Sn-Sb-Se based binary and ternary alloys for phase change memory applications Von der Fakult(cid:127)at fu(cid:127)r Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westf(cid:127)alischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Kyung-Min Chung M.Sc. aus Seoul, Korea Berichter: Universit(cid:127)atsprofessor Dr. Matthias Wuttig Universit(cid:127)atsprofessor Dr. Gero von Plessen Tag der mu(cid:127)ndlichen Pru(cid:127)fung: 28 October 2008 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfu(cid:127)gbar Contents List of Tables V List of Figures VI Abstract X Zusammenfassung XIII 1 Introduction 1 1.1 Modern computer data storage . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Memory technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Emerging non-volatile memory technologies . . . . . . . . . . . . . . . . . 6 1.3.1 MRAM (Magnetic Random Access Memory) . . . . . . . . . . . . . 6 1.3.2 FeRAM (Ferroelectric Random Access Memory) . . . . . . . . . . . 7 1.3.3 PCRAM (Phase Change Random Access Memory) . . . . . . . . . 8 1.4 Challenges in PCRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Development of phase change materials . . . . . . . . . . . . . . . . . . . . 14 1.6 Goals of this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Theoretical background 17 2.1 Thermal Evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1 The Hertz-Knudsen equation. . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 The Knudsen cell and the cosine law of emission . . . . . . . . . . . 21 2.1.3 Applications of the cosine law . . . . . . . . . . . . . . . . . . . . . 25 I Contents 2.1.4 Evaporation of alloys . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Crystallization kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.1 Phase transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.2 Nucleation kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.3 Growth kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.2.4 Johnson-Mehl-Avrami (JMA model) . . . . . . . . . . . . . . . . . 43 2.3 X-ray analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.3.1 X-ray Di(cid:11)raction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.3.2 Laboratory X-ray methods . . . . . . . . . . . . . . . . . . . . . . . 52 2.3.3 X-ray Re(cid:13)ection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 Experimental Methods 62 3.1 Thermal Evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.1.1 Combinatorial material synthesis system . . . . . . . . . . . . . . . 62 3.1.2 The sample preparation chamber . . . . . . . . . . . . . . . . . . . 64 3.1.3 Secondary Neutral Mass Spectrometry . . . . . . . . . . . . . . . . 66 3.1.4 Control units and software . . . . . . . . . . . . . . . . . . . . . . . 69 3.2 Four-point probe method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2.1 Activation energy for crystallization . . . . . . . . . . . . . . . . . . 74 3.3 X-ray analysis system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.3.1 X-ray di(cid:11)raction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.3.2 X-ray re(cid:13)ectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.4 Static tester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.5 Atomic Force Microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Results I : Sn-Se binary system 93 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.2 The SnSe alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2.1 Temperature dependent electrical properties . . . . . . . . . . . . . 96 4.2.2 Investigation of structural properties . . . . . . . . . . . . . . . . . 98 II Contents 4.2.3 Kinetics of the structural transformations . . . . . . . . . . . . . . 103 4.2.4 Density and thickness change upon crystallization . . . . . . . . . . 105 4.2.5 Static tester experiments . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3 The SnSe alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 2 4.3.1 Temperature dependent electrical properties . . . . . . . . . . . . . 112 4.3.2 Investigation of structural properties . . . . . . . . . . . . . . . . . 114 4.3.3 Kinetics of the structural transformations . . . . . . . . . . . . . . 115 4.3.4 Density and thickness change upon crystallization . . . . . . . . . . 117 4.3.5 Static tester experiments . . . . . . . . . . . . . . . . . . . . . . . . 119 4.3.6 Comparison with sputtered SnSe alloy . . . . . . . . . . . . . . . . 122 2 4.4 The Sn Se alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 2 3 4.4.1 Temperature dependent electrical properties . . . . . . . . . . . . . 126 4.4.2 Investigation of structural properties . . . . . . . . . . . . . . . . . 129 4.4.3 Kinetics of the structural transformations . . . . . . . . . . . . . . 131 4.4.4 Density and thickness change upon crystallization . . . . . . . . . . 132 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5 Results II : Sn-Sb-Se ternary system 135 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.2 The MBE deposited and sputtered Sn Sb Se alloy . . . . . . . . . . . . . 140 1 2 4 5.2.1 Temperature dependent electrical properties . . . . . . . . . . . . . 140 5.2.2 Investigation of structural properties . . . . . . . . . . . . . . . . . 142 5.2.3 Kinetics of the structural transformations . . . . . . . . . . . . . . 144 5.2.4 Density and thickness change upon crystallization . . . . . . . . . . 146 5.2.5 Static tester experiments . . . . . . . . . . . . . . . . . . . . . . . . 148 5.3 The SnSe -Sb Se pseudobinary alloys . . . . . . . . . . . . . . . . . . . . 151 2 2 3 5.3.1 Temperature dependent electrical properties . . . . . . . . . . . . . 151 5.3.2 Investigation of structural properties . . . . . . . . . . . . . . . . . 153 5.3.3 Kinetics of the structural transformations . . . . . . . . . . . . . . 157 III Contents 5.3.4 Density and thickness change upon crystallization . . . . . . . . . . 160 5.3.5 Static tester experiments . . . . . . . . . . . . . . . . . . . . . . . . 162 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Bibliography 170 Acknowledgements 183 Lebenslauf 185 IV List of Tables 2.1 The X-ray wavelengths for selected material. . . . . . . . . . . . . . . . . . 53 3.1 Bulk densities and Z-values for common used materials.. . . . . . . . . . . 67 4.1 The XRD peak positions of the as-deposited SnSe alloy. . . . . . . . . . . . 99 4.2 The XRD peak positions of the annealed SnSe alloy. . . . . . . . . . . . . . 100 4.3 The XRD peak positions of the SnSe alloy. . . . . . . . . . . . . . . . . . 115 2 5.1 The XRD peak positions of Sn Sb Se alloy. . . . . . . . . . . . . . . . . . 143 1 2 4 5.2 The XRD peak positions of Sn Sb Se alloy. . . . . . . . . . . . . . . . . . 153 1 4 8 5.3 The XRD peak positions of Sn Sb Se alloy. . . . . . . . . . . . . . . . . . 155 1 2 5 5.4 The XRD peak positions of Sn Sb Se alloy. . . . . . . . . . . . . . . . . . 156 2 2 7 5.5 The data comparison for di(cid:11)erent SnSe -Sb Se pseudobinary alloys. . . . . 163 2 2 3 V List of Figures 1.1 Various types of data storage. . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Principle of MRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Principle of FeRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Principle of switching phase change materials. . . . . . . . . . . . . . . . . 9 1.5 Typical concepts of PCRAM cell design. . . . . . . . . . . . . . . . . . . . 12 2.1 The concept of physical vapor deposition. . . . . . . . . . . . . . . . . . . . 18 2.2 The Knudsen cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 The directional dependence of Knudsen cell. . . . . . . . . . . . . . . . . . 22 2.4 The directional dependence of condensation. . . . . . . . . . . . . . . . . . 25 2.5 Applications of the cosine law. . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6 Comparisonof thickness pro(cid:12)leobtainedafterevaporationin the staticand dynamic modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.7 The Gibbs free energy diagram for two phases, (cid:11) and (cid:12) of the same com- pound as a function of the con(cid:12)gurational coordinates. . . . . . . . . . . . 34 2.8 The Gibbs free energy of formation of nuclei as a function of lattice size. . 36 2.9 The viscosity (cid:17) in various stability regimes. . . . . . . . . . . . . . . . . . . 39 2.10 Schematic representation of the growth of phase 1 into the phase 2 matrix. 40 2.11 The temperature dependence of nucleation and growth rate for a fast nu- cleation and growth dominated materials. . . . . . . . . . . . . . . . . . . . 42 2.12 Basic features of a typical XRD experiment. . . . . . . . . . . . . . . . . . 47 2.13 Several atomic planes and theier d-spacings. . . . . . . . . . . . . . . . . . 48 VI List of Figures 2.14 Schematic plot of characteristic X-ray spectrum. . . . . . . . . . . . . . . . 52 2.15 The Debye-Scherrer camera and an example of a powder di(cid:11)raction photo- graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.16 X-ray powder di(cid:11)raction measurement using a focusing arrangement. . . . 