ebook img

Smart Sensing for Traffic Monitoring (Transportation) PDF

253 Pages·2021·33.281 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Smart Sensing for Traffic Monitoring (Transportation)

IETTRANSPORTATION SERIES 17 Smart Sensing for Traffic Monitoring Othervolumesinthisseries: Volume1 CleanMobilityandIntelligentTransportSystemsM.FioriniandJ.-C.Lin (Editors) Volume2 EnergySystemsforElectricandHybridVehiclesK.T.Chau(Editor) Volume5 SlidingModeControlofVehicleDynamicsA.Ferrara(Editor) Volume6 LowCarbonMobilityforFutureCities:PrinciplesandApplicationsH.Dia (Editor) Volume7 EvaluationofIntelligentRoadTransportationSystems:Methodsand ResultsM.Lu(Editor) Volume8 RoadPricing:Technologies,EconomicsandAcceptabilityJ.Walker(Editor) Volume9 AutonomousDecentralizedSystemsandTheirApplicationsinTransport andInfrastructureK.Mori(Editor) Volume11 NavigationandControlofAutonomousMarineVehiclesS.Sharmaand B.Subudhi(Editors) Volume12 EMCandFunctionalSafetyofAutomotiveElectronicsK.Borgeest Volume16 ICTforElectricVehicleIntegrationwiththeSmartGridN.Kishorand J.Fraile-Ardanuy(Editors) Volume25 CooperativeIntelligentTransportSystems:TowardsHigh-Level AutomatedDrivingM.Lu(Editor) Volume38 TheElectricCarM.H.Westbrook Volume45 PropulsionSystemsforHybridVehiclesJ.Miller Volume79 Vehicle-to-Grid:LinkingElectricVehiclestotheSmartGridJ.Luand J.Hossain(Editors) Smart Sensing for Traffic Monitoring Edited by Nobuyuki Ozaki The Institution of Engineering andTechnology PublishedbyTheInstitutionofEngineeringandTechnology,London,UnitedKingdom TheInstitutionofEngineeringandTechnologyisregisteredasaCharityinEngland& Wales(no.211014)andScotland(no.SC038698). †TheInstitutionofEngineeringandTechnology2021 Firstpublished2020 ThispublicationiscopyrightundertheBerneConventionandtheUniversalCopyright Convention.Allrightsreserved.Apartfromanyfairdealingforthepurposesofresearch orprivatestudy,orcriticismorreview,aspermittedundertheCopyright,Designsand PatentsAct1988,thispublicationmaybereproduced,storedortransmitted,inany formorbyanymeans,onlywiththepriorpermissioninwritingofthepublishers,orin thecaseofreprographicreproductioninaccordancewiththetermsoflicencesissued bytheCopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethose termsshouldbesenttothepublisherattheundermentionedaddress: TheInstitutionofEngineeringandTechnology MichaelFaradayHouse SixHillsWay,Stevenage Herts,SG12AY,UnitedKingdom www.theiet.org Whiletheauthorsandpublisherbelievethattheinformationandguidancegiveninthis workarecorrect,allpartiesmustrelyupontheirownskillandjudgementwhenmaking useofthem.Neithertheauthorsnorpublisherassumesanyliabilitytoanyoneforany lossordamagecausedbyanyerrororomissioninthework,whethersuchanerroror omissionistheresultofnegligenceoranyothercause.Anyandallsuchliabilityis disclaimed. Themoralrightsoftheauthorstobeidentifiedasauthorsofthisworkhavebeen assertedbytheminaccordancewiththeCopyright,DesignsandPatentsAct1988. BritishLibraryCataloguinginPublicationData AcataloguerecordforthisproductisavailablefromtheBritishLibrary ISBN978-1-78561-774-4(hardback) ISBN978-1-78561-775-1(PDF) TypesetinIndiabyMPSLimited PrintedintheUKbyCPIGroup(UK)Ltd,Croydon Contents Abouttheeditor xi Preface xiii Part I:Regional activities 1 1 Japanperspective 3 Koichi Sakai 1.1 Historyof intelligent transport system development in Japan 3 1.2 Infrastructure sensorsand driving assistance usingV2I 5 1.2.1 What is an infrastructure sensor? 5 1.2.2 Events detected byinfrastructure sensors 6 1.2.3 Type of sensorsthat can be usedas infrastructure sensors 8 1.2.4 Driving assistance usinginfrastructure sensors 9 1.3 Expressway case studies 10 1.3.1 Forward obstacle information provision (SangubashiCurve, Metropolitan Expressway) 10 1.3.2 Forward obstacle information provision (Rinkai Fukutoshin Slip Road, Metropolitan Expressway) 11 1.3.3 Forward obstacle information provision (Akasaka Tunnel, Metropolitan Expressway) 12 1.3.4 Merging assistance (Tanimachi Junction, Higashi-Ikebukuro Slip Road and soon, Metropolitan Expressway) 13 1.3.5 Smooth traffic flowassistance at sags(Yamato Sag, Tomei Expressway) 14 1.4 Case studies onordinary roads 15 1.4.1 Rear-end collision prevention system 16 1.4.2 Crossingcollision prevention system 16 1.4.3 Left-turn collision prevention system 16 1.4.4 Right-turn collisionprevention system 17 1.4.5 Crossingpedestrian recognition enhancement system 17 1.5 Driving safety assistance usingvehicle-to-vehicle (V2V) communication 17 References 19 vi Smart sensingfor traffic monitoring 2 Europeanperspective of Cooperative Intelligent TransportSystems 21 Meng Lu,Robbin Blokpoel and Jacint Castells 2.1 Introduction 21 2.2 C-ITS development and deployment in Europe 22 2.3 European C-ITS platform 23 2.4 C-Roads initiative 23 2.5 C-ITS architecture 26 2.6 C-ITS services and usecases and operational guidelines 33 2.7 Conclusions 33 Acknowledgements 34 Appendix A 35 References 39 3 Singapore perspective: smart mobility 43 Kian-Keong Chin 3.1 Introduction 43 3.2 Challenges and transport strategy 43 3.3 Demand management –a key element of the transport strategy 44 3.4 Development of intelligent transport systems in Singapore 44 3.5 Integrating ITS ona common platform 48 3.6 Road pricing in Singapore 49 3.6.1 The manually operated Area LicensingScheme 49 3.6.2 Road pricing adopts intelligent technologies 50 3.6.3 Challenges with the ERPsystem 52 3.6.4 The next-generation road pricing system 52 3.7 Big data and analytics for traffic management and travellers 55 3.7.1 Quality of data and information 55 3.7.2 Travel information available from ITS inSingapore 56 3.8 Connected and autonomousvehicles 58 3.9 Concluding remarks 59 References 59 Part II:Traffic state sensingbyroadside unit 61 4 Traffic countingbystereo camera 63 ToshioSato 4.1 Introduction 63 4.2 General procedure traffic counting usingstereo vision 64 4.2.1 Stereo cameras 64 4.2.2 Calibration of camera images 66 4.2.3 Image rectification 68 4.2.4 Block matching to produce a depth map 68 4.2.5 Object detection 69 4.2.6 Object tracking and counting 70 4.2.7 Installation of stereo camera 70 Contents vii 4.3 Accurate vehicle counting usingroadside stereo camera 71 4.3.1 System configuration 72 4.3.2 Depth measurement based onbinocular stereo vision 73 4.3.3 Vehicle detection 74 4.3.4 Traffic counter 74 4.3.5 Results 76 4.4 Summary 78 References 78 5 Vehicle detectionat intersectionsbyLIDARsystem 81 Hikaru Ishikawa, YoshihisaYamauchi and Kentaro Mizouchi 5.1 Introduction 81 5.1.1 New trend 81 5.1.2 Target applications 81 5.1.3 Basic principal of LIDAR system 81 5.1.4 Types of LIDAR system 82 5.1.5 Performance of LIDAR system 85 5.1.6 Current deployment status 85 5.2 Application of vehicle detection byan IHI’s3Dlaser radar 85 5.2.1 Practical application of a 3Dlaser radar is close at hand in playing a central role inthe Intelligent Transport Systems 85 5.2.2 Eyes that tell vehicles the roadconditions at a nearby intersection 85 5.2.3 Instant identification of objects with reflectedlaser light 88 5.2.4 Advantage of all-weather capability and fast data processing 89 5.2.5 Pilot program in Singapore 90 References 95 6 Vehicle detectionat intersection byRADARsystem 97 Yoichi Nakagawa 6.1 Background 97 6.2 High-resolution millimetre-wave radar 98 6.3 Roadside radar system 100 6.4 Technical verification under severe weather condition 103 6.4.1 Objective 103 6.4.2 Design for heavy rainfall condition 103 6.4.3 Experiment in snowfall field 104 6.5 Detection accuracy verification on public road 106 6.6 Conclusion and discussion 110 Acknowledgements 111 References 111 viii Smartsensingfor traffic monitoring Part III:Traffic state sensingbyonboard unit 113 7 GNSS-basedtraffic monitoring 115 Benjamin Wilson 7.1 Introduction 115 7.2 GNSSprobe data 115 7.3 GNSSprobe data attributes 115 7.4 Historical data 116 7.5 Probe data processing 116 7.6 Real-time traffic information 117 7.7 Example of probe data in use 118 7.8 Historical traffic services 119 7.8.1 Traffic speed average 119 7.8.2 Historical traffic analytics information 119 7.9 Advanced traffic features 120 7.10 Split lane traffic 120 7.11 Wide moving jam (safety messages) 120 7.12 Automated road closures 121 7.13 Quality testing 122 7.14 Ground truth testing 122 7.15 Probesas ground truth 122 7.16 Q-Bench 123 7.17 Conclusion 123 8 Traffic state monitoring byclose coupling logic withOBUand cloudapplications 125 Nobuyuki Ozaki, Hideki Ueno,ToshioSato, Yoshihiko Suzuki, Chihiro Nishikata, Hiroshi Sakai and YoshikazuOoba 8.1 Introduction 126 8.2 Smart transport cloud system 127 8.2.1 Concept 127 8.2.2 Key technology 129 8.3 Usage case 1:estimation of traffic volume at highway 131 8.3.1 System description 131 8.3.2 Traffic volume estimation 133 8.4 Usage case 2:estimation of traffic congestion and volume of pedestrian crowds 135 8.4.1 Benefits from the system 135 8.4.2 System description 137 8.4.3 Logic design 138 8.4.4 Evaluation 144 8.4.5 Other possibilities for estimating traffic: finding parked vehicles 145 8.5 Conclusion 146 Acknowledgments 147 References 147 Contents ix Part IV:Detection andcounting of vulnerable road users 149 9 Monitoring cycle traffic: detectionandcounting methods andanalytical issues 151 John Parkin, Paul Jackson and Andy Cope 9.1 Introduction 151 9.1.1 Importance of monitoring cycle traffic 151 9.1.2 Nature of cycle traffic 153 9.2 Current methodsof detecting and counting 154 9.2.1 Overview 154 9.2.2 Manual classified counts 155 9.2.3 Surface and subsurface equipment 156 9.2.4 Above-grounddetection 159 9.3 Procedures, protocols and analysis 161 9.3.1 Procedures and protocols 161 9.3.2 Analysis 164 9.4 Innovationsin cycle-counting technology 166 9.4.1 Harvesting digital crowdsourced data 166 9.4.2 Issuesand a future trajectory 167 Acknowledgements 168 References 168 10 Crowddensity estimation from a surveillance camera 171 Viet-Quoc Pham 10.1 Introduction 171 10.2 Related works 173 10.3 COUNT forest 174 10.3.1 BuildingCOUNT forest 175 10.3.2 Prediction model 177 10.3.3 Density estimation by COUNTforest 177 10.4 Robust density estimation 179 10.4.1 Crowdednessprior 179 10.4.2 Forest permutation 180 10.4.3 Semiautomatic training 180 10.5 Experiments 182 10.5.1 Counting performance 182 10.5.2 Robustness 185 10.5.3 Semiautomatic training 185 10.5.4 Application 1: traffic count 186 10.5.5 Application 2: stationary time 188 10.6 Conclusions 189 References 189

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.