ebook img

Smarandache Curves in Terms of Sabban Frame of Spherical Indicatrix Curves PDF

2015·0.29 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Smarandache Curves in Terms of Sabban Frame of Spherical Indicatrix Curves

Gen. Math. Notes, Vol. 31, No. 2, December 2015, pp.1-15 ISSN 2219-7184; Copyright (cid:13)c ICSRS Publication, 2015 www.i-csrs.org Available free online at http://www.geman.in Smarandache Curves in Terms of Sabban Frame of Spherical Indicatrix Curves Su¨leyman S¸enyurt1 and Abdussamet C¸alı¸skan2 1,2Faculty of Arts and Sciences, Department of Mathematics Ordu University, 52100, Ordu, Turkey 1E-mail: [email protected] 2E-mail: [email protected] (Received: 4-11-14 / Accepted: 20-4-15) Abstract In this paper, we investigate special Smarandache curves in terms of Sab- ban frame of spherical indicatrix curves and we give some characterization of Smarandache curves. Besides, we illustrate examples of our results. Keywords: Smarandache Curves, Sabban Frame, Geodesic Curvature, Spherical Indicatrix Curves. 1 Introduction A regular curve in Minkowski space-time, whose position vector is composed by Frenet frame vectors on another regular curve, is called a Smarandache curve [5]. Special Smarandache curves have been studied by some authors. AhmadT.AlistudiedsomespecialSmarandachecurvesintheEuclideanspace. ¨ He studied Frenet-Serret invariants of a special case, [2]. Ozcan Bekta¸s and Salim Yu¨ce studied some special smarandache curves according to Darboux Frame in E3, [4]. Muhammed C¸etin, Yılmaz Tuncer and Kemal Karacan in- vestigated special smarandache curves according to Bishop frame in Euclidean 3-Space and they gave some differential geometric properties of Smarandache curves, [3]. MelihTurgutandSu¨haYılmazstudiedaspecialcaseofsuchcurves and called it smarandache TB curves in the space E4, [5]. Nurten Bayrak, 2 1 ¨ Ozcan Bekta¸s and Salim Yu¨ce studied some special smarandache curves in E3, [6]. Kemal Tas.ko¨pru¨ , Murat Tosun studied special Smarandache curves 1 2 Su¨leyman S¸enyurt et al. according to Sabban frame on S2, [7]. In this paper, we study special Smarandache curves such as TT , T T (T∧T ), TT (T∧T ), NT , T (N∧T ), NT (N∧T ), BT , T (B∧T ) T T T T N N N N N B B B and BT (B∧T ) created by Sabban frame, {T,T ,T ∧T }, {N,T ,N ∧T } B B T T N N and {B,T ,B ∧ T }, that belongs to spherical indicatrix of a α curve are B B defined. Besides we have found some results. 2 Problem Formulations The Euclidean 3-space E3 be inner product given by (cid:104),(cid:105) = x2 +x3 +x2 1 2 3 where (x ,x ,x ) ∈ E3. Let α : I → E3 be a unit speed curve denote by 1 2 3 {T,N,B} the moving Frenet frame . For an arbitrary curve α ∈ E3, with first and second curvature, κ and τ respectively, the Frenet formulae is given by [1]  T(cid:48) = κN   N(cid:48) = −κT +τB (1)  B(cid:48) = −τN. Accordingly, the spherical indicatrix curves of Frenet vectors are (T), (N) and (B) respectively. These equations of curves are given by [10]  α (s) = T(s)  T α (s) = N(s) (2) N  α (s) = B(s) B For any unit speed curve α : I → E3, the vector W is called Darboux vector defined by W = τ(s)T(s)+κ(s)B(s). If we consider the normalization of the Darboux c = W we have (cid:107)W(cid:107) κ(s) τ(s) cosϕ = ,sinϕ = (cid:107)W(cid:107) (cid:107)W(cid:107) and c = sinϕT(s)+cosϕB(s) where ∠(W,B) = ϕ. Smarandache Curves in Terms of Sabban Frame... 3 Let γ : I → S2 be a unit speed spherical curve. We denote s as the arc-length parameter of γ. Let us denote by  γ(s) = γ(s)   t(s) = γ(cid:48)(s) (3)  d(s) = γ(s)∧t(s). We call t(s) a unit tangent vector of γ. {γ,t,d} frame is called the Sabban frame of γ on S2 . Then we have the following spherical Frenet formulae of γ :  γ(cid:48) = t   t(cid:48) = −γ +κ d (4) g  d(cid:48) = −κ t g where is called the geodesic curvature of κ on S2 and g κ = (cid:104)t(cid:48),d(cid:105) [8] (5) g 3 Smarandache Curves in Terms of Sabban Frame of Spherical Indicatrix Curves In this section, we investigate Smarandache curves according to the Sabban frame of Spherical Indicatrix Curves. Let α (s) = T(s) be a unit speed regular spherical curves on S2. We denote T s as the arc-lenght parameter of tangents indicatrix (T) T α (s) = T(s) (6) T Differentiating (6), we have dα ds T T = T(cid:48)(s) ds ds T and ds T T = κN (7) T ds From the equation (7) T = N T and T ∧T = B T 4 Su¨leyman S¸enyurt et al. From the equation (3)  T(s) = T(s)   T (s) = N(s) T  T ∧T (s) = B(s) T is called the Sabban frame of tangents indicatrix (T). From the equation (5) τ κ = (cid:104)T(cid:48),T ∧T (cid:105) =⇒ κ = g T T g κ Then from the equation (4) we have the following spherical Frenet formulae of (T):  T(cid:48) = T  T T(cid:48) = −T + τT ∧T (8) T κ T  (T ∧T )(cid:48) = −τT T κ T Let α (s) = N(s) be a unit speed regular spherical curves on S2.We denote N s as the arc-lenght parameter of principal normals indicatrix (N) N α (s) = N(s) (9) N Differentiating (9), we have T = −cosϕT +sinϕB N and N ∧T = sinϕT +cosϕB. N From the equation (3)  N(s) = N(s)   T (s) = −cosϕT(s)+sinϕB(s) N  N ∧T (s) = sinϕT(s)+cosϕB(s) N is called the Sabban frame of principal normals indicatrix (N). From the equa- tion (5) ϕ(cid:48) κ = g (cid:107)W(cid:107) Then from the equation (4) we have the following spherical Frenet formulae of (N):  N(cid:48) = T  N  T(cid:48) = −N + ϕ(cid:48) (N ∧T ) (10) N (cid:107)W(cid:107) N (N ∧T )(cid:48) = − ϕ(cid:48) T N (cid:107)W(cid:107) N Smarandache Curves in Terms of Sabban Frame... 5 Let α (s) = B(s) be a unit speed regular spherical curves on S2.We denote B s as the arc-lenght parameter of indicatrix (B) B α (s) = B(s) (11) B Differentiating (11), we have T = −N B and B ∧T = T B From the equation (3)  B(s) = B(s)   T (s) = −N(s) B  (B ∧T )(s) = T(s) B is called the Sabban frame of binormals indicatrix (B). From the equation (5) κ κ = g τ Then from the equation (4) we have the following spherical Frenet formulae of (B):  B(cid:48) = T  B T (cid:48) = −B + κ(B ∧T ) (12) B τ B  (B ∧T )(cid:48) = −κT B τ B i-) TT -Smarandache Curves T Let S2 be a unit sphere in E3 and suppose that the unit speed regular curve α (s) = T(s) lying fully on S2. In this case, TT - Smarandache curve can be T T defined by 1 β (s∗) = √ (T +T ). (13) 1 T 2 Now we can compute Sabban invariants of TT - Smarandache curves. Differ- T entiating (13), we have ds∗ 1 τ T = √ (−T +N + B), β1 ds 2 κ where (cid:114) ds∗ 2+(τ)2 = κ . (14) ds 2 Thus, the tangent vector of curve β is to be 1 1 τ T = (−T +N + B). (15) β1 (cid:112)2+(τ)2 κ κ 6 Su¨leyman S¸enyurt et al. Differentiating (15), we get ds∗ 1 T(cid:48) = (λ T +λ N +λ B) (16) β1 ds (cid:0)2+(τ)2(cid:1)32 1 2 3 κ where τ τ τ (cid:0) (cid:1)(cid:48) (cid:0) (cid:1)2 λ = − −2 1 κ κ κ τ τ τ τ (cid:0) (cid:1)(cid:48) (cid:0) (cid:1)4 (cid:0) (cid:1)2 λ = − − −3 −2 2 κ κ κ κ τ τ τ (cid:0) (cid:1) (cid:0) (cid:1)3 λ = 2 + +2 . 3 κ κ κ Substituting the equation (15) into equation (16), we reach √ 2 T(cid:48) = (λ T +λ N +λ B). (17) β1 (2+(τ)2)2 1 2 3 κ Considering the equations (13) and (15), it easily seen that 1 τ τ (T ∧T ) = ( T − N +2B). (18) T β1 (cid:112)4+2(τ)2 κ κ κ From the equation (17) and (18), the geodesic curvature of β (s∗) is 1 κ β1 = 1 (λ τ −λ τ +2λ ). g (2+(τ)2)25 1κ 2κ 3 κ ii-) T (T ∧T )-Smarandache Curves T T Similarly, T (T ∧T ) - Smarandache curve can be defined by T T 1 β (s∗) = √ (T +T ∧T ). (19) 2 T T 2 In that case, the tangent vector of curve β is as follows 2 1 τ τ T = (−T − N + B). (20) β2 (cid:112)1+2(τ)2 κ κ κ Differentiating (20), it is obtained that √ 2 T(cid:48) = (λ T +λ N +λ B) (21) β2 (1+2(τ)2)2 1 2 3 κ where Smarandache Curves in Terms of Sabban Frame... 7 τ τ τ τ (cid:0) (cid:1)3 (cid:0) (cid:1)(cid:0) (cid:1)(cid:48) λ = +2 +2 1 κ κ κ κ τ τ τ (cid:0) (cid:1)4 (cid:0) (cid:1)2 λ = −2 −3 − −1 2 κ κ κ τ τ τ (cid:0) (cid:1)(cid:48) (cid:0) (cid:1)4 (cid:0) (cid:1)2 λ = −2 − . 3 κ κ κ Using the equations (19) and (20), we easily find 1 τ (T ∧T ) = (2 T −N +B). (22) T β2 (cid:112)2+4(τ)2 κ κ So, the geodesic curvature of β (s∗) is as follows 2 1 τ κ β2 = (2λ −λ +λ ). g (1+2(τ)2)52 1κ 2 3 κ iii-) TT (T ∧T )-Smarandache Curves T T TT T ∧T - Smarandache curve can be defined by T T 1 β (s∗) = √ (T +T +T ∧T ). (23) 3 T T 3 Differentiating (23), we have the tangent vector of curve β is 3 1 τ τ T = (−T +(1− )N + B). (24) β3 (cid:112)2(1− τ +(τ)2) κ κ κ κ Differentiating (24), it is obtained that √ 3 T(cid:48) = (λ T +λ N +λ B). (25) β3 4(1− τ +(τ)2)2 1 2 3 κ κ where τ τ τ τ τ (cid:0) (cid:1)(cid:48)(cid:0) (cid:1) (cid:0) (cid:1)3 (cid:0) (cid:1)2 λ = 2 −1 +2 −4 +4 −2 1 κ κ κ κ κ τ τ τ τ τ τ (cid:0) (cid:1)(cid:48)(cid:0) (cid:1) (cid:0) (cid:1)4 (cid:0) (cid:1)3 (cid:0) (cid:1)2 (cid:0) (cid:1) λ = − +1 −2 +2 −4 +2 −2 2 κ κ κ κ κ κ τ τ τ τ τ τ (cid:0) (cid:1)(cid:48)(cid:0) (cid:1) (cid:0) (cid:1)4 (cid:0) (cid:1)3 (cid:0) (cid:1)2 (cid:0) (cid:1) λ = 2− −2 +4 −4 +2 . 3 κ κ κ κ κ κ Using the equations (23) and (24), we have 8 Su¨leyman S¸enyurt et al. (2τ −1)T +(−1− τ)N +(2− τ)B (T ∧T ) = κ √ κ κ · (26) T β3 6(cid:112)1− τ +(τ)2 κ κ So, the geodesic curvature of β (s∗) is 3 λ (2τ −1)+λ (−1− τ)+λ (2− τ) κ β3 = 1 κ √ 2 κ 3 κ · g 4 2(1− τ +(τ)2)52 κ κ iv-) NT -Smarandache Curves N NT - Smarandache curve can be defined by N 1 ς (s∗) = √ (N +T ). (27) 1 N 2 Differentiating (27), we have the tangent vector of curve ς is 3 (−cosϕ+ ϕ(cid:48) sinϕ)T −N +(sinϕ+ ϕ(cid:48) cosϕ)B (cid:107)W(cid:107) (cid:107)W(cid:107) T = · (28) ς1 (cid:113)2+( ϕ(cid:48) )2 (cid:107)W(cid:107) Differentiating (28), we get 1 T(cid:48) = ((λ sinϕ−λ cosϕ)T +λ N +(λ sinϕ+λ cosϕ)B). ς1 (2+( ϕ(cid:48) )2)2 3 2 1 2 3 (cid:107)W(cid:107) (29) where ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) (cid:0) (cid:1)(cid:0) (cid:1)(cid:48) (cid:0) (cid:1)2 λ = − −2 1 (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) (cid:0) (cid:1)(cid:0) (cid:1)(cid:48) (cid:0) (cid:1)4 (cid:0) (cid:1)2 λ = − − −3 −2 2 (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) (cid:0) (cid:1)(cid:48) (cid:0) (cid:1)3 (cid:0) (cid:1) λ = 2 + +2 . 3 (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) Considering the equations (27) and (28), it easily seen that (cid:0)2sinϕ+ ϕ(cid:48) cosϕ)T + ϕ(cid:48) N +(2cosϕ− ϕ(cid:48) sinϕ)B (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) (N ∧T ) = · (30) N ς1 (cid:113)4+2( ϕ(cid:48) )2 (cid:107)W(cid:107) The geodesic curvature of ς (s∗) is 1 Smarandache Curves in Terms of Sabban Frame... 9 (cid:0)λ ϕ(cid:48) −λ ϕ(cid:48) +2λ (cid:1) κ ς1 = 1(cid:107)W(cid:107) 2(cid:107)W(cid:107) 3 · g 5 (2+( ϕ(cid:48) )2)2 (cid:107)W(cid:107) v-) T (N ∧T )-Smarandache Curves N N T (N ∧T ) - Smarandache curve can be defined by N N 1 ς (s∗) = √ (T +N ∧T ). (31) 2 N N 2 Differentiating (31), the tangent vector of curve ς is 2 ( ϕ(cid:48) (sinϕ+cosϕ))T −N +( ϕ(cid:48) (cosϕ−sinϕ)B) (cid:107)W(cid:107) (cid:107)W(cid:107) T = · (32) ς2 (cid:113)1+2( ϕ(cid:48) )2 (cid:107)W(cid:107) Differentiating (32), it is obtained that √ 2 (cid:2) (cid:3) T(cid:48) = (λ sinϕ−λ cosϕ)T +λ N +(λ sinϕ+λ cosϕ)B ς2 (1+2( ϕ(cid:48) )2)2 3 2 1 2 3 (cid:107)W(cid:107) (33) where ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) (cid:0) (cid:1) (cid:0) (cid:1)3 (cid:0) (cid:1)(cid:0) (cid:1)(cid:48) λ = +2 +2 1 (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) (cid:0) (cid:1)4 (cid:0) (cid:1)4 (cid:0) (cid:1) λ = −2 −3 − −1 2 (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) (cid:0) (cid:1)(cid:48) (cid:0) (cid:1)4 (cid:0) (cid:1)2 λ = −2 − . 3 (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) Using the equations (31) and (32), we easily find (sinϕ+cosϕ)T +2 ϕ(cid:48) N +(cosϕ−sinϕ)B (cid:107)W(cid:107) (N ∧T ) = · (34) N ς2 (cid:113)2+4( ϕ(cid:48) )2 (cid:107)W(cid:107) So, the geodesic curvature of ς (s∗) is as follows 2 (cid:0) ϕ(cid:48) λ −λ +λ (cid:1) κ ς2 = (cid:107)W(cid:107) 1 2 3 · g 5 (1+2( ϕ(cid:48) )2)2 (cid:107)W(cid:107) 10 Su¨leyman S¸enyurt et al. vi-) NT (N ∧T )-Smarandache Curves N N NT N ∧T - Smarandache curve can be defined by N N 1 ς (s∗) = √ (N +T +N ∧T ). (35) 3 N N 3 Differentiating (35), the tangent vector of curve ς is 2 (cid:0)−cosϕ+ ϕ(cid:48) (cosϕ+sinϕ)(cid:1)T −N +(cid:0)sinϕ+ ϕ(cid:48) (cosϕ−sinϕ)(cid:1)B (cid:107)W(cid:107) (cid:107)W(cid:107) T = · ς3 (cid:114) (cid:16) (cid:17) 2 1− ϕ(cid:48) +(cid:0) ϕ(cid:48) (cid:1)2 (cid:107)W(cid:107) (cid:107)W(cid:107) (36) Differentiating (36), it is obtained that √ 3 (cid:2) (cid:3) T(cid:48) = (−λ cosϕ+λ sinϕ)T +λ N +(λ cosϕ+λ sinϕ)B . ς3 4(cid:16)1− ϕ(cid:48) +( ϕ(cid:48) )2(cid:17)2 2 3 1 3 2 (cid:107)W(cid:107) (cid:107)W(cid:107) (37) where ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) (cid:0) (cid:1)(cid:48)(cid:0) (cid:1) (cid:0) (cid:1)3 (cid:0) (cid:1)2 (cid:0) (cid:1) λ = 2 −1 +2 −4 +4 −2 1 (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) (cid:0) (cid:1)(cid:48)(cid:0) (cid:1) (cid:0) (cid:1)4 (cid:0) (cid:1)3 (cid:0) (cid:1)2 (cid:0) (cid:1) λ = − +1 −2 +2 −4 +2 −2 2 (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) ϕ(cid:48) (cid:0) (cid:1)(cid:48)(cid:0) (cid:1) (cid:0) (cid:1)4 (cid:0) (cid:1)3 (cid:0) (cid:1)2 (cid:0) (cid:1) λ = 2− −2 +4 −4 +2 . 3 (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) (cid:107)W(cid:107) Using the equations (35) and (36), we have 1 (cid:16) (N ∧TN)ς3 = √6(cid:113)1− ϕ(cid:48) +( ϕ(cid:48) )2 (2sinϕ+cosϕ (38) (cid:107)W(cid:107) (cid:107)W(cid:107) ϕ(cid:48) ϕ(cid:48) + (cosϕ−sinϕ))T +(−1+2 )N (cid:107)W(cid:107) (cid:107)W(cid:107) ϕ(cid:48) (cid:17) +(2cosϕ−sinϕ− (cosϕ−sinϕ))B (cid:107)W(cid:107) The geodesic curvature of ς (s∗) is 3

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.