ebook img

Smoothed Analysis in Nash Equilibria and the Price of Anarchy PDF

87 Pages·2012·1.6 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Smoothed Analysis in Nash Equilibria and the Price of Anarchy

UNIVERSIDADEFEDERALDORIOGRANDEDOSUL INSTITUTODEINFORMÁTICA PROGRAMADEPÓS-GRADUAÇÃOEMCOMPUTAÇÃO FÉLIXCARVALHORODRIGUES Smoothed Analysis in Nash Equilibria and the Price of Anarchy Thesispresentedinpartialfulfillment oftherequirementsforthedegreeof MasterofComputerScience Profa.Dra.LucianaSaleteBuriol Advisor Prof.Dr.MarcusRitt Coadvisor PortoAlegre,December2011 CIP–CATALOGING-IN-PUBLICATION Rodrigues,FélixCarvalho Smoothed Analysis in Nash Equilibria and the Price of Anarchy / Félix Carvalho Rodrigues. – Porto Alegre: PPGC daUFRGS,2011. 87f.: il. Thesis(Master)–UniversidadeFederaldoRioGrandedoSul. ProgramadePós-GraduaçãoemComputação,PortoAlegre,BR– RS, 2011. Advisor: Luciana Salete Buriol; Coadvisor: Marcus Ritt. 1.Algorithmicgametheory. 2.Smoothedanalysis. 3.Lemke- Howsonalgorithm. 4.Bimatrixgames. 5.Frank-Wolfealgorithm. 6. Network games. 7. Traffic assignment problem. 8. Price of anarchy. I.Buriol,LucianaSalete. II.Ritt,Marcus. III.Título. UNIVERSIDADEFEDERALDORIOGRANDEDOSUL Reitor: Prof. CarlosAlexandreNetto Vice-Reitor: Prof. RuiVicenteOppermann Pró-ReitordePós-Graduação: Prof. AldoBoltenLucion DiretordoInstitutodeInformática: Prof. LuísdaCunhaLamb CoordenadordoPPCG:ÁlvaroFreitasMoreira Bibliotecária-ChefedoInstitutodeInformática: BeatrizReginaBastosHaro “A common mistake that people make when trying to design something completely foolproof is to underestimate the ingenuity of complete fools.” — DOUGLAS ADAMS (THE HITCHHIKER’S GUIDE TO THE GALAXY) ACKNOWLEDGMENTS My most profound gratitude goes to Prof. Guido Schäfer, who has made this thesis possible and whom without it would not be possible for me to go into the game theory field and leave with a sane mind. For all his ideas, corrections, patience and specially guidance,whichIcarrynotonlyforthisthesisbutformylife. I thank my advisors, Prof. Luciana Buriol and Prof. Marcus Ritt, both which had the patience and willingness to explore a different field and provided invaluable support throughthewholetimeIwaswritingthisthesis. I thank everybody at CWI (Centrum Wiskunde & Informatica) in Amsterdam, spe- cially Bart de Keijzer, Tony Huynh and again Guido Schäfer for making me feel at home while so far away. I am specially grateful to Bart and his family, for letting me stay in theirhomeandofferingsuchwarmhospitalitythewholeperiodIwasthere. I would also like to thank the “European South American Network for Combinato- rialOptimizationunderUncertainty”project,programmeacronym/referenceFP7-People/ 247574, for the financial support while I was at Amsterdam, which made this thesis pos- sible. I thank Kao Félix and Letícia Nunes for the friendship and the needed moments of normallifewhiledoingthisMaster’sprogram. Finally, I would like to give a special thank you to my father Osvaldir, my mother HelenaandmysisterPriscila. WithouttheirsupportIwouldneverbeallowedtospendso muchtime onthe academic worldand onthisthesis, withso little worryon otheraspects oflife. CONTENTS LIST OF ABBREVIATIONS AND ACRONYMS . . . . . . . . . . . . . . . . 9 LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 RESUMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.2 StructureofthisThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2 GAME THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1 NashEquilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.1 PPADComplexityClass . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.2 NetworkGames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 BimatrixGames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.1 TheLemke-HowsonAlgorithm . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 PriceofAnarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 THE TRAFFIC ASSIGNMENT PROBLEM . . . . . . . . . . . . . . . . 31 3.1 TheFrank-WolfeAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 TrafficAssignmentProbleminGameTheory . . . . . . . . . . . . . . . 34 3.2.1 PriceofAnarchyintheTrafficAssignmentProblem . . . . . . . . . . . . 34 4 SMOOTHED ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1 PerturbationModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 SmoothedPriceofAnarchy . . . . . . . . . . . . . . . . . . . . . . . . . 40 5 SMOOTHED COMPLEXITY OF BIMATRIX GAMES . . . . . . . . . . 41 5.1 KnownWorst-CaseInstances . . . . . . . . . . . . . . . . . . . . . . . . 42 5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2.1 AnExactImplementationoftheLemke-HowsonAlgorithm . . . . . . . . 43 5.2.2 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6 SMOOTHED PRICE OF ANARCHY IN THE TRAFFIC ASSIGNMENT PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.1 LowerBounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.1.1 LinearLatencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.1.2 PolynomialLatencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2 ExperimentalResultsinBenchmarkInstances . . . . . . . . . . . . . . 63 6.2.1 ExperimentalSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.1 DiscussionandFutureWork . . . . . . . . . . . . . . . . . . . . . . . . 70 7.1.1 Hypercubebasedinstances . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.1.2 SmoothedPriceofAnarchyindifferentcontexts . . . . . . . . . . . . . . 72 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 APPENDIX A ANÁLISE SUAVISADA EM EQUILíBRIOS NASH E NO PREÇO DA ANARQUIA . . . . . . . . . . . . . . . . . . . 77 A.1 TeoriadosJogos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 A.2 JogosBimatrizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 A.2.1 OalgoritmodeLemke-Howson . . . . . . . . . . . . . . . . . . . . . . . 78 A.3 PreçodaAnarquia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 A.4 ProblemadeAtribuiçãodeTráfego . . . . . . . . . . . . . . . . . . . . . 79 A.4.1 PreçodaAnarquiaparaoProblemadeAtribuiçãodeTráfego . . . . . . . 80 A.5 AnáliseSuavizada(SmoothedAnalysis) . . . . . . . . . . . . . . . . . . . 81 A.6 ComplexidadeSuavizadadeJogosBimatrizes . . . . . . . . . . . . . . . 81 A.6.1 ResultadosExperimentaisparaJogosBimatrizes . . . . . . . . . . . . . . 82 A.7 PreçodaAnarquiaSuavizado(SmoothedPriceofAnarchy) . . . . . . . 83 A.8 PreçodaAnarquiaSuavizadoparaoProblemadeAtribuiçãodeTráfego 84 A.8.1 ResultadosExperimentaisemInstânciasdeBenchmark . . . . . . . . . . 86 A.9 Conclusões . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 LIST OF ABBREVIATIONS AND ACRONYMS FW Frank-Wolfealgorithm LH Lemke-Howsonalgorithm NE NashEquilibrium PoA PriceofAnarchy PoS PriceofStability TAP TrafficAssignmentProblem SPoA SmoothedPriceofAnarchy

Description:
(THE HITCHHIKER'S GUIDE TO THE GALAXY) ratio value, which is the lowest value of the current base value divided by the entering variable
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.