Physics±Uspekhi40(9)869±898(1997) #1997UspekhiFizicheskikhNauk,RussianAcademyofSciences REVIEWSOFTOPICALPROBLEMS PACSnumbers:95.35.+d,98.35.±a Small-scale structure of dark matter and microlensing A V Gurevich, K P Zybin, V A Sirota Contents 11.. IInnttrroodduuccttiioonn 886699 22.. MMiinniimmaallddaarrkk--mmaatttteerroobbjjeeccttss 887700 22..11PPrriimmaarryyssppeeccttrruummccuutt--ooffff;;22..22LLiinneeaarrggrroowwtthhoofffflluuccttuuaattiioonnss;;22..33MMaassssoofftthheemmiinniimmaallddaarrkk--mmaatttteerroobbjjeeccttss;; 22..44SSccaalleeoofftthheemmiinniimmaalloobbjjeeccttss 33.. HHiieerraarrcchhiiccaallssttrruuccttuurree 887733 33..11CClluusstteerriinngg;;33..22TThheelliiffeettiimmeeooffeennttrraappppeeddoobbjjeeccttss;;33..33DDeessttrruuccttiioonnooffoobbjjeeccttssiinntthheehhiieerraarrcchhiiccaallssttrruuccttuurree;; 33..44SSmmaallll--ssccaalleessttrruuccttuurreeÐÐtthheemmaaiinnhhyyppootthheessiiss;;33..55LLiiffeettiimmeeooffssmmaallll--ssccaalleeoobbjjeeccttssiinntthheeGGaallaaxxyy 44.. SSttrruuccttuurreeooffnnoonn--ccoommppaaccttoobbjjeeccttss 887777 8 44..11 CCooeeffffiicciieenntt ooff nnoonnlliinneeaarr ccoommpprreessssiioonn;; 44..22 DDeennssiittyy ddiissttrriibbuuttiioonn iinn nnoonn--ccoommppaacctt oobbjjeeccttss;; 44..33 IInnfflluueennccee ooff 9 bbaarryyoonniiccccoommppoonneennttoonntthheessttrruuccttuurreeooffnnoonn--ccoommppaaccttoobbjjeeccttss;;44..44SSttrruuccttuurreeooffnnoonn--ccoommppaaccttoobbjjeeccttssiinntthheehhaalloo;; 9 1 44..55NNoonn--ccoommppaaccttoobbjjeeccttssiinntthheeGGaallaaccttiiccddiisscc 55.. TThheeoorryyooffmmiiccrroolleennssiinnggoonnnnoonn--ccoommppaaccttoobbjjeeccttss 888800 n 55..11MMiiccrroolleennssiinnggoonnccoommppaaccttbbooddiieess;;55..22MMiiccrroolleennssiinnggoonnnnoonn--ccoommppaaccttoobbjjeeccttss;;55..33CCoommppaarriissoonnoofflliigghhttccuurrvveess a ccrreeaatteeddbbyyccoommppaaccttaannddnnoonn--ccoommppaaccttlleennsseess;;55..44IInnfflluueenncceeoofftthheebbaarryyoonniiccccoorreeoonntthheelleennssiinnggccuurrvveeffoorraannoonn-- J ccoommppaaccttoobbjjeecctt;;55..55OOppttiiccaallddeepptthh 0 66.. MMiiccrroolleennssiinnggÐÐrreessuullttssooffoobbsseerrvvaattiioonnssaannddccoommppaarriissoonnwwiitthhtthheetthheeoorryy 888855 3 66..11MMiiccrroolleennssiinnggooffoobbjjeeccttssiinntthheehhaallooaannddtthheecceennttrraallppaarrtt((bbuullggee))oofftthheeGGaallaaxxyy;;66..22RReessuullttssooffoobbsseerrvvaattiioonnssiinntthhee hhaalloo;;66..33CCoommppaarriissoonnoofftthheeddaattaaooffoobbsseerrvvaattiioonnssiinntthheehhaalloowwiitthhtthheetthheeoorryyooffmmiiccrroolleennssiinnggoonnnnoonn--ccoommppaacctt 4 oobbjjeeccttss;;66..44RReessuullttssooffoobbsseerrvvaattiioonnssiinntthheecceennttrraallrreeggiioonnoofftthheeGGaallaaxxyyaannddaaccoommppaarriissoonnwwiitthhtthheeoorryy 1 77.. NNeeuuttrraalliinnoossttaarrss 888899 3 77..11EExxttrraaggaallaaccttiiccddiiffffuussiivveeggaammmmaa--rraaddiiaattiioonn;;77..22DDiiffffuussiivveeggaammmmaa--rraaddiiaattiioonnffrroommtthheeggaallaaccttiicchhaalloo;;77..33DDiiffffuussiivvee 1 0 ggaammmmaa--rraaddiiaattiioonnoofftthheeGGaallaaxxyy;;77..44DDiissccrreetteessoouurrcceessooffggaammmmaa--rraaddiiaattiioonn;;77..55GGaallaaxxiieessaassddiissttrriibbuutteeddssoouurrcceessooff 8 ggaammmmaa--rraaddiiaattiioonn;;77..66CCoommppaarriissoonnoofftthheetthheeoorryyooffggaammmmaa--rraaddiiaattiioonnffrroommnneeuuttrraalliinnoossttaarrsswwiitthhoobbsseerrvvaattiioonnss;;77..77 9 NNoonn--ccoommppaaccttoobbjjeeccttssaassssoouurrcceessooffggaammmmaa--rraayybbuurrssttss / 88.. CCoonncclluussiioonnss 889966 h RReeffeerreenncceess 889977 p - o r Abstract. It has been revealed using microlensing that a con- pactandnon-compactobjectsisconsideredindetail.Theresults t s siderablepart,possiblymorethanhalf,ofthedarkmatterinthe ofmicrolensingobservationsaredescribedandcomparedwith a halo of our Galaxy consists of objects with a mass spectrum theory.Possibleastrophysicalmanifestationsofthepresenceof rangingfrom0.05to0.8ofthesolarmass.Whatisthenatureof small-scalestructurearepointedout.Thefieldisbeingexten- these objects? There exist two hypotheses. According to one, sivelystudiedandisoffundamentalinterestforcosmologyand theseareJupitertypeplanetsorsmallstars(brownandwhite astrophysics. dwarfs)consistingofnormalbaryonicmatter.Accordingtothe other, these are non-compact objects, i.e., small-scale forma- 1. Introduction tionsinnon-baryonicdarkmatter.Here,atheoryisproposed describing the possibility of the existence of non-compact ob- Observations show that the greater part (over 90%) of the jects inthe halo of our Galaxy, their structure and formation matterintheUniverseismadeupofinvisible(dark)matter fromnon-baryonicmatter.Thetheoryofmicrolensingoncom- [1], and it remains unknown what particles it consists of. From analysis of the processes of primary nucleosynthesis and galaxy formation it follows, however, that dark-matter AVGurevich,KPZybin,VASirota PNLebedevPhysicsInstitute, particles must be of non-baryonic origin and must interact RussianAcademyofSciences, Leninski|¯ prosp.53,117924Moscow,Russia rather weakly both among themselves and with baryonic Tel.(7-095)1326414,1326050,1326171 matter.Theseparticlesaretypicallyassumedtobeeitherthe E-mail:[email protected],[email protected], hypothetical heavy particles predicted by supersymmetry [email protected] theory (customarily referred to as neutralinos), or light axions, or cosmic strings. They all may constitute the so- Received8April1997 calledcolddarkmatter(CDM)[2,3]. UspekhiFizicheskikhNauk167(9)913±943(1997) TranslatedbyMVTsaplina;editedbyLVSemenova Non-dissipative dark matter plays a decisive role in the formation of the large-scale structure of the Universe, i.e., galaxies, clusters of galaxies, and superclusters. At the 870 AVGurevich,KPZybin,VASirota Physics±Uspekhi40(9) nonlinear stage of development of initially small perturba- However, the number of dark objects thus revealed tions there occurs a gravitational compression and a sub- appearedtobeverylarge.Adetailedanalysiscarriedoutin sequent kinetic mixing of the dark matter leading to the recentpapers(seeRef.