Small Angle Neutron Scattering Studies of the Initial Stages of Phase Separation Tim Rappl, Amy Lefebvre, Albert Pan Nitash Balsara, David Chandler University of California, Berkeley Boualem Hammouda National Institute of Standards and Technology Financial Support: NSF (indirect 1995-2003) ACS PRF grant (2003-05) Phase diagram of liquid (polymer) mixtures Binodal curve Two Mechanisms: (1) Nucleation (off- 1/T or P critical systems) (2) Spinodal Decomposition (critical systems) Volume fraction Question: Is there any difference between the 2 mechanisms? (cid:1)(cid:1)(cid:1)(cid:1)(cid:2)(cid:2)(cid:2)(cid:2)(cid:3)(cid:3)(cid:3)(cid:3)(cid:4)(cid:4)(cid:4)(cid:4)(cid:5)(cid:5)(cid:5)(cid:5)(cid:6)(cid:6)(cid:6)(cid:6)(cid:7)(cid:7)(cid:7)(cid:7)(cid:3)(cid:3)(cid:3)(cid:3)(cid:4)(cid:4)(cid:4)(cid:4) 1. Classical nucleation theory 4 DG = - pr3DG + 4pr2s r v 3 equilibrium droplet in an infinite "ocean" (size) Examples: clouds, rain, snow, (R ) c bones, crystallization, boiling, melting, magnetization, phase separation… Experiments on liquid mixtures Metastable mixture Stable mixture (one-phase) (two-phase) Nucleation of A droplets Krishamurthy and Goldburg (JCP 1982) write "Our observations of the very initial stages of nucleation were severely limited by our microscope technique, finite quench rates,… In our view, the same failing characterizes all previous experiments. Questions about nucleation 1. How to look for the critical nucleus (prove that something is not there)? 2. Can scattering (a powerful tool for studying critical systems) be used to study nucleation? If nuclei are infinitely dilute, then scattering will not work. 3. Theory is remarkably silent about measuring R . c Find each cluster and determine the probability of growth/decay (experiments by Weitz and Vekilov). Materials [ CH CH CH CH ] [ CH CH CH CH ] 2 2 2 n 2 2 2 n CH CH CH 3 2 3 PM PE sample mol. wt. N Rg (nm) desig. (kg/mol) dPM 145 2055 15.2 hPE 195 2350 15.5 Blends: B1, B2, B3 are blend desig. vol fr. of dPM also off-critical B5 0.49 (critical) blends (JCP, B4 0.20 (off-critical) 2002) Pressure Quench (off-critical) Anneal above the T binodal at P=0. a l d o n b i Quench in two steps to final (T,P). a l d o n p i s Phase separation triggered by the pressure quench. P Determination of binodal and spinodal: Lefebvre, et al., Macromolecules, 2002 Salient Features of our Experiments 1. Molecular motion is extremely slow (t~0.1 s) and completely understood (non-glassy). 2. Robust models for equilibrium thermodynamics are available; expressions for R can be easily derived: c (cid:6) R (cid:3) 2 (cid:6) 2 c N (cid:3) 2 (cid:6) 1 1 2 (cid:3) (cid:6) 2 (cid:3) (cid:4) g (cid:1) = (cid:4) (cid:1) f (1 - f )(cid:4) - 1 - - f (cid:1) (cid:4) 1 - (cid:1) (cid:4) (cid:1) (cid:4) (cid:1) (cid:4) (cid:1) (cid:5) R (cid:2) (cid:5) 0 .73 (cid:2) (cid:5) 2 2 c N (cid:2) (cid:5) c N (cid:2) c 3. Nucleation triggered by pressure quench (faster and cleaner than temperature quench). 4. Deuterium labeling enables detection of initial clustering by SANS. SANS profiles merge 0.86 kbar 0.43 kbar 1000 10000 1 min 1 min y 37 min y 48 min 1000 sit 100 58 min sit 75 min n 74 min n 93 min e e 114 min nt nt 100 S I S I N 10 N A A 10 S S q q c c 1 1 0.01 0.1 0.5 0.01 0.1 0.5 -1 -1 q (nm ) q (nm ) Scattering Signature of Critical Nucleus 0.19 kbar 1000 6 min y 92 min it 135 min s 100 n 177 min e t n I S N 10 q A c S 1 0.01 0.10 0.50 -1 q (nm ) If none of the emerging structures are of size L then there will be no scattering increase at the corresponding q~1/L. None of the growing structures are smaller than R ~1/q c c
Description: