ebook img

SMA observations of young disks: separating envelope, disk, and stellar masses in class I YSOs PDF

0.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview SMA observations of young disks: separating envelope, disk, and stellar masses in class I YSOs

Astronomy&Astrophysicsmanuscriptno.i63e29final (cid:13)c ESO2008 February3,2008 SMA observations of young disks: separating envelope, disk, and stellar masses in class I YSOs DaveLommen1,JesK.Jørgensen2,3,EwineF.vanDishoeck1,andAntonioCrapsi1,4 1 LeidenObservatory,LeidenUniversity,P.O.Box9513,2300RALeiden,TheNetherlands 2 Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA 3 Argelander-Institutfu¨rAstronomie,UniversityofBonn,AufdemHu¨gel71,53121Bonn,Germany 4 ObservatorioAstrono´micoNacional(IGN),AlfonsoXII,3,28014Madrid,Spain Received...;accepted... ABSTRACT 8 Context.Youngstarsarebornwithenvelopes,whichintheearlystagesobscurethecentral(proto)starandcircumstellardisk.Inthe 0 ClassIstage,thedisksarestillyoung,buttheenvelopesarelargelydispersed.ThismakestheClassIsourcesidealtargetsforstudies 0 oftheearlystagesofdisks. 2 Aims.Weaimtodeterminethemassesoftheenvelopes,disks,andcentralstarsofyoungstellarobjects(YSOs)intheClassIstage. n Methods. We observed the embedded Class I objects IRS 63 and Elias 29 in the ρ Ophiuchi star-forming region with the a SubmillimeterArray(SMA)at1.1mm. J Results.IRS63andElias29arebothclearlydetectedinthecontinuum,withpeakfluxesof459and47mJy/beam,respectively. ThecontinuumemissiontowardElias29isclearlyresolved,whereasIRS63isconsistentwithapointsourcedowntoascaleof3(cid:48)(cid:48) 3 (400AU).TheSMAdataarecombinedwithsingle-dishdata,andbothdiskmassesof0.055and≤ 0.007M andenvelopemasses 2 (cid:12) of0.058and≤0.058M areempiricallydeterminedforIRS63andElias29,respectively.Thedisk+envelopesystemsaremodelled (cid:12) withtheaxisymmetricradiative-transfercodeRADMC,yieldingdiskandenvelopemassesthatdifferfromtheempiricalresultsby ] h factors of a few. HCO+ J = 3–2 is detected toward both sources, HCN J = 3–2 is not. The HCO+ position-velocity diagrams are p indicativeofKeplerianrotationandallowanestimateofthemassofthecentralstars.Forafiducialinclinationof30◦,wefindstellar - massesof0.37±0.13forIRS63and2.5±0.6M(cid:12)forElias29. o Conclusions.ThesensitivityandspatialresolutionoftheSMAat1.1mmallowagoodseparationofthedisksaroundClassIYSOs r fromtheircircumstellarenvelopesandenvironments,andthespectralresolutionmakesitpossibletoresolvetheirdynamicalstructure t s andestimatethemassesofthecentralstars.TheratiosoftheenvelopeanddiskmassesM /M arefoundtobe0.2forIRS63and env disk a 6forElias29.ThisislowerthanthevaluesforClass0sources,whichhaveM /M ≥10,suggestingthatthisratioisatracerof env disk [ theevolutionarystageofaYSO. 1 Keywords.circumstellarmatter–planetarysystems:protoplanetarydisks–stars:formation–stars:individual(IRS63,Elias29) v 9 6 5 1. Introduction the central star evolve over time, and how long does it take for 3 thecircumstellarmattertobeaccretedontothestar? . Low- and intermediate-mass stars are formed from the gravia- 1 Youngstellarobjects(YSOs)areusuallyclassifiedaccording tional collapse of molecular cloud cores. In the earliest stages, 0 totheirslopesintheinfrared(IR)wavelengthregime.Originally, the newly-formed protostar remains embedded in the remnants 8 the LW classification (Lada & Wilking 1984; Lada 1987) ran ofthiscore,acoldenvelopeofdustandgas,whichisgradually 0 fromtheembeddedClassI,viatheopticallyvisibleClassIIor : accreted by the young star (e.g., Shu 1977). Due to the angu- classical T Tauri stars, to the Class III spectral energy distribu- v lar momentum initially present in the core, most of the enve- i tionsofpost-TTauristars.Later,theClass0stagewasaddedto X lopematerialdoesnotfalldirectlyontothecentralprotostarbut thisclassification(see,e.g.,Andre´etal.1993),wheretheClass0 is piled-up in a circumstellar disk (e.g., Terebey et al. 1984). r sourcesaredistinguishedfromtheClassIsourcesthroughtheir a Understandingthisinterplaybetweenstar,disk,andenvelopeis highrelativeluminosityatsubmillimetre(submm)wavelengths. crucialinordertobeabletorelatetheinitialconditionsofstar Thisclassificationroughlyreflectstheevolutionarystageofthe formation such as the mass of the protostellar core to the end- YSOsunderconsideration.ThemostdeeplyembeddedClass0 product–namelythepropertiesoftheyoungstar,andthemass sourcesarethoughttoevolvethroughtheClassIstagewhiledis- and thus potential of the disk for forming planets. Some of the sipating their circumstellar envelopes. Eventually they become keyquestionsinclude:Wheredoesmostofthemassresideata opticallyvisibleaspre-mainsequenceTTauristarswithcircum- given time? Will all the mass that is seen in prestellar cores or stellardisks. intheenvelopesarounddeeplyembeddedsourcesendupinthe star,orwillalargefractionbedispersedfromthesystem?How TheClass0andClassIIYSOshavebeenstudiedquiteex- dothemassesofthecircumstellarenvelope,thedisk,andthatof tensively with high-resolution (sub)millimetre interferometers (e.g.,Jørgensenetal.2007;Andrews&Williams2007,andref- erencestherein).StudiesofdeeplyembeddedClass0YSOshave Sendoffprintrequeststo:DaveLommen, shown that circumstellar disks are formed early (Harvey et al. e-mail:[email protected] 2003;Jørgensenetal.2004),butinthesesystems,itisdifficult 2 DaveLommenetal.:SeparatingthemassesinClassIYSOs toseparatetheemissionfromthediskfromthatoftheenvelope. by the Caltech Submillimeter Observatory). Conditions were TheClassIsources,inwhichalargepartoftheoriginalcircum- slightlyworseon17May,withτ startingat0.16,fallingto0.1 225 stellar envelopes has been dissipated, are ideal to study young duringthefirsthalfofthenight.Physicalbaselinesrangedfrom disksinYSOs.InterferometricstudiesofClassIobjectshaveso 11.6to62.0metres,andtheresultingprojectedbaselinesranged farbeenlargelylimitedtostudiesataround3mm(e.g.,Ohashi from 5.9 to 63.8 kλ, yielding a resolution of about 4.0×2.3(cid:48)(cid:48) etal.1997;Hogerheijdeetal.1997,1998;Looneyetal.2000). (natural weighting). The correlator was configured to observe The Submillimeter Array (SMA) allows observations around thelinesofHCO+ J =3–2andHCN J =3–2togetherwiththe 1 mm, where the thermal dust continuum emission is an order continuum emission at 268 and 278 GHz. The line data were ofmagnitudestrongerthanat3mm.Alsoattheseshorterwave- taken with 512 channels of 0.2 MHz width each, resulting in a lengths it is possible to detect the higher rotational transitions velocityresolutionof0.23kms−1. of the molecules that trace the dense gas in the disks and inner Calibration was done using the MIR package (Qi 2005), envelopes of the young systems, rather than lower-density ex- andimagingwasdoneusingtheMIRIADpackage(Saultetal. tendedenvelopeemission. 1995). The quasars QSO B1622-297 and QSO B1514-241 We here present SMA observations of two Class I objects served as gain calibrators, and the absolute fluxes were cali- thatappeartobeinanevolutionarystagewherethekinematics brated on Uranus. The absolute flux calibration is estimated to ofthecircumstellarmaterialarenolongerdominatedbyinfall. haveanuncertaintyof∼20%.Thepassbandswerecalibratedon IRS 63 (WLY 2-63, GWAYL 4) and Elias 29 (Elia 2-29, WLY CallistoandthequasarQSOB1253-055(3C279). 1-7) are located in the ρ Ophiuchi cloud, taken to be at a dis- tanceD=125±25pc(deGeusetal.1989).Spitzerphotometry from the “Cores to Disks” Legacy program (Evans et al. 2003) 3. Results was used to determine the source’s infrared colours and their The basic results of the observations are shown in Fig. 1 and bolometric luminosities and temperatures. IRS 63 and Elias 29 summarisedinTable1. havesimilarbolometrictemperatures,T = 351Kand391K, bol respectively, which places them in the LW Class I regime. The bolometric luminosities were calculated to be L = 0.79 L 3.1. Continuumdata bol (cid:12) forIRS63and13.6L forElias29.Accordingtotheirinfrared (cid:12) slopes of α = 0.15 and 0.42, IRS 63 is the slightly more Both sources are clearly detected in the continuum at 1.1 mm. 2−24µm Point-source and Gaussian fits were done in the (u,v) plane to evolved,fallingintothe“flat-spectrum”classthatseparatesthe determine the peak and integrated fluxes, respectively. A con- ClassIfromtheClassIIsources(Greeneetal.1994).Theval- tinuum peak flux of 459 mJy bm−1 and an integrated flux of ues for α quoted here are from un-dereddened observations. IR 474mJywerefoundforIRS63,atapositionwhichagreeswith CorrectionfortheextinctiontowardtheρOphiuchistar-forming the 2MASS K -band position within 0(cid:48).(cid:48)1. IRS 63 was also ob- region(e.g.,Flahertyetal.2007)wouldresultinlowervaluesfor S servedwiththeSMAbyAndrews&Williams(2007)athigher α ; in other words, the sources may be slightly more evolved IR resolution at 1.3 mm. Their interferometer flux for IRS 63, to than the raw values of α suggest. In terms of environment, IR whichtheyreferasL1709B2,isconsistentwiththevaluehere the two sources are quite each other’s opposites. The SCUBA andammslopeα = 2.0±1.0.ThedataofElias29arebest 850µmmap(Johnstoneetal.2004)fromtheCOMPLETEsur- mm fitted by two sources. The brightest of the two agrees with the vey(Ridgeetal.2006)showsthatIRS63isanisolatedcompact 2MASS K -band position of Elias 29 within 0(cid:48).(cid:48)2, whereas the source. Elias 29, on the other hand, is located in a dense ridge S othersourceisoffsetby3(cid:48)(cid:48).Thesecondpeakisattributedtoan ofmolecularmaterial,whichcontainsseveralmoreYSOs.Itis enhancement in the ridge, from which Elias 29 likely formed, likelythattheseYSOswereformedfromcondensationsinthis andisdesignatedby“Ridge”inTable1.Elias29andtheridge molecularridge. componentyieldcontinuumpeakfluxesof47and31mJybm−1, We present the masses of all main components of Class I andintegratedfluxesof72and28mJy,respectively. YSOs,i.e.,thecentralstar,thedisk,andtheenvelope,forthefirst Plots of the visibility amplitudes as functions of projected time.IRS63andElias29arethefirsttwosourcesinalargersur- baseline for IRS 63 and Elias 29 are shown in Fig. 2. Elias 29 vey of Class I objects studied with the SMA at 1.1 mm. These showsasteeplyrisingfluxtowardtheshortestbaselines,indicat- observations complement the survey of Class 0 sources in the ingthatanenvelopeispresentaroundthissource.Theemission PROSAC programme (Jørgensen et al. 2007) and will allow us towardIRS63doesnotchangeappreciablywithbaselinelength, totracethesimilaritiesanddifferencesoftheseevolvingproto- indicatingthatthissourceisunresolveduptobaselinesof60kλ, stars.Theresultsofthecompletecampaignwillbepresentedin ordowntophysicalscalesofabout400AU. afuturepaper.In§2,theobservationsarepresented,andthere- Fig. 2 also shows the estimated single-dish flux at 1.1 mm. sultsandimplicationsarediscussedin§§3and4.Wesummarise Forthis,the“mapped”fluxesfromAndre´ &Montmerle(1994) themainconclusionsin§5. at 1.25 mm were combined with newly determined 850 µm fluxes (SCUBA maps from the COMPLETE survey, Johnstone 2. Observations et al. 2004; Ridge et al. 2006). The SEDs are assumed to have a F ∝ να dependence in this wavelength range, and are in- ν IRS 63 and Elias 29 were observed with the SMA1 (Ho et al. terpolated to the 1.1 mm wavelength at which the SMA ob- 2004)on15and17May2006,respectively.Weatherconditions servations were conducted. Fluxes of 355 and 780 mJy are were good on 15 May, with zenith optical depths at 225 GHz found for Elias 29 and IRS 63, respectively, with an estimated τ =0.04–0.06(asmeasuredbyatippingradiometeroperated 225 2 IRS63andL1709Bareoftenreferredtoasthesamesource(e.g., 1 TheSubmillimeterArrayisajointprojectbetweentheSmithsonian Andre´ & Montmerle 1994). However, L1709 B would appear to lie Astrophysical Observatory and the Academia Sinica Institute of about 4 arcmin north of IRS 63 (e.g., Benson & Myers 1989). The Astronomy and Astrophysics and is funded by the Smithsonian sourcethatAndrews&Williams(2007)refertoasL1709B,isinfact InstitutionandtheAcademiaSinica. IRS63. DaveLommenetal.:SeparatingthemassesinClassIYSOs 3 Fig.3.First-momentmapofIRS63.Contoursaredrawnat2,4, and8timestheRMSof67mJybm−1.Thepositionaloffsetsare withrespecttothecoordinatesoftheobservationalphasecentre, andthecrossindicatesthecontinuumpositionofIRS63froma point-sourcefitinthe(u,v)plane,seeTable1.Acolourversion ofthisfigurecanbeobtainedfromtheelectronicversionofthe Fig.1.SMAimagesofthe1.1mmcontinuum(toppanels)and paper. integrated HCO+ 3–2 (bottom panels) emission. Contours are drawnat2,4,8,16,32,and64timestherespectiveRMSnoise 3.2. Linedata levels,withtheRMSbeingabout6mJybm−1forthecontinuum andabout65mJybm−1 forthelinedata.Negativecontoursare HCO+ J=3–2isdetectedtowardbothsources,whereasHCNJ dashed.Thepositionaloffsetsarewithrespecttothecoordinates =3–2isnot.Elias29appearstobeabouttentimesasstrongin oftheobservationalphasecentre.Thedashedlinesindicatehow HCO+ J=3–2integratedemissionasIRS63(seeTable1).The thepositionvelocitydiagrams(Fig.7)aredirected. emission toward IRS 63 is compact, coincident with the con- tinuum peak, and shows a velocity gradient in the north-south direction, see Fig. 3. The integrated emission in the direction of Elias 29 is more extended and can be fitted with two el- liptical Gaussians, as is shown in the left panel of Fig. 4. The centrepositionofthesmallerGaussiancoincideswiththecon- tinuum peak, as well as with the infrared position, and is at- tributedtoElias29itself.ThesecondGaussianhasaveryelon- gated shape, offset from the infrared source, and is attributed to a density enhancement in the nearby ridge. The right panel of Fig. 4 shows the HCO+ J = 3–2 spectra toward the contin- uumpositionsofElias29andIRS63,binnedto0.9kms−1.The HCO+ J =3–2emissiontowardIRS63appearstobecentredat Fig.2.Continuumamplitudeasafunctionofprojectedbaseline V =3.3kms−1. LSR forIRS63(leftpanel)andElias29(rightpanel).Thedatapoints givethe amplitudeper bin,where thedataare binnedin annuli according to (u,v) distance. The error bars show the statistical 4. Discussion and interpretations 1σerrors,mostoftensmallerthanthedatapoints,andthedot- 4.1. Envelopeanddiskmasses ted lines give the expected amplitude for zero signal, i.e., the anticipated amplitude in the absence of source emission. The The basic data as presented in the previous section are used half-open circles at zero (u,v) distance give the zero-spacing to determine the masses of the disks and the envelopes in the 1.1mmflux,interpolatedbetween850µmand1.25mmsingle- systems, both empirically (Sect. 4.1.1) and through detailed dish fluxes (Andre´ & Montmerle 1994; Johnstone et al. 2004; radiative-transer modelling (Sect. 4.1.2). The differences be- Ridgeetal.2006,seetext). tween the two methods and the over-all conclusions are dis- cussedinSect.4.1.3. uncertainty of 25%. These fluxes are significantly larger than 4.1.1. Empiricalresults the interferometer fluxes and indicate that extended emission is present around the compact components picked up with the A first-order estimate of the disk and envelope masses can be SMA.Thisextendedemissionmaybeduetoacircumstellaren- obtained by assuming that the continuum flux of the envelope velope,ortosurroundingorinterveninginterstellarclouds,since is resolved out by the interferometer on the longest baselines the“mapped”regionsofAndre´ &Montmerle(1994)arerather (Fig. 2). Hence, the emission on the longest baselines is solely large,40(cid:48)(cid:48)forElias29and60(cid:48)(cid:48)forIRS63. duetothedisk,whereasthesingle-dishfluxcomesfromthedisk 4 DaveLommenetal.:SeparatingthemassesinClassIYSOs a dust opacity at 273 GHz of κ = 2.73 cm2 g−1 is found, and ν thediskmassesdecreaseto0.024M forIRS63and0.003M (cid:12) (cid:12) forElias29.3 Notethatthismethodofestimatingthediskmass is only valid when the disk is unresolved by the observations. If the disk were clearly resolved, the flux on the longest base- lines would not include the emission from the outer disk, but onlythatfromsmallerradii,unresolvedbythosebaselines.Due toitscloseness,theenhancementintheridgenearElias29may contributetoitsflux,evenonthelongestbaselinesof≥50kλor scales< 4(cid:48)(cid:48).However,intheestimateofthefluxonthelongest baselines (Table 1), the ridge component was fitted simultane- ously with Elias 29, and hence its contribution to the derived Fig.4. Left panel: HCO+ J = 3–2 integrated emission toward diskmassisexpectedtobeminimal. Elias 29. The grayscale is linear from 0.2 to 1.2 Jy bm−1. The In a similar fashion the envelope masses in the systems canbefound.First,thecontributionsfromtheenvelopestothe emissionisfittedwithtwoGaussians,theoneinthenorth-south 1.1 mm single-dish fluxes are determined by subtracting the direction tracing the emission due to Elias 29, and the other, fluxes at baselines ≥ 16 kλ (see Table 1) from the single-dish larger one tracing emission from a density enhancement in the ridge.Rightpanel:spectrallines,integratedover2×2(cid:48)(cid:48)regions, fluxes asfound inSect. 3. Theenvelope massesare then found byusingEq.(1),withthetemperaturesoftheenvelopestakento centred on the continuum positions of Elias 29, of the ridge (shiftedby+4Jybm−1),andofIRS63(shiftedby-4Jybm−1), be20K.Foranopticallythinenvelopearoundstarswithlumi- andbinnedto0.9kms−1.TheHCO+ J =3–2emissiontoward nositiesof0.79and13.6L(cid:12) applicabletoIRS63andElias29, IRS63appearstobecentredatV =3.3kms−1. a temperature of 17–29 K is expected at a radius of 940 AU LSR correspondingtothesizeoftheJCMTsingle-dishbeam(from, e.g.,Eq.(2)of Chandler&Richer2000,takingtheopacityin- Table1.ResultsofSMAobservationsat1.1mm. dexβ = 1).Thisyieldsanenvelopemass M = 0.058M for env (cid:12) IRS63withina30(cid:48)(cid:48) radius,wherethecontributionfromtheen- IRS63 Elias29 Ridge F (P)a[mJybm−1] 459 47 31 velopetothetotal1.1mmfluxis38%.Coincidentally,alsofor RνAa[J2000] 16:31:35.65 16:27:09.42 16:27:09.48 Elias 29 an envelope mass Menv = 0.058 M(cid:12), within a 20(cid:48)(cid:48) ra- Deca[J2000] -24:01:29.56 -24:37:18.91 -24:37:22.48 dius,isfound.However,inthissystemthecontributionfromthe RMSb[mJybm−1] 6 5 5 envelopetothetotal1.1mmfluxis84%.Asforthediskmass, CircularGaussianfitstoalldata alsotheenvelopemassfoundforElias29shouldbetakenasan F (G)c[mJy] 474 72 28 upper limit because of the closeness of the ridge enhancement. ν FWHMc[arcsec] 0.55±0.08 2.2±0.5 – Note,however,thatitisunlikelythatthebulkofthecontinuum CircularGaussianfitstodata≥16kλ(scales<13arcsec) emissionisduetothisenhancement,becauseofthecoincidence Fν(G)c[mJy] 480 57 27 of the continuum peak with the infrared source and also with FWHMc[arcsec] 0.62±0.08 1.7±0.7 – the single-dish submillimetre positions. Using the opacities of Linedata Beckwithetal.(1990)willlowerallmassesbyafactorofabout HCO+d[Kkms−1] 3.1±0.3 23.7±2.5 23.5±2.5 2. HCNd[Kkms−1] <1.8 <3.8 <3.8 a Pointsourcefitinthe(u,v)plane. 4.1.2. Modelling b Calculatedfromthecleanedimage. c CircularGaussianfitinthe(u,v)plane. To provide more physical grounding to the values for M disk d Integratedintensitiesarefroma4×4(cid:48)(cid:48) squarearoundthecontin- and M estimated in the previous section, a radiative transfer env uumemission.Thesynthesisedbeamis∼ 4×2.5(cid:48)(cid:48).HCNwasnot code was used to fit simultaneously the millimetre interferom- detected;quotedvaluesare3σupperlimits. etry and the spectral energy distributions. IRS 63 and Elias 29 were modelled with a new version of the programme RADMC (e.g.,Dullemond&Dominik2004).RADMCisanaxisymmet- andenvelopecombined.Assumingthatthediskandtheenvelope ric Monte-Carlo code for dust continuum radiative transfer in are isothermal and the dust emission is optically thin, the disk circumstellar disks and envelopes in which the stellar photons massisgivenby aretracedinthreedimensions.Thecodeisbasedonthemethod ofBjorkman&Wood(2001). M = FνΨD2 , (1) Thedensitystructureofthediskisgivenby(seeCrapsietal. disk κ B (T ) 2007) ν ν dust wishtehreegFasν-itso-tdhuesflturaxtiaot,fκrνeqisuethnecyduνstonoptahceitlyonagteνs,tabnadseBliνn(Tesd,usΨt) ρdisk(r,θ)= Σ√0((2rπ/R)H0)(−r1)exp−12(cid:34)rcHo(sr()θ)(cid:35)2, (2) is the emission from a black body at T . Using fiducial val- dust ues for all these parameters – Ψ = 100, T = 30 K, and dust where r is the radial distance from the central star and θ is the κ = 1.18 cm2 g−1 (“OH5” coagulated dust with icy mantles, ν anglefromtheaxisofsymmetry.Theinnerradiuswasfixedto found in the fifth column of Table 1 of Ossenkopf & Henning 0.1AUforIRS63,andto0.25AUforElias29,toaccountfor 1994, interpolated to the observed frequency ν = 273 GHz) – disk masses of 0.055 M(cid:12) and 0.007 M(cid:12) are found for IRS 63 3 The opacity law quoted by Beckwith et al. (1990) is κν = and Elias 29, respectively. Using the opacity law as quoted by (cid:16) (cid:17)β 0.1 ν/1012Hz forthegasanddustcombined,implicitlyassuminga Beckwithetal.(1990),κν = 10(cid:16)ν/1012Hz(cid:17)β,andtakingβ = 1, gas-to-dustratioΨ=100,consistentwithourwork. DaveLommenetal.:SeparatingthemassesinClassIYSOs 5 Table2.ModelparametersforIRS63andElias29. IRS63 Elias29 Modellingparametersandresults Stellarluminosity(fixed) 0.79L 13.6L (cid:12) (cid:12) Diskinnerradius(fixed) 0.1AU 0.25AU Diskouterradius,R 100AU 200AU 0 Diskheightatouterradius,H /R (fixed) 0.17 0.17 0 0 Envelopeouterradius(fixed) 10,000AU 10,000AU Centrifugalradius,R 100AU 300AU rot Inclination 30◦ 30◦ Diskmass,Mdisk 0.13M(cid:12) 0.004M(cid:12) Fig.5.Continuumamplitudeasafunctionofprojectedbaseline Envelopemass,Ma 0.022M 0.025M env (cid:12) (cid:12) for IRS 63 (left panel) and Elias 29 (right panel), with models Empiricalresults overplotted.Thedashedlinesshowmodels,consistingofanen- Ma [M ] 0.058 ≤0.058 env (cid:12) velopeonly.Theyfitthesingle-dish(sub)mmdatawell,butfall M [M ] 0.055 ≤0.007 disk (cid:12) offtoofasttolongerprojectedbaselines.Thedash-dottedlines Mb [M ] 0.37±0.13 2.5±0.6 star (cid:12) arefromdisk-onlymodels.Theyfittheinterferometricdatawell, a The envelope mass is defined as the mass, not contained in the butdonothaveenoughfluxontheshortestbaselines.Thesolid disk,withinasingle-dishradius,i.e.,30(cid:48)(cid:48)/3750AUforIRS63,and linesareforthemodelsthatprovideagoodfittotheSEDandto 20(cid:48)(cid:48)/2500AUforElias29. thespatialinformationprovidedbytheinterferometricobserva- b Assuminganinclinationi=30◦(§4.2fordiscussion). tions.Thedottedlinesindicatetheexpectedamplitudeforzero signal. thehigherluminosityofthestar.Attheseradii,thetemperature and 13.6 L for Elias 29, which were taken to be equal to isoftheorderofthedustsublimationtemperature.Notethatthe (cid:12) thebolometricluminositiesofthesources,andthetemperature exactsublimationtemperature,andhencethediskinnerradius, structures in the disks and envelopes were then calculated by dependsontheexactdustspeciesandlocaldensity.Thevertical scaleheightofthediskisgivenbyH(r)=r·H /R ·(r/R )0.17, propagatingthestellarphotonsthroughthesystems. 0 0 0 The results of the modelling are shown in Fig. 5. A model whereR wasleftfreetovary,andH /R wasarbitrarilyfixedto 0 0 0 0.17.Chiang&Goldreich(1997)find H(r)/r ∝ r2/7.However, withonlya0.055M(cid:12) diskreproducestheamplitudeasafunc- tionofbaselinequitewellforIRS63,butfailstoproduceenough that estimate is based on grey opacities and constant surface single-dish flux. A 0.35 M envelope-only model, on the other density, and somewhat smaller flaring is usually more realistic. (cid:12) Hence,wechoseH(r)∝r·r0.17.Σ wasscaledtothediskmass, hand,producesenoughsingle-dishfluxinthe(sub)mmregime, 0 but falls off too quickly toward longer baselines. To allow for which was also left as a free parameter. The envelope density a comparison with the empirical model (Sect. 4.1.1) the enve- followstheequationforarotating,infallingmodel(Ulrich1976; lope mass was defined as the mass, present within the single- Crapsietal.2007) dishaperture(i.e.,a30(cid:48)(cid:48) radiusforIRS63anda20(cid:48)(cid:48) radiusfor (cid:32) r (cid:33)−1.5(cid:32) cosθ (cid:33)0.5 Elias 29), and not contained in the disk. A model with both a ρenvelope(r,θ)=ρ0 R 1+ cosθ × diskandanenvelopeisnecessarytoexplaintheobservationsof rot 0 IRS63,andthebestmodelconsistsofadiskof0.13M andan (cid:32) cosθ R (cid:33)−1 envelopeof0.022M .Thismodelalsofitstheobserved(cid:12)IRS63 × 2cosθ0 + rrot cos2θ0 , (3) SEDwell,ifaforegro(cid:12)undextinctionofAV =7magisassumed, seeFig.6.TheregioninwhichIRS63islocatedhasaveryhigh where θ0 is the solution of the parabolic motion of an infalling AV of about 24 mag as found in extinction maps produced by particle, Rrot is the centrifugal radius of the envelope, and ρ0 is theSpitzer“CorestoDisks”Legacyprogram(Evansetal.2003, the density in the equatorial plane at Rrot. ρ0 was scaled to ac- 2007).Thesemapsmeasurethelargescale(∼ 5(cid:48))cloudextinc- comodate the total envelope mass, and Rrot, which can have a tiononthebasisofbackgroundstars,andthereforeincludesan significant influence on the amplitude as a function of baseline extracontributionbesidesenvelopeextinction. length, was left free to vary. The outer radius of the envelope The amplitude as a function of baseline for Elias 29 is best wasfixedto10,000AU,wherethetemperatureissimilartothat explainedbya0.004M diskanda0.025M envelope.Forthis (cid:12) (cid:12) oftheambientinterstellarcloud.Theparameters,assummarised source,nofurtherattempttomodeltheSEDwasmade,because in Table 2, give the best-fit models by eye; a full χ2 minimiza- theclosepresenceoftheridgeenhancementmakesamodelthat tion is not warranted by the relatively low resolution and S/N isaxisymmetriconscaleslargerthanseveral100AUunapplica- of the data. Our models do not have outflow cavities in the en- ble. velopes. Note that the actual physical structure of the envelope (centrifugal radius, outflow cavities, etc.) may considerably af- fect the mid-IR SED and thus the derived inclination from the 4.1.3. Discussion models(e.g.,Whitneyetal.2003;Jørgensenetal.2005). Eventhoughthediskandenvelopemassesderivedfromtheem- Two different dust species are used in these models, “hot” pirical and detailed model results differ by up to a factor of a dust where the temperature is higher than 90 K, and “cold” few,weareconfidentthattheyareaccuratewithinthisrange.For dust where the temperature is below 90 K. The opacities used example, a significantly larger disk in the IRS 63 model would are “OH2” (coagulated dust without ice mantles, Ossenkopf & showaverysteepfall-offintheamplitudeasafunctionofbase- Henning 1994) for the hot dust, and “OH5” (coagulated dust with thin ice mantles) for the cold dust. The central stars were 4 Delivery of data from the c2d Legacy Project: IRAC and MIPS representedbysourceswithluminositiesof0.79 L(cid:12) forIRS63 (Pasadena,SSC,Evansetal.2007). 6 DaveLommenetal.:SeparatingthemassesinClassIYSOs 4.2. Keplerianrotationandstellarmasses BothIRS63andElias29showavelocitygradientintheHCO+ emission, which is interpreted as the rotation of a circumstel- lar disk. The mass of the central object can be estimated from position-velocity diagrams along the major axis of the disk, as indicated in Fig. 1. An elliptical Gaussian was fitted to each channelintheHCO+datainthe(u,v)plane,usingtheMIRIAD task uvfit. This yielded a best-fit position per channel with cor- respondinguncertaintiesinrightascensionanddeclination,and consequently a declination offset from the phase centre in the physicalplane.Notethatthefittingwascarriedoutinthe(u,v) plane,soasnottobehinderedbyartefactsthatmayariseinthe deconvolutionprocess.Position-velocitydiagramswerecreated byplottingthedeclinationoffsetasafunctionofvelocitychan- nel, where only coordinates with an uncertainty in the declina- tionoflessthan0(cid:48).(cid:48)5weretakenintoaccount.Subsequently,the signaturesofKeplerianrotationaroundapointsourcewerefitted Fig.6. Spectral energy distribution of IRS 63 using the model totheposition-velocitydiagrams(Fig.7).Inthefittingprocess, parameters of Table 2 extincted by AV=7 mag (solid line). The the values for M (the mass of the central object), the central star dashed line shows the model star, which has a luminosity of velocity of the system with respect to the local rest frame, and 0.79L ,andisrepresentedbyablack-bodywithatemperature (cid:12) the declination offset from the source to the phase centre were of 3 000 K. Overplotted are JHKL photometry (Haisch et al. varied,andaglobalminimumχ2wasdetermined. 2002), MIPS 24 and 70 µm fluxes (c2d4), JCMT 850 µm 60(cid:48)(cid:48) AssumingaKepleriandiskseenedge-on(i=90◦),acentral integrated flux (COMPLETE), SMA 1.10 mm peak flux (this massof M = 0.09±0.03M isfoundforIRS63.Theexact work; square), and IRAM 1.25 mm 60(cid:48)(cid:48) integrated flux (Andre´ star (cid:12) inclination of IRS 63 is hard to determine due to the high ex- &Montmerle1994). tinctionintheregion.However,aninclinationlargerthan∼45◦ can be ruled out because of the source’s brightness at 3–5 µm (Pontoppidanetal.2003).Assuminganinclinationof30◦,and taking into account the sin2i dependence, the mass of the cen- line length, which is not observed (Fig. 5). Likewise, an enve- tralobjectincreasestoM =0.37±0.13M .ForElias29,the lopesignificantlymoremassivethan0.022M(cid:12)foundforIRS63 star (cid:12) points attributed to the emission from the dense ridge (Fig. 7) would obscure the central star so much that the near- and mid- were disregarded in the fitting procedure. A lower limit to the IRfluxwouldbeseverlyunderestimated(Fig.6).Inthefurther central mass of M = 0.62±0.14 M is found, under the as- discussion, we will use the disk and envelope masses as found star (cid:12) sumptioni = 90◦.TheflatnessoftheSEDlimitstheinclination bythe detailedmodelling,butnote thattheoverall conclusions of this source to < 60◦ (Boogert et al. 2002). A fully face-on donotchangeiftheempiricalresultsareused. orientation,ontheotherhand,isunlikely,giventhepresenceof TheenvelopemassesofIRS63andElias29areinthesame low surface brightness scattered K-band light (Zinnecker et al. rangeasthosepresentedby,e.g.,Hogerheijdeetal.(1997)fora 1988).Aninclinationi=30◦yieldsamassforthecentralsource sample of embedded Class I sources in the Taurus-Auriga star- of2.5±0.6M .Withsuchahighmass,thecentralstarislikely forming region. However, the envelope masses of the deeply (cid:12) toemergeasaHerbigAe/Bestar,oncethesurroundingenvelope embedded Class 0 objects are found to be considerably higher, (cid:38) 1M (Jørgensenetal.2002;Shirleyetal.2002;Youngetal. isdissipated. (cid:12) It is interesting to compare the inferred masses to those in- 2003;Hatchelletal.2007).Whilesomefractionofsourcesmay ferredforopticallyvisiblepre-mainsequencestars.Withastel- simplyoriginatefromlowermasscores,itisclearthatallClass larmassof0.37M andastellarluminosityof0.79L ,IRS63 0objectsmustpassthroughastagewithM ≈0.1M ontheir (cid:12) (cid:12) env (cid:12) wouldbefoundtohaveanageofabout5×105 yr,whencom- waytothepre-mainsequencestage.Alargersampleisneededto paredtoevolutionarytracksofclassicalandweak-linedTTauri addressthequestionwhetherthemassthatwasinitiallypresent stars in the ρ Ophiuchi cloud (Wilking et al. 2005; D’Antona in the envelope will first accumulate in the disk, or whether it & Mazzitelli 1997). A similar age would be found for Elias 29 willpassthroughthediskandontothestardirectly,leavingthe (e.g.,Palla&Stahler1993). diskinasteadystatethroughtheentireClassIstage. An interesting quantity for these YSOs is the ratio M /M ,asthismaybeadirectmeasurefortheirevolutionary env disk 5. Conclusions stage.Thevaluesforthetwoobjectsunderconsiderationhere– 0.2forIRS63and6forElias29–arequitedifferent,although We used the SMA to observe the Class I YSOs Elias 29 and the value for Elias 29 is rather uncertain due to the contribu- IRS63at1.1mm.Themainresultsareasfollows. tionoftheridgeenhancementtothecontinuumemission.From thesesimplearguments,Elias29isthelessevolved,ratherlike – BothsourcesaredetectedinthecontinuumandintheHCO+ the deeply embedded Class 0 sources in the PROSAC sample J = 3–2 line, but not in the HCN J = 3–2 line. The HCO+ (Jørgensen et al. 2007), which show M /M (cid:38) 10. IRS 63, emissiontowardIRS63iscompactandassociatedwiththe env disk ontheotherhand,iswellonitswaytowardtheopticallyvisible YSO, whereas a significant part of the molecular emission ClassIIorTTauristage,whichhaveM ≈0.Thisconfirmsthe inthedirectionofElias29isduetoanenhancementinthe env notionthattheLadaclassificationisprimarilyaphenomenolog- ridgefromwhichElias29formed. ical one, not necessarily representing the actual physical stage – Assumingthatthecontinuumemissiontowardthesourcesis theYSOisin(see,e.g.,Crapsietal.2007). opticallythin,andthatanycircumstellarenvelopeisresolved DaveLommenetal.:SeparatingthemassesinClassIYSOs 7 – Velocity gradients in the HCO+ J = 3–2 emission are in- terpretedassignsofKeplerianrotation,andindicatecentral massesof2.5±0.6M forElias29and0.37±0.13M for (cid:12) (cid:12) IRS63,forinclinationsof30◦.Thesemassescorrespondto agesofafew105yr. With a larger set of sources treated in a similar manner as is presented for IRS 63 and Elias 29 here, it will be possible toconstrainmodelsfortheevolutionoftheenvelope,disk,and stellarmassesthroughthisimportantstageofYSOs. Acknowledgements. Wewouldliketothanktheanonymousrefereeforavery constructive report, which greatly improved the paper. Demerese Salter and DougJohnstonearethankedforprovidinguswithdatafromJCMTSCUBAob- servations.ThediscussionswiththemembersoftheLeiden“AstroChem”group wereveryuseful.WearegratefultoKeesDullemondforprovidinguswiththe mostrecentversionoftheRADMCpackage.Partialsupportforthisworkwas providedbyaNetherlandsResearchSchoolForAstronomynetwork2grant,and byaNetherlandsOrganisationforScientificResearchSpinozagrant. References Andre´,P.&Montmerle,T.1994,ApJ,420,837 Andre´,P.,Ward-Thompson,D.,&Barsony,M.1993,ApJ,406,122 Andrews,S.M.&Williams,J.P.2007,ApJ,659,705 Beckwith,S.V.W.,Sargent,A.I.,Chini,R.S.,&Guesten,R.1990,AJ,99,924 Benson,P.J.&Myers,P.C.1989,ApJS,71,89 Bjorkman,J.E.&Wood,K.2001,ApJ,554,615 Boogert,A.C.A.,Hogerheijde,M.R.,Ceccarelli,C.,etal.2002,ApJ,570,708 Chandler,C.J.&Richer,J.S.2000,ApJ,530,851 Chiang,E.I.&Goldreich,P.1997,ApJ,490,368 Crapsi, A., van Dishoeck, E. F., Hogerheijde, M. R., Pontoppidan, K. M., & Dullemond,C.P.2007,A&Ainpress. D’Antona,F.&Mazzitelli,I.1997,MemoriedellaSocietaAstronomicaItaliana, 68,807 deGeus,E.J.,deZeeuw,P.T.,&Lub,J.1989,A&A,216,44 Dullemond,C.P.&Dominik,C.2004,A&A,417,159 Evans,N.J.,Allen,L.E.,Blake,G.A.,etal.2003,PASP,115,965 Fig.7. Velocity of the HCO+ J = 3–2 line as a function of the Evans,II,N.J.,Harvey,P.M.,Dunham,M.M.,etal.2007,DeliveryofData fromthec2dLegacyProject:IRACandMIPS(Pasadena,SSC) declinationoffsetfromthephasecentreforIRS63(upperpanel) Flaherty,K.M.,Pipher,J.L.,Megeath,S.T.,etal.2007,ApJ,663,1069 andElias29(lowerpanel).Thesolidlinesshowtheresultsfrom Greene,T.P.,Wilking,B.A.,Andre,P.,Young,E.T.,&Lada,C.J.1994,ApJ, χ2 fitstothedata,yieldingcentralmassesof0.37M (IRS63) 434,614 (cid:12) and 2.5 M (Elias 29) for inclinations of 30◦; the dashed lines Haisch,Jr.,K.E.,Barsony,M.,Greene,T.P.,&Ressler,M.E.2002,AJ,124, (cid:12) 2841 show formal 99% confidence intervals. Points attributed to the Harvey,D.W.A.,Wilner,D.J.,Myers,P.C.,&Tafalla,M.2003,ApJ,596,383 emissionfromthedenseridgeareindicatedandarenotincluded Hatchell,J.,Fuller,G.A.,Richer,J.S.,Harries,T.J.,&Ladd,E.F.2007,A&A, inthefit.Thedeclinationoffsetsaredifferentforthetwopanels. 468,1009 Ho,P.T.P.,Moran,J.M.,&Lo,K.Y.2004,ApJ,616,L1 Hogerheijde,M.R.,vanDishoeck,E.F.,Blake,G.A.,&vanLangevelde,H.J. 1997,ApJ,489,293 out by the interferometer on the longest baselines, we find Hogerheijde,M.R.,vanDishoeck,E.F.,Blake,G.A.,&vanLangevelde,H.J. empiricaldiskmassesof0.055forIRS63and≤ 0.007M(cid:12) 1998,ApJ,502,315 for Elias 29. By comparing our interferometer data with Johnstone,D.,DiFrancesco,J.,&Kirk,H.2004,ApJ,611,L45 single-dish observations, envelope masses of 0.058 M are Jørgensen,J.K.,Bourke,T.L.,Myers,P.C.,etal.2007,ApJ,659,479 (cid:12) derived for both sources, within 30(cid:48)(cid:48) radius for IRS 63 and Jørgensen,J.K.,Bourke,T.L.,Myers,P.C.,etal.2005,ApJ,632,973 Jørgensen, J. K., Hogerheijde, M. R., van Dishoeck, E. F., Blake, G. A., & 20(cid:48)(cid:48) radiusforElias29,wherethevalueforElias29should Scho¨ier,F.L.2004,A&A,413,993 be treated as an upper limit because of the presence of the Jørgensen,J.K.,Scho¨ier,F.L.,&vanDishoeck,E.F.2002,A&A,389,908 ridgeenhancement. Lada,C.J.1987,inIAUSymp.115:StarFormingRegions,ed.M.Peimbert& J.Jugaku,1–17 – Using a radiative-transfer code to create SEDs and ampli- Lada,C.J.&Wilking,B.A.1984,ApJ,287,610 tude vs. (u,v)-distance plots for different combinations of Looney,L.W.,Mundy,L.G.,&Welch,W.J.2000,ApJ,529,477 disk and envelope masses, we find disk masses of 0.13 M(cid:12) Ohashi,N.,Hayashi,M.,Ho,P.T.P.,&Momose,M.1997,ApJ,475,211 forIRS63and0.004M forElias29,andenvelopemasses Ossenkopf,V.&Henning,T.1994,A&A,291,943 (cid:12) of0.022M and0.025M . Palla,F.&Stahler,S.W.1993,ApJ,418,414 (cid:12) (cid:12) Pontoppidan,K.M.,Fraser,H.J.,Dartois,E.,etal.2003,A&A,408,981 – The modelling results yield rather different ratios of Qi, C. 2005, The MIR Cookbook, The Submillimeter Array Menv/Mdisk:0.2forIRS63and6forElias29,withuncertain- / Harvard-Smithsonian Center for Astrophysics (http://cfa- tiesofafactorofafew.FromthisitisconcludedthatIRS63 www.harvard.edu/cqi/mircook.html) is well on its way to become an optically visible Class II Ridge,N.A.,DiFrancesco,J.,Kirk,H.,etal.2006,AJ,131,2921 Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, in ASP Conf. Ser. 77: source,ratherthananembeddedClassIsource.Elias29,on AstronomicalDataAnalysisSoftwareandSystemsIV,433 the other hand, is more like the deeply embedded Class 0 Shirley,Y.L.,Evans,II,N.J.,&Rawlings,J.M.C.2002,ApJ,575,337 sources. Ulrich,R.K.1976,ApJ,210,377 8 DaveLommenetal.:SeparatingthemassesinClassIYSOs Whitney,B.A.,Wood,K.,Bjorkman,J.E.,&Wolff,M.J.2003,ApJ,591,1049 Wilking,B.A.,Meyer,M.R.,Robinson,J.G.,&Greene,T.P.2005,AJ,130, 1733 Young,C.H.,Shirley,Y.L.,Evans,II,N.J.,&Rawlings,J.M.C.2003,ApJS, 145,111 Zinnecker,H.,Perrier,C.,&Chelli,A.1988,inProceedingsofNOAO-ESO ConferenceonHigh-ResolutionImagingbyInterferometry:Ground-Based InterferometryatVisibleandInfraredWavelengths,F.Merkleed.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.