56 2.17 Schematic diagram showing the re(cid:13)ection of x-rays at the interface of three media with refractive indices, n , n and n . . . . . . . . . . . . . . . . . . 57 1 2 3 2.18 Schematic representation of a XRR spectra for thin (cid:12)lm deposited on a Si Substrate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.1 Photos of the combinatorial material synthesis system. . . . . . . . . . . . 63 3.2 Scheme of the preparation chamber. . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Sketch of the crucible used for the evaporation sources. . . . . . . . . . . . 65 3.4 Schematic representation of SNMS analysis. . . . . . . . . . . . . . . . . . 68 3.5 The control units and screenshot of the software for the preparation process. 70 3.6 Schematic representation of a four-point probe setup. . . . . . . . . . . . . 73 3.7 Overview of the Philips X’pert MRD system. . . . . . . . . . . . . . . . . . 77 3.8 Schematic representation of the focus and detector circle of the x-ray di(cid:11)ractometer system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.9 Schematic illustration of the Bragg-Brentano geometry. . . . . . . . . . . . 81 3.10 Schematic representation of Seemann-Bohlin geometry. . . . . . . . . . . . 82 3.11 A schematic diagram illustrating the shape of the rocking curves for a concave, convex and (cid:13)at sample [1] . . . . . . . . . . . . . . . . . . . . . . 85 3.12 Schematic illustration of the e(cid:11)ect of using the knife edge to improve the pro(cid:12)le of the rocking curve [2]. . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.13 Schematic diagram of the far (cid:12)eld setup . . . . . . . . . . . . . . . . . . . 88 3.14 Visualization of the autofocus system with the knife edge method . . . . . 89 3.15 Basic schematic diagram of Atomic Force Microscope (AFM) . . . . . . . . 90 4.1 Phase diagram of the binary Sn-Se system. . . . . . . . . . . . . . . . . . . 94 4.2 The sheet resistance of SnSe alloy. . . . . . . . . . . . . . . . . . . . . . . . 97 VII List of Figures 4.3 The XRD spectra of SnSe alloy. . . . . . . . . . . . . . . . . . . . . . . . . 99 4.4 The atomic distribution of SnSe alloy. . . . . . . . . . . . . . . . . . . . . . 101 4.5 The AFM measurement of SnSe alloy. . . . . . . . . . . . . . . . . . . . . . 102 4.6 The activation energy calculation of SnSe alloy. . . . . . . . . . . . . . . . 102 4.7 The X-ray re(cid:13)ectometry measurements of SnSe alloy. . . . . . . . . . . . . 105 4.8 Temperature dependence of the density and thickness for SnSe (cid:12)lm ob- tained from XRR measurements. . . . . . . . . . . . . . . . . . . . . . . . 106 4.9 Re(cid:13)ectance measurements of SnSe alloy on as-deposited and annealed state.108 4.10 The PTE diagram for the amorphization of SnSe alloy. . . . . . . . . . . . 109 4.11 The PTE diagram for the recrystallization of SnSe alloy. . . . . . . . . . . 110 4.12 The sheet resistance of SnSe alloy. . . . . . . . . . . . . . . . . . . . . . . 112 2 4.13 The XRD spectra of SnSe alloy. . . . . . . . . . . . . . . . . . . . . . . . 114 2 4.14 The atomic distribution of SnSe alloy. . . . . . . . . . . . . . . . . . . . . 116 2 4.15 The AFM measurement of SnSe alloy. . . . . . . . . . . . . . . . . . . . . 117 2 4.16 The activation energy calculation of SnSe alloy. . . . . . . . . . . . . . . . 118 2 4.17 The X-ray re(cid:13)ectometry measurements of SnSe alloy. . . . . . . . . . . . . 119 2 4.18 Temperature dependence of the density and thickness for SnSe (cid:12)lm ob- 2 tained from XRR measurements. . . . . . . . . . . . . . . . . . . . . . . . 120 4.19 Re(cid:13)ectance measurements of SnSe alloy on as-deposited and annealed state.121 2 4.20 The PTE diagram for the amorphization of SnSe alloy. . . . . . . . . . . . 122 2 4.21 The PTE diagram for the recrystallization of SnSe alloy. . . . . . . . . . . 123 2 4.22 The sheet resistance of sputtered SnSe alloy. . . . . . . . . . . . . . . . . 124 2 4.23 The XRD spectra of sputtered SnSe alloy. . . . . . . . . . . . . . . . . . . 125 2 4.24 The grazing incidence XRD spectra of sputtered SnSe alloy. . . . . . . . . 126 2 4.25 The X-ray re(cid:13)ectometry measurements of sputtered SnSe alloy. . . . . . . 127 2 4.26 The sheet resistance of Sn Se alloy. . . . . . . . . . . . . . . . . . . . . . . 128 2 3 4.27 The XRD spectra of Sn Se alloy. . . . . . . . . . . . . . . . . . . . . . . . 129 2 3 4.28 The AFM measurement of Sn Se alloy. . . . . . . . . . . . . . . . . . . . . 130 2 3 4.29 The activation energy calculation of Sn Se alloy. . . . . . . . . . . . . . . 131 2 3 VIII
Description: