersubfamilyarepotentrepressorsofSNAT2, SystemAsubstrateatsaturatingconcentrationsintheextracel- weexaminedwhetherGABAtransportersorthetaurinetrans- lular medium blocks this up-regulation of SNAT2. The mid- porter(TauT)alsoexhibitadaptiveregulationfollowing(cid:2)AA pointofglutamine-inhibitedSNAT2up-regulationinneocor- treatmentinneuronsandassessedtheeffectivenessofSystem ticalneuronsoccursat(cid:4)0.5mM,whichlieswithintherangeof 11232 JOURNALOFBIOLOGICALCHEMISTRY VOLUME284•NUMBER17•APRIL24,2009 SNAT2,an(cid:2)-AminoAcidOsmolyteTransporterinNeurons? K values reported for SNAT2 (2, 3, 50) and is close to the 0.5 concentrationofglutamine((cid:4)0.4mM)expectedinextrasynap- ticspace(14–16).Glutamineisfarmoreabundanttherethanis either taurine or GABA, but glutamine repressed SNAT2 far lesspotently.Taurineispresentinextraneuronalspaceatcon- centrationsof35–50(cid:4)M(70).Attheseconcentrations,taurine inhibitstheinductionofSNAT2activityinoursystem,suggest- ingthattaurinemaynegativelyregulateexpressionofendoge- nous SNAT2 mRNA levels in the brain. We therefore expect that extracellular levels of glutamine and taurine (and also GABA during development) will determine neuronal SNAT2 expressionlevels. NeurotransmitterGlutamateRegenerationDoesNotRelyon SNAT2—Spontaneousactivityofexcitatoryprojections(which comprisethemajorityofcellsinourculture)isunaffectedby removalofexogenousaminoacidsfor8h.Similarresultswere recently obtained using acute hippocampal slices, indicating thatpyramidalneuronshavethecapacitytoproduceglutamate for long periods of time (51). Whereas resident astrocytes in culture(andslices)mayexportendogenousglutaminedirectly topyramidalneuronsviaSystemN(SNAT3,SNAT5)(20,21, 71),inourpreparation,ourdataindicatethatSNAT2doesnot provideglutaminetoneuronsforglutamateneurotransmitter regenerationundertheseconditions,becauseinducingSNAT2 levels((cid:5)5-fold)orrepressingSNAT2levelstonegligiblelevels hadnoeffectonspontaneousactionpotential-derivedexcita- torypostsynapticpotentials.Furthermore,anyincreaseincyto- plasmicglutamatelevelsderivedfromglutamineimportedby SNAT2wouldhavebeenexpectedtoincreasethequantalsize ofglutamaterelease(72,73),butminiaturequantalamplitude wasnotalteredfollowingSNAT2inductionorrepression. WehavepreviouslyshownthatSNAT1andSNAT2protein expressioninneuronsisrestrictedtosomataanddendriticpro- cesses,andlittle,ifany,co-localizationwithsynaptophysin,a synapticvesiclemarker,isapparent(6,8,10).Althoughgluta- minetakenupinneuronalsomataanddendritesmaybecon- verted to glutamate, the glutamate generated there is not readilyavailabletosynapticvesiclesinaxonterminalsofpro- jectionneuronstowhichthemajorvesicularglutamatetrans- porter proteins VGLUT1 and VGLUT2 are restricted (43). Indeed,Broerandco-workers(74)haveshownbyNMRspec- troscopy that System A-mediated glutamine transport sup- ports a large pool of neuronal glutamate that turns over very slowly (presumably in cell soma and proximal dendritic regions),andinstead,aseparatehistidine-sensitiveglutamine transport system may be involved in providing glutamine for excitatorytransmission.However,thepresenceofaglutamine transporterinnerveterminalsthatsupportsglutamatetrans- missionhasnotbeenestablished.Ourdatadonotruleoutarole but both were repressed in the presence of 4 mM glutamine or taurine. B,SNAT2andTauTmRNAexpressionincreasedfollowing(cid:2)AA,butbothwere repressedinthepresenceof4mMglutamineortaurine.Resultspresentedare themean(cid:8)S.E.offiveindependentexperiments.a,p(cid:9)0.01comparedwith thevehiclecontrol;b,notsignificant(p(cid:5)0.05)comparedwiththevehicle control.C,bothglutamineandtaurinerepressedSNAT2andTauTinduction following(cid:2)AAtreatmentusingEarle’sbalancedsaltsolution.Insets,ATF4 FIGURE9.RepressionoftheinductionoftranscriptionfactorsATF4and andC/EBP(cid:1)mRNAinductionwasrepressedbyglutamineandtaurinesimi- C/EBP(cid:3)andthetransportersSNAT2andTauTbyglutamineandtaurine. larlyasACD(7.5(cid:4)g/ml).Dataarefromarepresentativeexperimentper- A,ATF4andC/EBP(cid:1)mRNAexpressionincreasedfollowing(cid:2)AAtreatment, formedintriplicate. APRIL24,2009•VOLUME284•NUMBER17 JOURNALOFBIOLOGICALCHEMISTRY 11233
Description: