ebook img

Small Spacecraft Development Project-Based Learning: Implementation and Assessment of an Academic Program PDF

238 Pages·2017·7.44 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Small Spacecraft Development Project-Based Learning: Implementation and Assessment of an Academic Program

Jeremy Straub · Ronald Arthur Marsh David J. Whalen Small Spacecraft Development Project-Based Learning Implementation and Assessment of an Academic Program Small Spacecraft Development Project-Based Learning Jeremy Straub • Ronald Arthur Marsh David J. Whalen Small Spacecraft Development Project-Based Learning Implementation and Assessment of an Academic Program Jeremy Straub Ronald Arthur Marsh Department of Computer Science Department of Computer Science North Dakota State University University of North Dakota Fargo, ND, USA Grand Forks, ND, USA David J. Whalen Department of Space Studies University of North Dakota Grand Forks, ND, USA ISBN 978-3-319-23644-5 ISBN 978-3-319-23645-2 (eBook) DOI 10.1007/978-3-319-23645-2 Library of Congress Control Number: 2016953479 © Springer International Publishing Switzerland 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface Small spacecraft, in particular CubeSats, gained significant popularity during the past decade [1]. While space exploration actually began with a small spacecraft (Sputnik [2]), it was only recently that electronics miniaturization and other factors enabled small spacecraft to perform (or even be considered for) missions that were once the domain of much larger spacecraft. A recent news feature in Science [3] contrasted the data collected by a PlanetLabs 10 cm × 10 cm × 30 cm CubeSat and a much larger LandSat spacecraft. Aside from some clouds (the images were taken at different times), the two are virtually indistinguishable. While it would be inaccu- rate to suggest that small spacecraft can duplicate the capabilities of larger ones in all ways, it is clear that their utility for many applications has been demonstrated. Despite the value that has been demonstrated to students (see chapter 10) who participate in small spacecraft programs and the research and other capabilities that these spacecraft have provided, very little has been written about the logistics of starting and evaluating a small spacecraft program. Due to this, key questions remain undiscussed. These include what factors should one consider in deciding to start a small spacecraft program, what factors should influence a build vs. buy deci- sion, and how does one evaluate the success of a small spacecraft program. This book seeks to begin to answer some of these questions. Due to the nature of academic publishing, this book is designed to be read in two ways. The first is as a traditional book: one can start at the beginning and read through areas of interest (skipping and possibly returning to some sections as needed). Many readers, however, may choose to read just a single or small number of chapters. The availability of individual chapters for download (and purchase) via SpringerLink requires that we not assume readers will have read—or even have access to—prior or subsequent chapters. For this reason, a certain amount of background information, required to provide context for the current chapter, is included. Those reading the book straight through will find most of this material presented (in more detail) in Chap. 1 and may wish to skip the background sections in subsequent chapters. v vi Preface We don’t pretend to suggest that the approaches discussed and metrics used in this book are the only ways to start or evaluate a small spacecraft program. In fact, we hope that this work contributes to an ongoing discussion in some areas and starts one in others. We look forward to expanding on this work in the future based on the results of that discussion. References 1. Swartwout, M. 2014. The first one hundred CubeSats: A statistical look. Journal of Small Satellites 2: 213–233. 2. Dickson, P. 2001. Sputnik: The Shock of the Century. New York, NY: Walker Publishing Company, Inc. 3. Hand, E. 2015. Startup liftoff. Science 348(6231): 172–177. d oi:10.1126/science.348.6231.172. Contents 1 Introduction ............................................................................................. 1 1.1 Overview of Small Spacecraft ......................................................... 1 1.1.1 Access to Small Spacecraft .................................................. 2 1.1.2 The Status Quo ..................................................................... 2 1.1.3 Enter Nanosatellites ............................................................. 3 1.1.4 Going Mainstream ................................................................ 3 1.1.5 Academic Proliferation ........................................................ 4 1.1.6 Start of Industry Proliferation .............................................. 5 1.1.7 Comparison of Satellites and Early Computers ................... 5 1.1.8 The Almost Personal Satellite .............................................. 6 1.1.9 Comparison of Capabilities .................................................. 7 1.1.10 Towards the Future ............................................................... 7 1.2 Types of Small Spacecraft ................................................................ 8 1.3 Benefits of Small Spacecraft ............................................................ 9 1.3.1 STEM Education and Small Satellites ................................. 9 1.3.2 Changing Small Satellite Environment ................................ 10 1.3.3 Space Research ..................................................................... 10 1.4 Uses of Small Spacecraft ................................................................. 11 1.4.1 Technologies and Missions .................................................. 12 1.4.2 Communications Mission ..................................................... 15 1.5 Conclusion........................................................................................ 15 References ................................................................................................. 15 2 Why Start a Small Spacecraft Program ............................................... 21 2.1 Overview .......................................................................................... 21 2.2 Research Benefits ............................................................................. 22 2.3 Educational Benefits......................................................................... 24 2.3.1 Experiential Learning and Problem-Based Learning ........... 24 2.3.2 Benefits of Interdisciplinary Projects ................................... 26 2.4 Societal Benefits ............................................................................... 27 2.4.1 Remote Sensing Benefits, Data Products, and Their Uses....... 27 vii viii Contents 2.4.2 Technologies and Mission .................................................... 28 2.4.3 Collaborative Mission for Developing Countries ................ 29 2.4.4 Qualitative Analysis ............................................................. 29 2.5 Considerations Based on National Space Competency ................... 31 2.6 Conclusion........................................................................................ 31 References ................................................................................................. 31 3 To Build, Buy, or in Between? ................................................................ 37 3.1 Why Launch a NanoSat? .................................................................. 37 3.1.1 Low-Cost Test Platform ....................................................... 38 3.1.2 Capability to Mature Technical Readiness of Experimental Space Technologies ................................... 38 3.1.3 Ecosystem of Innovation ...................................................... 39 3.2 Overview of Different Approaches to Spacecraft Development ...... 39 3.3 Kit-Based Approach ......................................................................... 40 3.4 Bespoke Approach ........................................................................... 42 3.5 Framework-Based Approach ............................................................ 42 3.6 Qualitative Evaluation of the Value of the Approaches ................... 42 3.6.1 Cost Levels ........................................................................... 43 3.6.2 Consideration of Recurring Amortized Vendor Development Costs .............................................................. 48 3.6.3 Ease of Modification and Extensions of Design .................. 49 3.6.4 Allowing Focus on Area of Interest ..................................... 50 3.6.5 Benefits Related to Export Control (EAR/ITAR) ................ 50 3.7 Mix and Match ................................................................................. 51 3.8 Conclusions ...................................................................................... 51 References ................................................................................................. 51 4 Starting a Small Spacecraft Program: Types of Programs and Their Benefits and Drawbacks ....................................................... 53 4.1 Background ...................................................................................... 54 4.1.1 Project-Based Learning and Experiential Education ........... 54 4.1.2 Small Spacecraft Development ............................................ 55 4.2 Internal Research Program ............................................................... 55 4.2.1 Benefits ................................................................................. 56 4.2.2 Drawbacks ............................................................................ 56 4.3 External Partner Research Program ................................................. 56 4.3.1 Benefits ................................................................................. 57 4.3.2 Drawbacks ............................................................................ 58 4.4 Education-Only Program ................................................................. 58 4.4.1 Benefits ................................................................................. 59 4.4.2 Drawbacks ............................................................................ 61 4.5 Hybrid Research Education Program ............................................... 61 4.6 Academic Institution Decision-Making Process .............................. 62 4.7 Summary .......................................................................................... 62 References ................................................................................................. 62 Contents ix 5 Forming a Program: Funding and Organizational Issues .................. 65 5.1 Defining Resource Needs: Human Resources.................................. 65 5.1.1 Student Involvement ............................................................ 66 5.1.2 Student Risk Perception ....................................................... 66 5.2 Defining Resource Needs: Financial and Other Resources.............. 67 5.3 Organizational Strategies for Program Formation ........................... 68 5.3.1 Program Implementation ...................................................... 69 5.3.2 Implementation Difficulties ................................................. 72 5.4 Conclusion........................................................................................ 74 References ................................................................................................. 74 6 Forming a Program: Technical and Logistical Issues.......................... 77 6.1 Considering the Reasons for Forming a Program ............................ 77 6.2 Identifying Science, Technology Development, Educational, and Other Goals .......................................................... 78 6.2.1 Defining Objectives .............................................................. 78 6.2.2 Maximizing Value ................................................................ 79 6.2.3 Value Assessment ................................................................. 80 6.3 Matching Goals and Funding Sources ............................................. 83 6.4 Goal-Based Technique for Requirement and Constraint Decision Making .............................................................................. 84 6.4.1 Defining Requirements and Constraints ............................... 84 6.4.2 Creating and Selecting a Mission Concept .......................... 85 6.4.3 Using Objectives, Requirements, and Constraints for Decision Making ............................................................ 86 6.5 Picking a Design Framework and the Level of Program Rigidity.......................................................................... 86 6.5.1 Comparison of Design Frameworks ..................................... 86 6.5.2 Mission Analysis and Design ............................................... 88 6.5.3 Defining the Mission Architecture ....................................... 90 6.5.4 Driver Identification ............................................................. 91 6.5.5 Requirements, Analysis, and Selection ................................ 91 6.6 Planning for Program Longevity: Technical and Logistical Considerations .................................................................................. 92 6.6.1 Conceptualization ................................................................. 92 6.6.2 Design .................................................................................. 93 6.6.3 Development ........................................................................ 93 6.6.4 Launch and Operations ........................................................ 93 6.6.5 Closeout ................................................................................ 94 6.7 Processes for Mission Management ................................................. 94 6.7.1 Project/Mission Management ............................................... 94 6.7.2 Systems and Processes ......................................................... 95 6.7.3 Assurance ............................................................................. 96 6.8 Conclusion........................................................................................ 96 References ................................................................................................. 97 x Contents 7 Student Involvement and Risk ............................................................... 101 7.1 Introduction ...................................................................................... 101 7.2 Background ...................................................................................... 102 7.2.1 Project-Based Learning ........................................................ 102 7.2.2 Value of Student Involvement to Faculty Research ............. 103 7.2.3 Risk Perception .................................................................... 103 7.3 The Student Qualitative Undertaking Involvement Risk Model...... 104 7.3.1 Technical, Schedule and Other Standard Risks .................... 104 7.3.2 Technical Risk ...................................................................... 105 7.3.3 Schedule Risk ....................................................................... 106 7.3.4 Cost Risk .............................................................................. 108 7.3.5 Risks Posed by Student Worker Involvement ...................... 109 7.4 Extending the Model with Root Cause Analysis Techniques .......... 110 7.4.1 Root Cause Analysis ............................................................ 112 7.4.2 Inexperience Symptoms Occur ............................................ 112 7.4.3 Unscheduled Turnover Occurs ............................................. 114 7.4.4 Scheduled Turnover Occurs ................................................. 115 7.4.5 Miss-commitment ................................................................ 116 7.5 Differences Between and Choosing Between Using SQUIRM and SQUIRM-E ............................................................... 117 7.5.1 Discussion of the Differences Between SQUIRM and SQUIRM-E .................................................................... 117 7.5.2 Comparative Simplicity ....................................................... 118 7.5.3 Types of Inexperienced Workers .......................................... 118 7.5.4 Project Size ........................................................................... 118 7.5.5 Familiarity with Particulars of Student Work Environment ............................................................... 118 7.5.6 Choosing a Model ................................................................ 119 7.6 Application ....................................................................................... 119 7.7 Quantifying the Model ..................................................................... 120 7.7.1 Risk Assessment ................................................................... 120 7.7.2 Mitigation/Response Assessment ......................................... 121 7.7.3 Combining for Result ........................................................... 121 7.7.4 Data for Model Parameters .................................................. 121 7.8 Value Model for Inexperienced Workers ......................................... 122 7.8.1 Cost of Inexperienced/Student Workers ............................... 122 7.8.2 Training Benefits .................................................................. 122 7.8.3 Discontinuous Innovation Benefits ...................................... 123 7.9 Discussion of the Differences Between Student Volunteers, Paid Student Workers, Interns, and Junior Employees .................... 123 7.9.1 Student Volunteers ................................................................ 123 7.9.2 Paid Student Workers ........................................................... 124 7.9.3 Interns ................................................................................... 124 7.9.4 Junior Employees ................................................................. 124 7.10 Conclusions and Future Work .......................................................... 124 References ................................................................................................. 125

Description:
This book provides the information that is required to start a small spacecraft program for educational purposes. This will include a discussion of multiple approaches to program formation and build / buy / hybrid decision considerations. The book also discusses how a CubeSat (or other small spacecr
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.