ebook img

Sn-Sb-Se based binary and ternary alloys for phase change PDF

202 Pages·2008·21.28 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sn-Sb-Se based binary and ternary alloys for phase change

Sn-Sb-Se based binary and ternary alloys for phase change memory applications Von der Fakult(cid:127)at fu(cid:127)r Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westf(cid:127)alischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Kyung-Min Chung M.Sc. aus Seoul, Korea Berichter: Universit(cid:127)atsprofessor Dr. Matthias Wuttig Universit(cid:127)atsprofessor Dr. Gero von Plessen Tag der mu(cid:127)ndlichen Pru(cid:127)fung: 28 October 2008 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfu(cid:127)gbar Contents List of Tables V List of Figures VI Abstract X Zusammenfassung XIII 1 Introduction 1 1.1 Modern computer data storage . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Memory technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Emerging non-volatile memory technologies . . . . . . . . . . . . . . . . . 6 1.3.1 MRAM (Magnetic Random Access Memory) . . . . . . . . . . . . . 6 1.3.2 FeRAM (Ferroelectric Random Access Memory) . . . . . . . . . . . 7 1.3.3 PCRAM (Phase Change Random Access Memory) . . . . . . . . . 8 1.4 Challenges in PCRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Development of phase change materials . . . . . . . . . . . . . . . . . . . . 14 1.6 Goals of this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Theoretical background 17 2.1 Thermal Evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1 The Hertz-Knudsen equation. . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 The Knudsen cell and the cosine law of emission . . . . . . . . . . . 21 2.1.3 Applications of the cosine law . . . . . . . . . . . . . . . . . . . . . 25 I Contents 2.1.4 Evaporation of alloys . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Crystallization kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.1 Phase transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.2 Nucleation kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.3 Growth kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.2.4 Johnson-Mehl-Avrami (JMA model) . . . . . . . . . . . . . . . . . 43 2.3 X-ray analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.3.1 X-ray Di(cid:11)raction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.3.2 Laboratory X-ray methods . . . . . . . . . . . . . . . . . . . . . . . 52 2.3.3 X-ray Re(cid:13)ection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 Experimental Methods 62 3.1 Thermal Evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.1.1 Combinatorial material synthesis system . . . . . . . . . . . . . . . 62 3.1.2 The sample preparation chamber . . . . . . . . . . . . . . . . . . . 64 3.1.3 Secondary Neutral Mass Spectrometry . . . . . . . . . . . . . . . . 66 3.1.4 Control units and software . . . . . . . . . . . . . . . . . . . . . . . 69 3.2 Four-point probe method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2.1 Activation energy for crystallization . . . . . . . . . . . . . . . . . . 74 3.3 X-ray analysis system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.3.1 X-ray di(cid:11)raction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.3.2 X-ray re(cid:13)ectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.4 Static tester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.5 Atomic Force Microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Results I : Sn-Se binary system 93 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.2 The SnSe alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2.1 Temperature dependent electrical properties . . . . . . . . . . . . . 96 4.2.2 Investigation of structural properties . . . . . . . . . . . . . . . . . 98 II Contents 4.2.3 Kinetics of the structural transformations . . . . . . . . . . . . . . 103 4.2.4 Density and thickness change upon crystallization . . . . . . . . . . 105 4.2.5 Static tester experiments . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3 The SnSe alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 2 4.3.1 Temperature dependent electrical properties . . . . . . . . . . . . . 112 4.3.2 Investigation of structural properties . . . . . . . . . . . . . . . . . 114 4.3.3 Kinetics of the structural transformations . . . . . . . . . . . . . . 115 4.3.4 Density and thickness change upon crystallization . . . . . . . . . . 117 4.3.5 Static tester experiments . . . . . . . . . . . . . . . . . . . . . . . . 119 4.3.6 Comparison with sputtered SnSe alloy . . . . . . . . . . . . . . . . 122 2 4.4 The Sn Se alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 2 3 4.4.1 Temperature dependent electrical properties . . . . . . . . . . . . . 