[16])demonstratesthattheobserved formation of stationary self-trapped objects with a singular objectsmakeupperhapsover50%ofthetotalmassofdark densitydistributionratthecenter[4,5] matterinthehaloofourGalaxy.So,wefindacontradiction with the conventional ideas of the non-baryonic nature of ÿa r(r)=Kr ; a(cid:25)1:8: (1) dark matter. Furthermore, with such an interpretation one encounterssomedifficultiesinwhatconcernstheconsistency HereKisaparameterdependingontheinstantoftimewhen between microlensing data and direct optical observations the object was formed. It is of importance that the form of fromtheHubbletelescope[18]. initial perturbation does not practically affect the scaling In this connection it was hypothesized in Ref. [12] that parametera. microlensinginthehalorevealsnotJupitertypeobjectsand The dissipative baryonic matter, which makes up but a coldstars,butobjectsofsmall-scalehierarchicaldark-matter smallfractionofthetotalmassofthematter,islocatedinthe structuresconsistingofnon-baryonicmatter.Theseobjects, center, i.e., in the peak of density, where it forms galaxies, however,arenon-compactandhavesizesoftheorderofthe whilethenon-dissipativedarkmatter,distributedaccording Einsteinradius,characterizingmicrolensing,ormayevenbe to the law (1), forms a giant galactic halo. This theory is severaltimesgreater.Forthisreason,thetheoryofmicrolen- confirmedbytheobservationaldata[6±8]. sing by non-compact dark-matter objects was developed in Owing to gravitational forces, galaxies unite to form Ref. [19] (see also Ref. [20]). A detailed comparison of this clusterswhich, in turn,formlargeAbell clusters and super- theory with the available observational data gives a good clusters thus showing up hierarchical clumping. The domi- agreement[19,13].Itshouldneverthelessbeemphasizedthat nant role in this process is also played by dark matter in thesameobservationaldataareinagreementwiththetheory which, irrespective of the object's size, the distribution (1) of microlensing by compact objects. The difference in the inevitably sets in. This property of hierarchical clumping is results of these theories now lies within the experimental clearlypronouncedinthepaircorrelationfunctionofgalaxies error. Therefore, the question of the presence of both non- andotherobjects.Atthispoint,thetheory[9]alsoagreeswell compact and compact objects in the halo of our Galaxy withtheobservationaldata[1,10,11]. remainsopen. We have up to now considered clumping of large-scale Ouraimhereistogiveareviewofthepresentstateofthis objects. What happens to objects that are smaller than problem. We should stress that if in comparison with the galaxies? How far can the hierarchical structure extend theorysomenon-compactobjectsarediscoveredasaresultof towardssmallscales?Ithadnormallybeenassumedthatthe improvedprecisionandprocessingofmicrolensingobserva- minimal objects formed of dark matter were halos of small tion,thiswillsimultaneouslymeanadirectdiscoveryofnon- 7 8 galaxieswithamassof(10 ÿ10 )M(cid:12).However,theideasof baryonic CDM for the reason that no baryonic objects of possible scales of minimal objects have lately changed suchamass,scaleandluminositymayexist. radically. In the papers by the present authors [12, 13] it is shown thatdarkmattercan formvery smallgravitationally 2. Minimal dark-matter objects boundobjects.Themassoftheseobjectsisdeterminedbythe structureofthespectrumofinitialfluctuations.Thestructure of the spectrum on small scales is now unavailable. On the 2.1 Primary spectrum cut-off basisofthehypothesis[12,13]concerningthecharacterofthe Dark-matterobjectsareformedupondevelopmentofJeans initialspectruminthisregion,itwasdemonstratedthatinthe instability:asaresultofgravitationalattraction,smallinitial dark matter on these scales a hierarchical structure fairly perturbations of a uniformly distributed matter increase. similartothelarge-scalestructuremaydevelop,extendingto Crucial for the formation of such a structure is the form of quitealargeamountofobjectswithmassesaslargeasthatof theinitialdensityfluctuations theSun. The question, however, is whether such dark-matter d(x;t)=r(x;t)ÿr0(t) ; (2) objects can exist now, and if they can, in what form. How r0(t) longdotheyliveandhowaretheydistributedinthehaloof the Galaxy? The analysis of these questions shows [13] that where r(x;t) is the local density of matter and r0(t) is the thelifetimeofsmall-scaleobjectsismuchlongerthantheage mean density of matter. The initial fluctuations di0(cid:12)(x) a(cid:12)r2e oftheUniverse.Theyaredistributedinthehaloaccordingto customarily represented by the Fourier spectrum (cid:12)di(k)(cid:12) , thelaw(1).Thus,thetheorypointsoutthepossibilityofthe where existence of a large amount of small-scale non-baryonic …+1 objects in the Galactic halo with a fairly broad mass di(k)= di0(x)exp(ikx)dx: (3) spectrum. ÿ1 Manifestationsofdarkmatteronlargescalesuptonow The form of the spectrum of initial fluctuations is havebeenregisteredonlyinobservationsofthedynamicsand determinedbyphysicalprocessesintheearlyUniverse.The gravitational lensing of large-scale structures. Experiments spectrum onmicrolensingwhichrevealedthatasubstantialamountof (cid:12) (cid:12)2 invisibleobjectsofmassM(cid:24)(0:05ÿ0:8)M(cid:12)[14±16]existin (cid:12)di(k)(cid:12) /k (4) thehaloofourGalaxyarethereforeafundamentalnewstep. Theseare usually supposed tobe brown or white dwarfs or isusedconventionally,suggestedin1965byYaBZel'dovich planets (`Jupiters') consisting of ordinary baryonic matter [21] and confirmed by recent observations [22] over large [15,17]. scales. September,1997 Small-scalestructureofdarkmatterandmicrolensing 871 The spectrum (4) is cut off for low values of the wave 2.2 Linear growth of fluctuations ÿ1 number k on the scale of the horizon radius Rh . For high Thesmall-scaledark-matterstructure,asforthelarge-scale, valuesofthewavenumberk!1,thecut-offoccursduring appearsowingtothegrowthofsmallfluctuationsuponthe decoupling,i.e.,intheperiodwhentheparticlesofthedark developmentofJeansinstability.Animportantpeculiarityof matter escape thermal equilibrium. Note that one typically this process is that at the radiation-dominated stage of considersbothHDMandCDM(oracombination).HDMis Universe expansion, the increase of fluctuations is slow. understoodasweaklyinteractingparticlesthatleavethermo- Their comparatively rapid growth starts just after equili- dynamic equilibrium when they are still relativistic (for briumhassetinandtheexpansionisalreadydeterminedby example, light neutrinos). CDM is thought of as consisting matterratherthanradiation[24]. 2 ofratherheavyparticlesofmassmx410 eVwhosestrong We shall discuss the dynamics of the growth of dark- interactionstopsassoonasthetemperatureintheexpanding matter fluctuations. For simplicity we shall assume the 2 Universe lowers to T(cid:25)mxc . The concentration of such parameter O to be equal to unity, that is, the density of particles may continue to decrease for some time at the mattertobeequaltothecriticaldensity.Inthiscase,onscales expense of annihilation. In both cases, the spectrum varies lessthanthehorizon,onecanusetheNewtonianapproxima- onsmallscalesduringfreezing-outofdark-matterparticles. tion in the analysis of fluctuation dynamics. The equations Afreekineticspreadoftheseparticlesresultsinasmearingof describing the linear growth of density fluctuations d(x;t) thefluctuationswhosescaleislessthanthehorizonradiusat takeasimpleform[1] themomenttx,whenthetemperatureis 2 (cid:18) (cid:19)2 (cid:18) (cid:19) d d 2 da dd 3 E 1 da 1 1 E 2 + = d; = + : (8) T(tx)=mxc : (5) dt2 a dt dt 8 a3 a dt 4 a4 a3 tx It is the horizon radius Rh at this instant of time that Herea(t)isthescalefactordeterminingtheexpansionofthe determinesthecharacteristicscaleofthecut-off[23]: Universe.TheparameterEdescribesthematter-to-radiation 1 density ratio rx=rg. Before the moment teq of equilibrium kmax (cid:25) tx : (6) onset,whena<aeqand Rh On large scales k5kmax, the fluctuation spectrum (3), (4) a(teq)=aeq =1 ; E=rx ; (9) remains practically unaltered, whereas on small scales E rg k>kmaxthefreespreadofparticlescausesastrongdamping offluctuations,whichleadstoasharpfallofthespectrumon the dominating particles are photons [the first summand in ÿ1 thescalesl<kmax.Thecalculatedvariationsofthespectrum Eqn (8) for a(t)] and after the equilibrium onset, i.e. for (4)duetothisprocessarepresentedinFig.1[23].Theposition t>teq, nonrelativistic X-particles are predominant. At the ofthepeakisdeterminedbyrelations(5)and(6).Thepeakis radiation-dominated stage, that is, in the period when fairlybroad: radiation is predominant, the scale factor a(t) increases as p(cid:129)(cid:129) t,whileattheduststage,thatis,intheperiodwhenmatteris 0:5kmax <k<2kmax: (7) 2=3 predominant, it increases as t [1]. Since the density of ÿ3 ÿ4 Afterthispeak,asharpfallofthespectrumisobserved.The matterisrx /a andtheradiationdensityisrg /a ,then ÿ1 maximum in the spectrum and the steep fall when k>kmax rx=rg /a/(1+z) . As the present-day value of rx=rg is areindicativeofthefactthatintherealizationofthespectrum known,itiseasytofindthedensityofmatterandtheredshift ÿ1 therearenoperturbationswithscalesbelowlmin (cid:25)(2kmax) . attheinstantoftimeteq: Consequently,thesmallestobjectsformedofdarkmatterwill ÿ16 ÿ3 justhavescalelmin. rx (cid:25)rg (cid:25)req (cid:25)3(cid:2)10 gcm ; 4 teq =t(zeq); zeq '3(cid:2)10 : (10) d Inequations(8),thenormalizationofthescalefactora(t)is 1 chosenso that we havea=1 atthe instantof time tx when dark-matterparticlesescapethermalequilibrium[thisinstant 0 0 oftimeisdefinedbyEqn(5)].AccordinglyE=rx=rg,where 2 0 0 rx and rg are the respective densities of X-particles and photons at the instant tx. Since the temperature is 2 T(cid:24)10 eVatthemomentofequilibriumteq,itfollowsthat 2 iftheparticlemassismx410 eV,thentx5teq.Thismeans that in CDM the moment tx is attributed to the radiation- dominatedstageandE51. In equation (8) for d one can get rid of the time by introducingthevariable p(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129) m= 1+aE: 1 10 Indeed,expressingdtfromthesecondequationofthesystem k=kmax (8)intermsofda,wederiveauniversalequationford: (cid:20) (cid:21) Figure1.Zel'dovich±Harrisonspectrumtransformationduetofreeflight d 2 dd ofdark-matterparticles[23]:(1)statisticalweightg=30,(2)g=200(16). (1ÿm ) +6d=0: (11) dm dm 872 AVGurevich,KPZybin,VASirota Physics±Uspekhi40(9) ÿ9 The solution to this equation is the second Legendre densityratio(rg=rb (cid:25)10 ): polynomial: ÿ8 mb p(cid:25)10 ; d 2 mx =3m ÿ1=3Ea(t)+2: (12) d0 wherembandrbarethemassandthedensityofbaryons. Thisimpliesthatifdarkmatterconsistsofheavyparticles Itshouldbeemphasizedthatdisnormalizedheretoasmall mx51GeV,themassoftheminimalobjectsisverysmall: quantity d0 which is the initial value of fluctuations at the (cid:18) (cid:19)ÿ3 moment tx. Expression (12) describes the linear growth of ÿ6 ÿ7 mx Mx (cid:24)(10 ÿ10 )M(cid:12) : (17) fluctuations both at the radiation-dominated and the dust 1GeV stages.Weseethat,duringtheradiationdominatedstage,the fluctuationsgrowslowly,increasingonlyby2.5timesupuntil Theestimate(6),(17)givesthespectrumcut-offscaleandthe the moment z=zeq, i.e. a=aeq. After this, a rapid growth mass of a possible minimal object for the assumption that begins boththethermodynamicdark-matterparticledecouplingand thecessationofinteractionoftheseparticleswithotherstakes d /3Ea/t2=3: (13) placeatthetimeinstanttx(5).Ifthedecouplingandespecially d0 interactioncessationtakeupmoretime(whichisthecase,for example, for supersymmetric particles Ð neutralinos), the 2.3 Mass of the minimal dark-matter objects cut-offscaleandthemassoftheminimalobjectmayincrease The linear growth of the fluctuations stops as soon as the substantially. magnitude of perturbations becomes comparable with the Anotherpossibilityfortheappearanceofsmall-massnon- mean density of matter d(cid:24)1. After this, the stage of baryonicstructuresisduetoaxions.Thenonlineareffectsof gravitational compression and kinetic mixing sets in and evolutionoftheaxionfieldintheearlyUniversewhichmay leads to the formation of stable spherically symmetric leadtotheformationofgravitationallyboundmini-clusters objects in the center of which a singular density distribu- were investigated in Ref. [26]. These mini-clusters have a ÿ12 10 tion (1) is observed. This process was considered in detail characteristicmassM(cid:24)10 M(cid:12)andsizeR(cid:24)10 cm. in the previous review by the present authors [5]. As a result, a hierarchical structure of gravitationally bounded 2.4 Scale of the minimal objects objects develops from the primary spectrum of fluctua- Aswehaveseenabove,themassoftheminimalobjectsdoes tions. not depend on the spectrum of initial perturbations but is Itisofimportancethatthisstructureislimitedfrombelow determinedonlybythedark-matterparticlemass.Thescale bythemassMminofminimalobjects: oftheminimalobjectsisdetermined,onthecontrary,bythe amplitude of the fluctuation spectrum d. Indeed, the mean 3 Mmin (cid:25)rx(tx)ax: (14) density of matter r0(t) in the Universe decreases with time. Becausethemassofanobjectisfixed[seeEqns(15),(16)],its Here rx(tx) is the dark-matter density at the moment of sizeisnaturallydeterminedbythedark-matterdensityatthe decoupling,whentheparticlesmx (5)aresingledout,andax instant of time tc when it was formed. The quantity tc is is the scale of the horizon at the same instant of time, specifiedbytheconditionoftransitiontothenonlinearstage tx ax =Rh.Theinstanttx inEqn(14)dependsonthemassof of compression in the region of the spectrum maximum dm dark-matter particles. Consequently, it is the mass mx that wheretheminimalobjectsaregenerated: exertsacrucialinfluenceonMmin.InthecaseofHDM,when 2 dm(tc)(cid:24)1: (18) mx510 eV,wehave,asshowninRef.[23], Thus,thescaleRxofaminimalobjectisdefinedas 3 mpl Mmin (cid:25) m2x : (15) Rmin (cid:25)(cid:20)Mmin(cid:21)1=3; (19) r0(tc) 1=2 Herempl =(hc=G) isthePlanckmass.Onecanseethatin thecaseunderconsiderationthemassMmin isrelatedtothe wherer0(tc)isthedark-matterdensityatthemomentofits massofdark-matterparticlesinaone-to-onemannerandis formationtc. rather large for HDM. For example, for the hypothetical Within the period when radiation prevails, fluctuations small-mass neutrinos with mx =10 eV (which were consid- increase very slowly (see Section 2.2). Since the initial 17 ered in Ref. [2]), the mass is Mx (cid:25)10 M(cid:12), which corre- fluctuations d0 are not large, relation (18) can be fulfilled spondstothemassoflargeclusters. only provided that tc >teq, where teq is the moment of 2 For the case of CDM for mx410 eV, relation (15) transition from the radiation-dominated to the dust stage, changes(seeRefs[25,13])tobecome which is determined by condition (9). The red shift zc that 3 (cid:18) (cid:19)2=3 correspondstothemomenttcisdefinedherebyrelations(12) mpl nx g and(18).Theyimplythat Mmin =p m2x ; p=ng 4 : (16) 3 zeq+1 zc+1= ; d0 <1: (20) 2 1=d0ÿ1 Here nx and ng are the respective concentrations of CDM particlesandphotons,gisastatisticalweightoftheorderof SincethedensityintheUniversedecreasesrapidlyas 2(cid:2)102.ThefactorpinEqn(16)isduetoannihilationofa (cid:18) (cid:19)3 1+z majorityofthematterintheperiodafterdecoupling.Itcanbe r=req ; (21) estimated from the present-day relic photon-to-baryon 1+zeq September,1997 Small-scalestructureofdarkmatterandmicrolensing 873 ÿ16 ÿ3 wherereq (cid:25)3(cid:2)10 gcm isthedensityofmatteratthe It is the fluctuation F(k) that determines sequence of moment of equilibrium, it follows that the scale of the appearance of objects on different scales (l(cid:24)1=k) in the minimalobjectsincreasesactivelyasd0decreases: hierarchical CDM structure: the first to appear are objects (cid:26) (cid:27)1=3 (cid:18) (cid:19) withmaximumF(k)values,andsubsequentlyappearother, Mmin 2 1 largerobjects. Rm =K2 (cid:2) (cid:3) ÿ1 : (22) 4p= (3ÿa)req 3 d0 The form of the function F(k) for the Zel'dovich± Harrison spectrum (4) is shown in Fig. 2 (curve 1). As is ThisexpressionisspecifiedforthescaleRm,namely,itnow clear from Eqns (24) and (25), for k>keq it gradually allowsforthefactorK2 (cid:25)0:1ÿ0:3ofnonlinearcompression transforms to a plain form. This picture is on the whole inthecourseoftheobject'sformation(seeSection4.1)and confirmed by contemporary observational data over large thedensitydistribution(1)insidetheobject. scales (l(cid:24)500ÿ1000 Mpc) [22]. Recent temperature mea- ÿ3 Forexample,ford0 (cid:25)10 thecorrespondingredshiftat surementsintheregionofthefluctuationmaximum,thatis, ÿ3 which the object was formed (21) is zc (cid:25)1:5(cid:2)10 zeq, and on scales l(cid:24)30ÿ50 Mpc, as well as on smaller scales are ÿ6 the scale of the object of mass Mm =10 M(cid:12) is indicative of possible deviations from the Zel'dovich± 15 Rm (cid:25)5(cid:2)10 cm.Ifd0 (cid:25)0:4,thenzc (cid:25)zeq andthescaleof Harrison spectrum, which in the simplest form are reduced 13 thesameobjectismuchsmaller:Rm (cid:25)10 cm.Wealsonote toavariationoftheexponentofthespectrum[27]: (th0:a1tÿth0:e5)sMca(cid:12)le, ofinobwjechtischwitwhea cahrearaicnteterrisetsitcedmaslasteMr,m =is (cid:12)(cid:12)di(k)(cid:12)(cid:12)2 /kn; n(cid:25)1:2ÿ1:4: (26) 18 ÿ3 (0:6ÿ3)(cid:2)10 cmwhend0 =10 and Suchapower-lawspectrumisalsopresentedinFig.2(curve 14 Rm (cid:25)(3ÿ15)(cid:2)10 cm (23) 2). Other notable deviations of the spectrum of initial fluctuations from the Zel'dovich±Harrison spectrum are whend0 =0:4. revealed in observations of distribution of the density of matteronscalesof30±50Mpc[3]. It is, however, of importance that between the regions 3. Hierarchical structure 25 26 wherethespectrumhasalreadybeenmeasuredl510 ÿ10 Up to now we have only discussed minimal dark-matter cm and the region of minimum-scale objects ÿ6 13 15 objects. They are first to appear. The presence of a wide M(cid:24)(10 ÿ1)M(cid:12), that is, l(cid:24)10 ÿ10 cm, which is of spectrumofperturbationsleadstothesubsequentgeneration particular interest for us, there is a huge region with a of objects on various scales. Large-scale objects can trap spectrum whose state ispracticallyunknown. Note that the smaller-scale ones and be themselves trapped by still larger function F(k) is strictly flat in the region k>keq for the objects.Exactlythistypeofhierarchicalstructureisobserved Zel'dovich±Harrisonspectrumonly.Itmaybeassumed,for in large-scale formations in the Universe, such as galaxies, example,thatforkwhicharesufficientlylargebutbelowthe clustersofgalaxies,largeAbellclusters,superclusters,andso cut-offregionk5kmax,thespectralfunctionF(k)hasanew on.Itisquitenaturaltoexpectthatananalogoushierarchical region where it ascends. Such a non-standard spectrum is structureoccursonsmallscalesaswell. showninFig.2(curve3). The sequence of objects formation on different scales is Inthefirstmodel,curve1(letuscallitstandard),avery determinedbythefluctuationspectrum.Goingoverfromthe broadspectrumofobjects,fromminimalbodiestogalaxies, Fourier transform and back to x-space corresponds to appearalmostsimultaneouslyinthehierarchicalstructure.In 3 integration over d k and is, therefore, equivalent to multi- the second model (which we refer to as power-law), first to 3 plicationofthefluctuationspectrumbyk .So,insteadofd(k) developarethesmall-scaleobjects,andsubsequentlyappear [seeEqn(4)]itisreasonabletoconsiderthespectralfunction structures of much larger scales. This difference in the F0(k)=k3(cid:12)(cid:12)di(k)(cid:12)(cid:12)2: (24) cehveanragcrteearteorfionbtjheectthfiorrdm(antoionn-stoannddairfdfe)rmenotdseclawlehserbeecsommalels- scale structures develop at a moment close to teq and large- Animportanttransformationofthefluctuationspectrum scalestructuresdevelopmuchlater.Itshouldbestressedthat isconnectedwithpeculiaritiesofCDM.Thepointisthatin thecaseofCDMthemomentofparticledecouplingandthe logF momentwhenthedark-matterdensitybeginstoprevaildiffer appreciablyinenergies(and,accordingly,intimeorredshifts log0:4 z). As shown above [see Eqns (8), (12)], at the radiation- 3 dominated stage in dark matter inside the horizon Rh, fluctuations increase very slowly; they are almost `frozen'. 2 Outside the horizon,i.e. for k4keq =1=Rh, where fluctua- 1 1 tions are small, they increase gradually in proportion with time[1]: dr /t: r keq ks logkÿ1 Owingtothisprocess,fluctuationsonsmallscalesareleveled, andthespectralfunctionistransformedasfollows[1,2]: Figure 2. Form of the spectral function F(k): (1) for the Zel'dovich± F0(k) Harrisonspectrum,(2)forapower-lawspectrum,(3)foranon-standard F(k)= : (25) 1+(k=keq)4 spectrum. 874 AVGurevich,KPZybin,VASirota Physics±Uspekhi40(9) the indicated differences in the course of object formation The total number of objects Nf can be evaluated from the may have an appreciable effect on the conditions of their relation furtherexistence,whichdeterminestoalargedegreetheform Mf ofthesmall-scalestructurenowadays. Nf =f ; (33) Mi 3.1 Clustering where f is the fraction composed of objects Mi in the total Theprobabilitythatasmall-scaleobjectwillbetrappedbya massoftheobjectMf. large-scaleone,providedthatthedifferenceinsizeisnotvery big, does not generally prove to be high. In the case of a 3.2 The lifetime of entrapped objects power-law spectrum, this probability is determined by the We note first of all that objects of a hierarchical structure clusteringparametere,thatis,theprobabilitythatanobject undergoalmostnochangesfromthemomentwhentheyare of scale Rx appears inside another object of size Rf. An formed till the moment when they are trapped by larger estimateoftheclusteringparameterehastheform[5]: objects. Indeed, during this period they have very small (cid:18) (cid:19)3=2 peculiar velocities because the relative velocities at the Rf 6 moment of formation are practically zero and the distance e=4pbln ; where b<0:016 : (27) Rx m+5 betweentheobjectsincreasesowingtothegeneralcosmolo- gical expansion. The relative velocity and the possibility of Herem=nÿ4istheexponentofthespectralfunction.This collisionofobjectsareexclusivelyduetotheirentrapmentin deviationoftheexponentofthespectrumfromthevalue(26) thegravitationalfieldoflarger-scaleformations.So,wemay is due to the spectral function transformation (25). Expres- speak only of the lifetime of objects trapped in larger-scale sion (27) gives a theoretical estimate `from above' for the structures. clusteringparameter[28].Theestimationoftheparameterb Entrapped objects may experience interactions. Elastic obtainedfromcomparisonwithobservationsforalarge-scale collisions between objects proceeding without energy structureyields[29] exchange may affect only the distribution (1) of matter in (cid:18) (cid:19)3=2 them,whereasitisinelasticprocessesthatareresponsiblefor 6 ÿ3 destruction.Theprincipalmechanismofdestructionistidal b=b0 ; b0 (cid:25)(3ÿ6)(cid:2)10 : (28) m+5 interaction,occurringwhenobjectsflybyoneanotherorby starsatclosedistances.Forthecaseofordinarystars,where Asuccessiveentrapmentofsmallerobjectsbyobjectsof energy dissipation takes place inside a star, the role of tidal increasingly large scales presents a picture of hierarchical interactionisdescribedindetailinRef.[30].Inourcase,too, clumping.Therelationbetweenthesizeandthemassinthe thephysicsofthedestructionprocessisrelatedprimarilyto caseofhierarchicalclumpingisgivenby[12] tidal forces because these forces are responsible for the (cid:18) (cid:19)(m+5)=6 increase of kinetic energy of particles inside objects, and if Rx Mx thisenergybecomesequaltothebindingenergyoftheobject, = : (29) Rf Mf weobserveadestruction.Letusinvestigatethisprocessmore closely. Proceeding from relations (27)±(29) one can determine Supposeanon-compactobjectofmassMx andscaleRx the mass ratio of larger Mf and smaller Mi objects to fit a interactswithanotherobjectflyingbyatthedistanceRora probability of the order of unity that the larger object will massivebody(star)ofmassM.ThevelocityVoftheirrelative entrapthesmallerone.Assuminge(cid:25)1informula(27)and motion greatly exceeds the pa(cid:2)rticle velocity vx in(cid:3)side the 1=2 allowingforEqns(28)and(29),wefind indicated non-compact object vx (cid:24)(GMx=Rx) . There- (cid:20) 1=2(cid:21) fore,inthefirstapproximationtheparticlescanbeconsidered Mf (m+5) tobeatrest. =exp : (30) Mi 4p61=2b0 As a result of the interaction, the object Mx as a whole gainsadditionalvelocity,whichmeansanelasticscatteringof So,fortheZel'dovich±Harrisonspectrum(n=1)wehave objects, and moreover the particles inside it gain the additional velocity of relative motion. This is the tidal Mf =1:9(cid:2)103 for b0 =6(cid:2)10ÿ3; interaction. The force of tidal interaction Ft is connected Mi with the finite dimension of the non-compact body and is Mf 6 ÿ3 determinedbythedifferenceofforcesactingonitsparticles: =3:6(cid:2)10 for b0 =3(cid:2)10 (31) Mi 2GMMx Ft = R3 Rx: andforasharplyincreasingspectrum(n=5) Theshiftoftheparticlesundertheactionofthisforceis Mf 5 ÿ3 Mi =3:7(cid:2)10 for b0 =6(cid:2)10 ; Ft 2 GM 2 R Mf 11 ÿ3 Dx=2Mx(Dt) = R3 Rx(Dt) ; Dt=V : =1:4(cid:2)10 for b0 =3(cid:2)10 : Mi Accordingly,theenergydissipatedinoneeventis According to the theory, all the entrapped objects will be 2 2 2 2G M MxRx distributedinsideth(cid:18)ela(cid:19)rgÿeaobjectaccordingtothelaw(1): DE=FtDx= R4V2 : 3ÿa r n(r)=4pR3f Nf Rf : (32) Ttfh=e1=t(impRe2nVof), wthheerefrneeis tphaethnumbebtewredeennsictyololifsioobnjsectiss. September,1997 Small-scalestructureofdarkmatterandmicrolensing 875 IntroducingtheeffectivecollisionfrequencynE andthetidal tionallyboundandcanexistinsidealarge-scaleobject.Itis destructioncross-sectionsEaccordingtotherelations the Hubble expansion and the sequence of appearance of (cid:28) (cid:29) objectsÐfirstsmall-scale,andthenincreasinglylarge-scale dE E = =nEE; nE =nVsE (34) Ð that enabled the formation of the hierarchical structure. dt tf Thesequenceofappearanceofobjects,aswasshownabove, isspecifiedbytheformofthespectralfunctionF(k)(Fig.2): (Eistheabsolutevalueofthetotalenergy),weeventuallyfind small-scaleobjectsappearearlierthanlarge-scaleonesifthe (cid:18) (cid:19)2 2 2 functionF(k)growsmonotonicallywithincreasingk.Forthe 2 M Rx vx standardZel'dovich±Harrisonspectrumthisisnotthecase sE =pRx Mx R2 V2 ; R5Rx; (35) because the function F(k) over a broad range of scales for k>keqisnearlyconstant(Fig.2,curve1).Inthiscase,objects wherevx isthemeanvelocityofdark-matterparticlesinside of all sizes for k>keq appear almost simultaneously. But theobjects, given this, smaller objects inside larger ones are in no way distinguished in density. This means that they cannot 2 2 Mxvx GMx originate through a regular process, and if they are distin- =E= : 2 Rx guishedowingtofluctuations,theirdensitydiffersverylittle from the mean density of the surrounding matter, and they FromEqn(35)itcanbeseenthatthemaximumcross-section aredestroyedrapidly. isachievedforR(cid:25)Rx.Letusnowtakeaccountofthefact From this it follows that in the case of a standard that the velocity vx is determined by the gravitational spectrum (curve 1 in Fig. 2) the hierarchical structure does potential of a considered object Mx, while the velocity V is not at all depend on the spectrum cut-off at small scales. It determined by the gravitational potential of a much larger- begins in the region where a deviation appears in the flat ÿ1 scale formation in which it is trapped. Consequently, as spectral function F(k), that is, for k4keq. The scale keq is 2 2 indicatedabove,wealwayshaveV 4vx.Hence,thecross- smallerthanthehorizonradiusbyapproximatelyanorderof sectionoftidaldestructionofobjectsbyoneanotherisalways magnitude at the moment of equilibrium onset. It corre- rather small as compared to their geometric size. Thus, the sponds in mass to small galaxies. Consequently, in the case lifetimeoftheobjectsissubstantiallylargerthanthetimeof ofastandardspectrumthehierarchicalstructurebeginsinthe theirfreepathbetweenstraightforwardhead-oncollisions. region of small galaxies and stretches towards larger scales. AsisclearfromEqns(34),thelifetimeofobjectsofmass Thisagreeswellwiththeobservedlarge-scalestructureofthe Mx trappedinalarge-scaleobjectofmassMf,i.e.,thetidal Universe. destructiontimetf,isdeterminedbytherelation Thepictureisapproximatelythesameforthepower-law spectrumwhichdiffersfromtheZel'dovich±Harrisonspec- 1 tf = : (36) trum (n=1:4, curve 2 in Fig. 2). Although the hierarchical n(r)sEVf structuremayinthiscasestartdevelopingearly,thesurvival small-scaleobjectstosurviveishamperedbecauseofthesmall Here,theconcentrationoftrappedobjectsn(r)dependenton difference in density. A sufficiently long-lived structure ÿ1 thedistancertothecenterofthelarge-scaleobjectisgivenby occurs on a scale larger than keq when the slope of the relations(32)and(33)andthevelocityVfisequalto spectral function F(k) changes sharply. This again leads r(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129) mainly to the possibility of the appearance of a full Mf hierarchical structure in the Universe beginning with small Vf = 2G : (37) Rf galaxies. Thesituationisessentiallydifferentinthecaseofthenon- Inexpression(35),forthecross-sectiononecanputM=Mx, standard function F(k) represented in Fig. 2 (curve 3). The R=Rx.Proceedingfromrelations(35)±(37),wefind hierarchicalstructuredevelopsherefirstintheregionofsmall 2 r(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:18) (cid:19)a scales,fork>ks,butitbreakssharplyfork4ksandappears tf = 4Rf Rf r : (38) again only on galactic scales k4keq. Small-scale objects (3ÿa)Rxf 2GMf Rf k5ks originateearlyandhave,therefore,averyhighdark- matterdensityingalactic-scaleobjectsthatarisemuchlater. Herefistheportionofthemassofthelarge-scaleobjectMf Under such conditions small-scale dark-matter objects with contained in the small-scale entrapped objects Mx. For k5ks arestronglypronounced.Aswillbeseenbelow,they example,thetotalnumberofentrappedobjectsofmassMx mayexistintheUniverseforaratherlongtime. isNx =fMf=Mx.Itcanbeseenthatthelifetimeofentrapped objects decreases strongly with decreasing r, that is, 3.4 Small-scale structure Ð the main hypothesis approachingthecenter.Onaverage,itincreasesproportion- Sufficientlyreliabledataonthespectrumofinitialperturba- ally tothe object size ratio Rf=Rx as wellas with increasing tionsintheUniversearenowavailableonlyforlargescales characteristictimeofoscillationsinthelarge-scaleobjectand l>1ÿ10 Mpc. As to small scales l<1ÿ10 Mpc, the withdecreasingparameterf. information is next to null. The basic hypothesis that we suggestedinRef.[13]readsthatforsmallscalesthespectral 3.3 Destruction of objects in the hierarchical structure function exhibits a non-standard nature as shown in Fig. 2 Theoriginationofthehierarchicalstructureiscloselyrelated (curve3)andforthisreasonthesmall-scalestructuredevelops totheHubbleexpansionoftheUniverse.Indeed,becauseof intheUniverse.Ontheassumptionthatitisthisstructurethat ÿ2 the expansion, the mean density of matter r0 /t falls isobservedinthemicrolensingonobjectsinthehaloofthe rapidly.Asaresult,thoseobjectsthatappearedearlierhave Galaxy one may conclude that objects of mass 0:1ÿ0:5M(cid:12) a higher density. Therefore, they are more strongly gravita- correspondtothepointofasharpsmall-scale(ks)spectrum 876 AVGurevich,KPZybin,VASirota Physics±Uspekhi40(9) cut-off.Furthermore,theamplitudeofthespectralfunction Usingnowthevaluesoftheparameters[6,13] intheplateau(orpeak)regionis 12 Mh (cid:25)2(cid:2)10 M(cid:12); Rh (cid:25)200kpc; Fm =dim (cid:25)0:3ÿ0:4; (39) 14 Mx (cid:25)0:5M(cid:12); Rx (cid:25)4(cid:2)10 cm; f(cid:25)0:5; which exceeds the value of the constant F0 in the standard wefind spectrumbyovertwoordersofmagnitude. (cid:18) (cid:19)3=2(cid:18) 14 (cid:19) On this basis we obtain that the small-scale hierarchical 8 Rh 4(cid:2)10 cm t0 =7(cid:2)10 t0 structureofdark-matterobjectsextendstotheregion 200kpc Rx s(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129) Mx (cid:24)(0:01ÿ1)M(cid:12): (40) 2(cid:2)1012M(cid:12)(cid:18) r (cid:19)1:8 (cid:2) : (45) Mh 200kpc Since the initial amplitude is high (39), it follows that as is impliedbyEqn(20),thefluctuationsreachanonlinearstage 17 andformgravitationallycompressedobjectswithinaperiod Heret0 (cid:25)3(cid:2)10 sisthelifetimeoftheUniverse.Fromthis oftimeclosetothemomentofequilibriumonsetteq.Thescale one can see that the lifetime of objects in the halo is many oftheappearingobjects(22)and(23)is ordersofmagnitudelargerthanthelifetimeoftheUniverse. Approaching the central part of the halo, t0 decreases 14 15 Rx (cid:24)(10 ÿ10 )cm: (41) substantially, but here, too, below scales of the order of 10kpcitremainsmuchgreaterthant0. This scale grows with increasing mass Mx in proportion to In the galactic region, one should also involve the 1=3 Mx orsomewhatfaster,thegrowthratedependingonthe interactionwithstars.Makinguseofrelations(35),(36),we slopeofthespectralfunction. arriveatthelifetime We shall emphasize that the principal hypothesis of the (cid:18) (cid:19)(cid:18) (cid:19) 14 characterofthespectrumofinitialperturbationshasnotyet 3 4(cid:2)10 cm V beencosmologicallygrounded. ts (cid:25)4(cid:2)10 t0 Rx 300kmsÿ1 (cid:20) ÿ3(cid:21)(cid:18) (cid:19)(cid:18) (cid:19)2 3.5 Lifetime of small-scale objects in the Galaxy 1pc Mx M(cid:12) (cid:2) ; (46) The small-scale structure with the characteristic mass spec- Ns(r) 0:5M(cid:12) Ms trum (40) and scales (41) develops, under assumption (39), overtheperiodclosetothemomentofequilibriumonsetteq. where Ns(r) is the density of the stars and Ms is their Atthismoment,theamplitudeoffluctuationsonlargescales characteristic mass. We can see that outside the central ÿ3 is only F0 (cid:24)10 . The large-scale structure, therefore, regionr>rGc,whererGc (cid:24)0:1ÿ1kpc,thisquantityremains developsmuchlater,whenz<z0 (z0410). As aresult, the largerthanthelifetimet0. meandark-matterdensityinlarge-scalestructures,including Thus, dark-matter objects may exist at the present time 10 thehaloofourGalaxy,ismany((cid:24)10 )ordersofmagnitude notonlyinthehalo,butinthegreaterpartoftheGalaxyas lowerthanthedensityinsmall-scaleobjects.Thesmall-scale well. It is in the region r<rGc close to the center that they objects are thus strongly distinguished dense formations in mustalreadybedestroyedasaresultoftidalinteractionwith theGalactichalo. stars. They,naturally,interactamongthemselvesaswellaswith The interaction of dark-matter objects with gas may be starsandgalacticgasandcan,inprinciple,decayasaresultof quite diversified. First of all, since they form before thisinteraction.Weshalldeterminetheirlifetime.Tothisend, recombination, it follows that after recombination and gas we shall first estimate the total number of objects in the coolingtotemperatures Galactichalo mpMxG 3 T<T0; T0 (cid:25) (cid:25)2:6(cid:2)10 K; (47) NxMx =fMh: (42) Rx wheremp istheprotonmass,gascondensation startsinthe Herefisthefractionofdarkmattercontainedinsmall-scale dark-matterobjects,whichleadstotheformationofbaryonic structures, Mh is the total mass of the dark matter in the cores.Thisprocessmayproceedevennow.Then,obviously,a halo, Mx is the characteristic mass of an object. The substantial difference must appear in scale and, perhaps, in distribution of dark-matter objects obeys the fundamental thecompositionand structure ofbaryoniccoresinthehalo law (1). Consequently, the density of these objects in the andtheGalaxy,wherethegasdensityishigh.Baryonicbodies halo is intheGalaxymaynotonlybemuchgreaterthaninthehalo, (cid:18) (cid:19)ÿa but they may also have an appreciable effect on the 3ÿa ÿ3 r distributionofthedarkmattersurroundingthecore.Specific nx(r)= NxRh ; (43) 4p Rh featuresofthestructureofdark-matterobjectswithbaryonic coreswillbediscussedatlengthinthesectiontofollow. whereRhisthesizeofthehalo. Notethatbeingbaregravitationalbodiesonwhichstar- Allowing for the tidal interaction of the dark-matter constituting gas is condensed, the dark-matter objects objects, their lifetime is determined by expression (38). existing in the Galaxy may also have a strong effect on the SubstitutingEqns(42)and(43),weobtain starformationprocess.Onbirthandignitionofastar,dark- 2 r(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:18) (cid:19)a matterparticlesmayeitherleaveitorstayinside(depending t0 = 4Rh Rh r : (44) on their mass mx) producing a noticeable effect on its (3ÿa)Rxf 2GMh Rh burning.ThispointwillalsobediscussedbrieflyinSection4. September,1997 Small-scalestructureofdarkmatterandmicrolensing 877 Concludingthissectionweemphasizethatthesmall-scale (0) 2 runi = r0: (52) structures considered within the proposed theory are essen- 5 tiallynewobjectsinthestructureofmatterintheUniverse. (1) Theyareformedbynon-interactingdark-matterparticlesand Auniformballofradiusr1anddensityrunicorrespondstothe existowingtogravitationalforcesonly,i.e.,theparticlesare singulardensitydistribution(49).FromEqns(49)weobtain entrappedbythegravitationalfieldcreatedbytheseobjects. 4 (1) 28p ÿ12=7 An important feature of the objects is, as follows from pruni = Kr1 : (53) 3 9 Eqns (40) and (41), that their mean density is ÿ11 ÿ13 ÿ3 r/10 ÿ10 gcm .Inviewofthis,inspiteofasimilar Furthermore, in view of mass conservation we have the mass,thevolumetheyoccupyismuchlargerthanistypical relation forbaryonicbodiesÐtheirsizeexceedsthatofacorrespond- (0) 3 (1) 3 ingcompactbaryonicbodybyapproximatelyfourordersof runir0 =runir1: (54) magnitude. For this reason we henceforth refer to them as non-compact objects (NO). It is noteworthy that, having a From Eqns (49), (52), and (53) we find the coefficients of similarmass,abaryonicgasoccupiesamuchlarger(by7±9 compressionindensityKrandinradiusKr: ordersofmagnitude)volumeintheGalaxythanNO.Thus, (1) (cid:18) (cid:19)2(cid:18) (cid:19)7=3 onecanstatethatintheirgeneralpropertiesÐmass,scale, runi 40 5 r1 ÿ1=3 and luminosity Ð NO are specific objects of non-baryonic Kr =r(u0n)i ' 9p 2 ; Kr =r0 =Kr ; (55) matter.Weaklyluminousbaryonicobjectsofthesamemass andsizedonotexistinnature. whichgivesKr '20andKr '0:3.Letusemphasizethatthe coefficientsofcompression(55)donotdependonaparticular unifiedformtowhichboththedistributionsarebrought.For 4. Structure of non-compact objects example,theresultwillbethesameifwebringthedistribution 2 2 (49) to the form (48) assuming r(r)=r1(1ÿr =r1) and 4.1 Coefficient of nonlinear compression determinetheparametersr1andr1usingmassconservation. In the course of gravitational collapse leading to the Wecanseethatthenonlineargravitationalcompressionis formation of gravitationally bound objects of non-interact- sufficientlylargeevenbeforethefirstsingularity.Theanalysis ingdark-matterparticles,nonlinearcompressionoccurs.Let carriedoutinRef.[32]showsthatinthecourseofsubsequent us determine the parameters of this compression. Gravita- mixing and the onset of the stationary state it does not tionallycompressedobjectsareformedintheneighborhood generally increase. This remains valid if all the particles are oflocalmaxima oftheinitialdensity. Suppose atthe initial kept in the entrapment region. However, depending on the momentthedensitydistributionnearthismaximumr=0has initial conditions, some particles may actually leave the theform entrapment region, and as a result of conservation of the (cid:18) (cid:19) totalenergythisprocessinevitablyleadstostrengtheningthe 2 r object'scompression. r=r0 1ÿ 2 ; r<r0: (48) r0 4.2 Density distribution in non-compact objects Forsimplicity,wehaveassumedheretheinitialdistribution The distribution of density in NO depends mainly on the tobesymmetric(intheneighborhoodofathree-dimensional development of Jeans instability at the nonlinear stage, but maximum of any form the results are quite similar [5, 31]). thelinearstageoffluctuationgrowthalsoexertsaconsider- The evolution of the nonlinear process of gravitational ableinfluenceonthisprocess.So,thescalinglaw(1),(49)is compressionoftheinitialcluster(48)leadstotheappearance characterizedbytwofactors,namely,theslowlineargrowth p(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129) inatimeoftheorderoftheJeanstime(tJ 'p 3=8r)ofa ofinitialdensityfluctuationsandtherapidcompressionwith singularpointinthecenterwithadensitydistribution[4] subsequentkineticmixingatthenonlinearstage.Inthecase (cid:18) (cid:19)6=7 oflargescales,theinitialdensityfluctuationsdi0[seeEqns(2) ÿ12=7 3 40 12=7 and (3)] are always small, and therefore the unstable mode r(r)=Kr ; K= r0r0 : (49) 7 9p increases for a substantially long time before the nonlinear collapsesetsin.Withinthistimeinterval,thestablemodesare Let us assume the distribution (49) to be restricted to the damped strongly. In the course of nonlinear collapse, radius r1. For r>r1 we put r=0. The forms of the however, one of the damping modes starts increasing and distributions (48) and (49) differ strongly. Under these doessoveryrapidly,sothatintheneighborhoodofr=0it conditions, in order to find the value of the effective outruns the increasing mode [33]. As a result, in a small parameterofcompressionitisreasonabletobring boththe neighborhoodofr=0thelaw(1),(49)iscutoffonthescalerc distributionstoaunifiedform.Itisnaturaltochooseassuch [5],where aformauniformballwithaconstantdensity 3 rc =di0Rx: (56) r=runi: (50) Totheinitialdistribution(48),weaddauniformballofthe HereRxisthecharacteristicscaleofanobject.Themagnitude samemass ofinitialdensityfluctuationsdi0onlargescalesisrathersmall, ÿ3 M= 8 pr0r30 =4 pr(u0n)ir30 (51) tdoi0v'ery10sma.lTlshciaslmese:afrnosmthEaqtnth(e56sc)aitlifnogllloawws(t4h9a)tirscf(cid:24)ulf1il0lÿed9Ruxp. 15 3 Thus,itsactualcut-offisnaturallycausedbytheinfluenceof (0) andradiusr0.Thenthedensityruniisrelatedtotheparameter otherprocesses,forinstance,bytheactionofbaryonicmatter r0asfollows ortheappearanceofagiantblackhole[34]. 878 AVGurevich,KPZybin,VASirota Physics±Uspekhi40(9) For small-scale objects the situation is essentially differ- From relations (60) and (62) it follows that in the case ent. As shown above [see Eqn (39)], the initial density Mb (cid:24)0:05Mx the region of appreciable influence of the fluctuations on small scales, where their effective growth baryonic-object potential is of the order of begins, are sufficiently high: di0 (cid:24)0:3ÿ0:5for t=teq. Then rb (cid:25)(0:05ÿ0:1)Rx. For smaller values of Mb the region of fromEqn(56)itfollowsthatthedistribution(1),(49)iscutoff influenceofthepotentialcbisevensmaller. ratherearly,namelywhen We shall assume the time of oscillations of dark-matter particlestrappedinthepotential(62)tobemuchsmallerthan rc (cid:24)(0:05ÿ0:1)Rx: (57) thecharacteristictimeofbaryoncoolingandbaryonicbody Asaresult,theparticledensityintheCDMofasmall-scale formationinthecenterofNO.Fortheobjectsofinterest,(40) NOcanapproximatelyberepresentedas and (41), the time of oscillations is t0 (cid:24)10 years, so this 8 conditionisalwayswellfulfilled.Inthiscase,toconsiderthe >><r0(cid:18); (cid:19)ÿa 0<r<rc; variationofthedistributionfunctionofdark-matterparticles r= r0 r ; rc <r<Rx; (58) under the influence of baryons, one can use the adiabatic >>: rc approximation. The initial adiabatic invariant Ii is deter- 0; r>Rx; minedbytherelation wherethescalercisdeterminedaccordingtoEqn(57)andthe …rmaxr(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)m(cid:129)(cid:129)(cid:129)(cid:129)2(cid:129)(cid:129) densityr0isrelatedtotheobject'smassMxandthescaleRxas Ii = rmin Eÿcd(r)ÿ2r2 dr; Ii =Ii(E;m): (63) r0 '3ÿa MxRxaÿ3rÿca: (59) HereEistheenergyofaparticlemovinginthepotentialcd, 4p normalizedtothemassmx;mistheangularmomentumofthe particle; rmin, rmax are reflection points defined as points at 4.3 Influence of baryonic component which the integrand vanishes. The initial distribution func- on the structure of non-compact objects tionis Up to now we have ignored the influence of the small baryoniccomponentonthestructureofdark-matterinNO. f=f0(Ii)=f0(E;m): (64) However,astheycooldown,baryonstendtothebottomof thepotentialwellcreatedbythedarkmatterandcondenseat After the baryonic body formation, the adiabatic invar- thecenterformingacompactbaryonicobjectofmassMb.It iantIboftheparticleisalreadydescribedbyanotherequation createsanadditionalpotential …rmaxr(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)G(cid:129)(cid:129)(cid:129)(cid:129)M(cid:129)(cid:129)(cid:129)(cid:129)b(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)m(cid:129)(cid:129)(cid:129)(cid:129)2(cid:129)(cid:129) cb =ÿGMr b : Ib = rmin Eÿc(r)+ r ÿ2r2 dr; (65) The scale of influence of this potential, rb, depends on the whereGMb=risthebaryonicbodypotentialandc(r)isthe massofabaryonicobjectandcanreadilybeestimatedonthe potentialcreatedbythenon-baryonicmatter.Inviewofthe basisoftherelation factthattheadiabaticinvariantispreservedinaslowprocess, I=const=Ib,therelation cb(rb)=cd(rb); (60) (cid:12) (cid:12) where cd(r) is the potential created by the non-baryonic f(I)=f0(Ii)(cid:12)Ii=Ib (66) component with the density distribution rd(r) (58), (59). It canbefoundthroughasolutionofthePoissonequation holds.Heref0(Ii)istheinitialdistributionfunction,butgiven 1 d (cid:18) 2 dcd(cid:19) this, the function Ib(E;m) (65) already differs from Ii(E;m) r2 dr r dr =4pGrd(r) (61) (63).Expressions(63)±(66)completelydescribethedeforma- tion of the distribution function f(E;m) of dark-matter with the boundary condition cd !0 as r!1; it has the particlesundertheinfluenceofthebaryonicbodypotential. form The distributions of the potential and particle density are 8 ((cid:20) (cid:18) (cid:19)2 (cid:21) describedherebytheequations >>>>>>>>>>>>>>>>>>>>>>>>><GRMx(cid:2)(cid:2)x(cid:18)(cid:20)1Rr3ÿcx(cid:19)ÿ6a2(cid:18)aÿarÿcrrc(cid:19)233ÿÿÿa+aa(cid:21))ÿ2a1((23; ÿÿaa)) r<rc; Dr(cr)==42ppGrm2rx;…01 dm2…c0+m2=(2r2)p(cid:129)E(cid:129)(cid:129)(cid:129)(cid:129)ÿ(cid:129)(cid:129)(cid:129)(cid:129)f(cid:129)c(cid:129)((cid:129)E(cid:129)(cid:129)ÿ(cid:129)(cid:129);(cid:129)(cid:129)m(cid:129)m(cid:129)(cid:129))(cid:129)2(cid:129)(cid:129)=(cid:129)(cid:129)(cid:129)((cid:129)2(cid:129)(cid:129)(cid:129)r(cid:129)(cid:129)2(cid:129)(cid:129))(cid:129) d(E67:) cd =>>>>>>>>>>>>>>>>>>>>>>>>>:ÿÿGGÿMMr32xxÿÿ+; aaG3R+MxRRxr(cid:20)xx(cid:21)2(cid:20)ÿ11ÿa(cid:18)a3R(cid:18)rxRr(cid:19)cx2(cid:19)ÿa3ÿa(cid:21)ÿ1; Rrcx44rr4; Rx; trpn((ehS6q(oa7eeruttc))ueTap,tnrttioooaoitaoitlgnarledneyelnest,tht,4cieeowe.ars4nrlmsh)aewcintincnhit(dhtthreeih)aedd,tmlEelheaytcnqaeenassnrdnNssimsteoytoO(inhn6folre3eisftn)tdhtbre±haiuaayse(rcr6kdb.tt6su-ihom)msTr.edtearhaWy,ilbte.blto-aeueWmnrprtsyeiehaeodorsasnetnsshlunlhifocrsusabbiutltnarballycedrtoftsyididoissoroiynosstnntthslivrdcfaaie(beotnEpufEbta;ehtolqmnityeodhnssd)nyeees,, r Mb=Mx !0, when the perturbation of the potential c a=1:8: (62) created by non-baryonic matter can be neglected to a first