126 4.4.2 Investigation of structural properties . . . . . . . . . . . . . . . . . 129 4.4.3 Kinetics of the structural transformations . . . . . . . . . . . . . . 131 4.4.4 Density and thickness change upon crystallization . . . . . . . . . . 132 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5 Results II : Sn-Sb-Se ternary system 135 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.2 The MBE deposited and sputtered Sn Sb Se alloy . . . . . . . . . . . . . 140 1 2 4 5.2.1 Temperature dependent electrical properties . . . . . . . . . . . . . 140 5.2.2 Investigation of structural properties . . . . . . . . . . . . . . . . . 142 5.2.3 Kinetics of the structural transformations . . . . . . . . . . . . . . 144 5.2.4 Density and thickness change upon crystallization . . . . . . . . . . 146 5.2.5 Static tester experiments . . . . . . . . . . . . . . . . . . . . . . . . 148 5.3 The SnSe -Sb Se pseudobinary alloys . . . . . . . . . . . . . . . . . . . . 151 2 2 3 5.3.1 Temperature dependent electrical properties . . . . . . . . . . . . . 151 5.3.2 Investigation of structural properties . . . . . . . . . . . . . . . . . 153 5.3.3 Kinetics of the structural transformations . . . . . . . . . . . . . . 157 III Contents 5.3.4 Density and thickness change upon crystallization . . . . . . . . . . 160 5.3.5 Static tester experiments . . . . . . . . . . . . . . . . . . . . . . . . 162 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Bibliography 170 Acknowledgements 183 Lebenslauf 185 IV List of Tables 2.1 The X-ray wavelengths for selected material. . . . . . . . . . . . . . . . . . 53 3.1 Bulk densities and Z-values for common used materials.. . . . . . . . . . . 67 4.1 The XRD peak positions of the as-deposited SnSe alloy. . . . . . . . . . . . 99 4.2 The XRD peak positions of the annealed SnSe alloy. . . . . . . . . . . . . . 100 4.3 The XRD peak positions of the SnSe alloy. . . . . . . . . . . . . . . . . . 115 2 5.1 The XRD peak positions of Sn Sb Se alloy. . . . . . . . . . . . . . . . . . 143 1 2 4 5.2 The XRD peak positions of Sn Sb Se alloy. . . . . . . . . . . . . . . . . . 153 1 4 8 5.3 The XRD peak positions of Sn Sb Se alloy. . . . . . . . . . . . . . . . . . 155 1 2 5 5.4 The XRD peak positions of Sn Sb Se alloy. . . . . . . . . . . . . . . . . . 156 2 2 7 5.5 The data comparison for di(cid:11)erent SnSe -Sb Se pseudobinary alloys. . . . . 163 2 2 3 V List of Figures 1.1 Various types of data storage. . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Principle of MRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Principle of FeRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Principle of switching phase change materials. . . . . . . . . . . . . . . . . 9 1.5 Typical concepts of PCRAM cell design. . . . . . . . . . . . . . . . . . . . 12 2.1 The concept of physical vapor deposition. . . . . . . . . . . . . . . . . . . . 18 2.2 The Knudsen cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 The directional dependence of Knudsen cell. . . . . . . . . . . . . . . . . . 22 2.4 The directional dependence of condensation. . . . . . . . . . . . . . . . . . 25 2.5 Applications of the cosine law. . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6 Comparisonof thickness pro(cid:12)leobtainedafterevaporationin the staticand dynamic modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.7 The Gibbs free energy diagram for two phases, (cid:11) and (cid:12) of the same com- pound as a function of the con(cid:12)gurational coordinates. . . . . . . . . . . . 34 2.8 The Gibbs free energy of formation of nuclei as a function of lattice size. . 36 2.9 The viscosity (cid:17) in various stability regimes. . . . . . . . . . . . . . . . . . . 39 2.10 Schematic representation of the growth of phase 1 into the phase 2 matrix. 40 2.11 The temperature dependence of nucleation and growth rate for a fast nu- cleation and growth dominated materials. . . . . . . . . . . . . . . . . . . . 42 2.12 Basic features of a typical XRD experiment. . . . . . . . . . . . . . . . . . 47 2.13 Several atomic planes and theier d-spacings. . . . . . . . . . . . . . . . . . 48 VI List of Figures 2.14 Schematic plot of characteristic X-ray spectrum. . . . . . . . . . . . . . . . 52 2.15 The Debye-Scherrer camera and an example of a powder di(cid:11)raction photo- graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.16 X-ray powder di(cid:11)raction measurement using a focusing arrangement. . . . 56 2.17 Schematic diagram showing the re(cid:13)ection of x-rays at the interface of three media with refractive indices, n , n and n . . . . . . . . . . . . . . . . . . 57 1 2 3 2.18 Schematic representation of a XRR spectra for thin (cid:12)lm deposited on a Si Substrate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.1 Photos of the combinatorial material synthesis system. . . . . . . . . . . . 63 3.2 Scheme of the preparation chamber. . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Sketch of the crucible used for the evaporation sources. . . . . . . . . . . . 65 3.4 Schematic representation of SNMS analysis. . . . . . . . . . . . . . . . . . 68 3.5 The control units and screenshot of the software for the preparation process. 70 3.6 Schematic representation of a four-point probe setup. . . . . . . . . . . . . 73 3.7 Overview of the Philips X’pert MRD system. . . . . . . . . . . . . . . . . . 77 3.8 Schematic representation of the focus and detector circle of the x-ray di(cid:11)ractometer system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.9 Schematic illustration of the Bragg-Brentano geometry. . . . . . . . . . . . 81 3.10 Schematic representation of Seemann-Bohlin geometry. . . . . . . . . . . . 82 3.11 A schematic diagram illustrating the shape of the rocking curves for a concave, convex and (cid:13)at sample [1] . . . . . . . . . . . . . . . . . . . . . . 85 3.12 Schematic illustration of the e(cid:11)ect of using the knife edge to improve the pro(cid:12)le of the rocking curve [2]. . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.13 Schematic diagram of the far (cid:12)eld setup . . . . . . . . . . . . . . . . . . . 88 3.14 Visualization of the autofocus system with the knife edge method . . . . . 89 3.15 Basic schematic diagram of Atomic Force Microscope (AFM) . . . . . . . . 90 4.1 Phase diagram of the binary Sn-Se system. . . . . . . . . . . . . . . . . . . 94 4.2 The sheet resistance of SnSe alloy. . . . . . . . . . . . . . . . . . . . . . . . 97 VII List of Figures 4.3 The XRD spectra of SnSe alloy. . . . . . . . . . . . . . . . . . . . . . . . . 99 4.4 The atomic distribution of SnSe alloy. . . . . . . . . . . . . . . . . . . . . . 101 4.5 The AFM measurement of SnSe alloy. . . . . . . . . . . . . . . . . . . . . . 102 4.6 The activation energy calculation of SnSe alloy. . . . . . . . . . . . . . . . 102 4.7 The X-ray re(cid:13)ectometry measurements of SnSe alloy. . . . . . . . . . . . . 105 4.8 Temperature dependence of the density and thickness for SnSe (cid:12)lm ob- tained from XRR measurements. . . . . . . . . . . . . . . . . . . . . . . . 106 4.9 Re(cid:13)ectance measurements of SnSe alloy on as-deposited and annealed state.108 4.10 The PTE diagram for the amorphization of SnSe alloy. . . . . . . . . . . . 109 4.11 The PTE diagram for the recrystallization of SnSe alloy. . . . . . . . . . . 110 4.12 The sheet resistance of SnSe alloy. . . . . . . . . . . . . . . . . . . . . . . 112 2 4.13 The XRD spectra of SnSe alloy. . . . . . . . . . . . . . . . . . . . . . . . 114 2 4.14 The atomic distribution of SnSe alloy. . . . . . . . . . . . . . . . . . . . . 116 2 4.15 The AFM measurement of SnSe alloy. . . . . . . . . . . . . . . . . . . . . 117 2 4.16 The activation energy calculation of SnSe alloy. . . . . . . . . . . . . . . . 118 2 4.17 The X-ray re(cid:13)ectometry measurements of SnSe alloy. . . . . . . . . . . . . 119 2 4.18 Temperature dependence of the density and thickness for SnSe (cid:12)lm ob- 2 tained from XRR measurements. . . . . . . . . . . . . . . . . . . . . . . . 120 4.19 Re(cid:13)ectance measurements of SnSe alloy on as-deposited and annealed state.121 2 4.20 The PTE diagram for the amorphization of SnSe alloy. . . . . . . . . . . . 122 2 4.21 The PTE diagram for the recrystallization of SnSe alloy. . . . . . . . . . . 123 2 4.22 The sheet resistance of sputtered SnSe alloy. . . . . . . . . . . . . . . . . 124 2 4.23 The XRD spectra of sputtered SnSe alloy. . . . . . . . . . . . . . . . . . . 125 2 4.24 The grazing incidence XRD spectra of sputtered SnSe alloy. . . . . . . . . 126 2 4.25 The X-ray re(cid:13)ectometry measurements of sputtered SnSe alloy. . . . . . . 127 2 4.26 The sheet resistance of Sn Se alloy. . . . . . . . . . . . . . . . . . . . . . . 128 2 3 4.27 The XRD spectra of Sn Se alloy. . . . . . . . . . . . . . . . . . . . . . . . 129 2 3 4.28 The AFM measurement of Sn Se alloy. . . . . . . . . . . . . . . . . . . . . 130 2 3 4.29 The activation energy calculation of Sn Se alloy. . . . . . . . . . . . . . . 131 2 3 VIII

Description:
1.3.3 PCRAM (Phase Change Random Access Memory) . 4.19 Reflectance measurements of SnSe2 alloy on as-deposited and annealed state.121 .. e m p e ra tu re. Time. Crystalline phase. Liquid phase. Amorphous phase 1.4 depicts the concept of switching phase change materials for optical data storage.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.