ebook img

SLEEP AND AROUSAL: Thalamocortical Mechanisms PDF

32 Pages·2006·0.3 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview SLEEP AND AROUSAL: Thalamocortical Mechanisms

P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 Annu.Rev.Neurosci.1997.20:185–215 Copyright(cid:13)c 1997byAnnualReviewsInc.Allrightsreserved SLEEP AND AROUSAL: Thalamocortical Mechanisms g DavidA.McCormickandThierryBal1 or ws. SectionofNeurobiology,YaleUniversitySchoolofMedicine,333CedarStreet, vie NewHaven,Connecticut06510 e nnualrnly. KEYWORDS: thalamus,cortex,spindlewaves,epilepsy,ascendingactivation ao s.e m arjournalpersonal us mThicalaamctiovciotyrtiicnalthaectfiovrimtyoefxhdieblittas,AtswpBoiSnTddRliesA,tiCnaTnctdsotathteesr:sl(oaw) swyanvcehsrodnuirziendgrEhEytGh-- oaded fro0/06. For ssthyleanelcaphm.rSoonpcioiznredtidlceaswlleaaenvpdeastnhadarel(abgm)etinocenrrieacttieacdcutlliaavrrigtnyeelduyurtorhinnrosguiwngvhaokalivnciygncgalnibcdoartlhainpttiheder-aeincytteir-oimnnsobicveetmwmeeemenn-t wnl3/2 brane properties of these cells and their anatomical interconnections. Specific Don 0 alterationsintheinteractionsbetweenthesecellscanresultinthegenerationof 5. y o paroxysmaleventsresemblingabsenceseizuresinchildren.Thereleaseofseveral 5-21ersit differentneurotransmittersfromthebrainstem,hypothalamus,basalforebrain, 997.20:18eller Univ arthentedirceucbelyarresbnurepauplrrcoeonssrstienaxgndrtheasenugleetsnnheinaranatcieoddnepeooxflcsailrteaiezbpaitlriihotyyntihonmfmtshaaannlyadmcpoorroctmiocraotiltcipnaylgraaanmsdtiadtthaealtlhcaeamltliiscs, ci. 1ckef conducivetosensoryprocessingandcognition. so oR Neurby v. INTRODUCTION e R u. Eventhefirstinvestigatortodirectlyrecordtheelectricalactivityinthemam- n An maliancerebralcortexnotedthatthepatternofcorticalactivitywasdependent uponthestateoftheanimal(Caton1887). Sincethisremarkablebeginning,the investigationofthecellularcorrelatesofsleepandarousalinthalamocortical systemshasenjoyedseveralperiodsofrapiddevelopment. Theseincludethe demonstrationofanascendingactivatingsysteminthebrainstemthatisessen- tialforthegenerationofsleep-wakecycles(Bremer1938,Moruzzi&Magoun 1Presentaddress: InstitutAlfredFessard,CNRS,Ave. delaTerrasse,GifSurYvette,Cedex 91198,France. 185 0147-006X/97/0301-0185$08.00 P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 186 McCORMICK&BAL 1949,Jouvet1962),andtheproposalofhypothesesconcerningthegeneration ofsleep-relatedthalamocorticalrhythms(reviewedinAndersen&Andersson 1968,Steriade&Descheˆnes1984,Steriadeetal1993c). Inthepast15years, thisbaseofinformationhasbeencomplementedbyadramaticincreaseinour knowledgeofthemechanismsoftheionic,cellular,andnetworkmechanisms through which thalamocortical activity is generated during sleep and of how thisactivityisdisruptedinthetransitiontothewakingstate. Inthisreview,we examinethesemorerecentdevelopmentswithaspecificfocusonthethalamus, a structure that is central to the generation of state-dependent activity in the forebrain. g s.or During the periods of sleep that exhibit synchronization of the electroen- w e cephalogram (EEG-synchronized sleep), a number of rhythms are present. vi e Two distinct rhythms that are particularly prominent in thalamocortical sys- nnualrnly. tems are delta waves and spindle waves (see Steriade & Descheˆnes 1984, ao Niedermeyer 1993). Delta waves in the normal adult are 0.5- to 4-Hz os- s.e m arjournalpersonal us ctpoiolls3ae-tdsiopunepsroitonhdatshteoafroewthlaaexrrginrehgsytatdhnumdriswnoganfditnehegep7Es-ElteGoep1(,4sew-HehzFilioegsuscprielilna5dt,iloebnewsloatwvhea)st.aaRrpeepsseeuaaprrecarhsiem1rs-- oaded fro0/06. For h(wraehvvieciehkwanesodpweinnciSffiotcerhrsiyaopdmoeteh&etismDiseeostcfhhgaeeˆtnnseepsria1nti9do8lne4w)w,aaasvnpedrsothaperoesseegdrehn(yAetrhnamdteesdrsweinenr&tehteAhetnhdfiaerlarsstmsfouonsr Downln 03/2 1968). 5. y o Extracellularandintracellularrecordingsfromthalamocorticalneuronsdur- 85-21versit icnegllsEEgeGn-esryantechrreopneitzietidveslbeeuprstindnisacthuararglleysstlheaetpirnidgeanoinmtaolpsroefveaalseldowtheartdthepesoe- 0:1Uni larizing potential (Figure 1) (Hirsch et al 1983, McCarley et al 1983). The 997.2eller transition from EEG-synchronized sleep to the waking or REM-sleep states ci. 1ckef occurred with the progressive depolarization of thalamocortical cells and the osRo abolitionoftheslowdepolarizingspikeanditsassociatedburstoffastaction Neurby potentials(Figure1B).Thesealterationsinthefiringmodeofthalamicneurons v. areassociatedwithdramaticchangesintheneurons’responsivenesstoperiph- e R eral stimuli. For example, during EEG-synchronized sleep, there is a marked u. n diminution of the responsiveness of LGNd thalamic neurons to activation of n A their receptive fields (Livingstone & Hubel 1981), presumably owing to the hyperpolarizedstateoftheseneurons, theinterruptingeffectsofspontaneous thalamocorticalrhythms,andthefrequencylimitationsoftheburstfiringmode (seeMcCormick&Feeser1990,Steriade&McCarley1990). Over-powerful inhibitionalsomayaffectneuronalresponsivenessduringEEG-synchronized sleep;thisinhibitionisspecificallyreducedbyactivationofascendingcholin- ergicpathways(Ahlsenetal1984,Francesconietal1988,McCormick&Pape 1988,Curro´ Dossietal1992b,Pape&McCormick1995). P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 THALAMOCORTICALACTIVITY 187 g or s. w e vi e nnualrnly. ao s.e m arjournalpersonal us oaded fro0/06. For Finigreulraeti1ontLoabteehraalvgioenraiclustlaatteearenldayelneecutrrooennscdeipshpalaloygtwraomd(iEstEinGct).mDoudreinsgofpaecritoiodnspooftselnotwia-lwgaevneersaletieopn, wnl3/2 theEEGexhibitssynchronousslowwaves,andLGNdrelayneuronsdischargeinburstsofaction Don 0 potentials(A).Incontrast,duringwakingorREMsleep,LGNdneuronsfireinthesinglespike 5. y o or tonic mode of action potential generation (A). Intracellular recordings in vivo during these 5-21ersit t(rBa)n.s(iPtiaorntsAinfrdoimcatMecthCaatrtlheeyyetarael1ac9c8o3m.PplairsthBedfrboymdHepiroslcahrizeattaioln19o8f3t.h)emembraneby10–20mV 8v 0:1Uni 997.2eller These results, coupled with the earlier observations on the importance of ci. 1ckef thethalamusinthegenerationofsleeprhythms,suggestthattheinvestigation osRo of thalamic neurons and neuronal circuits may be particularly fruitful in the Neurby search to uncover the cellular mechanisms of sleep-wake alterations in the v. forebrain. e R u. n n THALAMICNEURONSEXHIBITTWOSTATES A OFACTIVITY Early intracellular recordings of thalamocortical neurons in vivo revealed an unusual rebound burst discharge following hyperpolarization; this discharge could be generated by the intracellular injection of current or by the natural occurrence of an inhibitory postsynaptic potential (reviewed in Andersen & Andersson 1968, Descheˆnes et al 1984, Roy et al 1984). In vitro investiga- tionsrevealedthatthereboundpotentialoccurringfollowinghyperpolarization P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 188 McCORMICK&BAL is generated by activation of a specialized Ca2C current, known as the low- threshold,ortransient(I ),Ca2Ccurrent(Jahnsen&Llina´s1984a,b). Voltage- T clampanalysisconfirmedthepresenceofalargelow-thresholdCa2C current, aswellashigh-thresholdCa2C currents,inthalamocorticalcells(Coulteretal 1989, Crunelli et al 1989, Hernandez-Crus & Pape 1989). These investiga- tionsrevealedthatI showsbothactivationandinactivation. Activationoccurs T atmembranepotentialspositivetoapproximately−65mV,whileinactivation becomescomplete,atsteadystate,atmembranepotentialspositivetoapproxi- mately−65mV.ThekineticsofactivationofI areconsiderablyfasterthanare T g thekineticsofinactivation,similartotheNaCcurrentunderlyingthegeneration s.or ofthemoretypicalfastactionpotential. Therefore,ifthemembranepotential w e isdepolarizedfromarelativelyhyperpolarizedmembranepotential(negative vi nnualrenly. taotin−g6a5lmowV-)t,htrheesnhoIlTdmCaay2Cfirssptikacet(ivFaigteuarend2Bth).enThmeosereCsalo2Cwlsypiikneascttiyvpaitcea,lglyenlaesr-t s.ae o ontheorderof100–200ms,andinturnbringthemembranepotentialpositive m arjournalpersonal us etoigTthhotrnefiaschstodaledcpt(oiaolpanrpiprzooatxteiionmntiaatolesfly(tFh−eig5mu5reemm2VbBr))af(noJearhpthnoesteegnnet&niaelrLapltioinosa´nitsiov1fe9a8to4baua,rpbsp)t.roofxtihmraeteetloy Downloaded fron 03/20/06. For tpd−ioios6snc5tshsmyathrnVgaaetprsbtei(rsceiun.pglgto.sttFheinenigttmiuhareelesmi,2nbrAaerc)as.tuniFvleotapltilinoootwnethnioentfigagIltTehpnaeoenirsdnaitatiticvhoteenivrteoaoftfoi−osrn5ein5otghfmleeIVT,s,u,oppsrhuptacrreashisicnassisdoeeonpxfooc,iflataacbrttiuoizorrasny-t 5. y o potentials; however, they do not generate high-frequency bursts (Jahnsen & 5-21ersit Llina´s 1984a,b, McCormick & Feeser 1990). Thus, the properties of IT im- 8v parttwodistinctstatesofactionpotentialgenerationontothalamocorticalcells: 7.20:1er Uni (a)burstfiringuponremovalofahyperpolarizationthatsurpasses−65mVfora 99ell sufficientperiodoftimeand(b)tonicsingle-spikeactivityupondepolarization ci. 1ckef positivetoapproximately−55mV. so oR Neurby RhythmicBurstFiringandtheInteraction v. ofTwoIonicCurrents e R DuringEEG-synchronizedsleep,thalamocorticalcellsgeneraterhythmicbursts u. n ofactionpotentialsinthefrequencyrangeof0.5–4Hz, evenduringthegen- n A eration of spindle waves, which occur at frequencies of 7–14 Hz (McCarley 1983, Royetal1984, Amzica&Steriade1995a). Intracellularrecordingsin slices of cat LGNd maintained in vitro revealed a similar pattern of activity. Left unperturbed, a subpopulation of thalamocortical neurons generates low- threshold Ca2C spikes in a rhythmic manner at a frequency of approximately 0.5–4Hz(Figure2)(McCormick&Pape1990a,Lerescheetal1991,Soltesz etal1991). Thisrhythmicburstfiringresultsfromtheinteractionofthelow- thresholdCa2Cspikeandahyperpolarization-activatedcationcurrentknownas P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 THALAMOCORTICALACTIVITY 189 g or s. w e vi e nnualrnly. ao s.e m arjournalpersonal us oaded fro0/06. For wnl3/2 Don 0 5. y o 5-21ersit 8v 0:1Uni 7.2er 99ell ci. 1ckef Figure 2 Thalamocortical neurons generate two distinct patterns of action potentials via the osRo interactionofioniccurrents.(A)ThiscatLGNdneurongeneratedrhythmicburstfiringatarateof Neurby about2Hz.Depolarizationofthecellto−58mVwiththeintracellularinjectionofcurrent(depol. v. currentinjection)haltedtherhythmicactivityandswitchedtheneurontothetonic,orsinglespike, Re modeofactionpotentialgeneration,owingtotheinactivationofIT.Removalofthedepolarization u. reinstated the oscillatory activity. (B) Expanded trace of oscillatory activity and the proposed n An cthuerrmenetmsbthraatnelatrogwelayrdmtehdreiastheoiltd.fAorcativbautriostnooffNthaCe-loawnd-thKrCes-hdoelpdencdalecnitufmasctuarcrteionnt,pITo,tednetpiaollsa.rTizhees depolarizationdeactivatestheportionofIh thatwasactiveimmediatelybeforetheCa2C spike. RepolarizationofthemembraneduetoITinactivationisfollowedbyahyperpolarizingovershoot, whichisduetothereduceddepolarizingeffectofIh.Thehyperpolarizationinturnde-inactivates IT andactivatesIh, whichdepolarizesthemembranetowardthresholdforanotherCa2C spike. (C)Expandedtraceofsingle-spikeactivity.(FromMcCormick&Pape1990a.) P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 190 McCORMICK&BAL theh-current(I ). Hyperpolarizationofthalamocorticalneuronstomembrane h potentials negative to approximately −55 mV slowly activates a mixed NaC andKC currentthatdepolarizestheneuronbacktowardthereversalpotential ofthiscurrent(approximately−35mV).Consequently,thefallingphaseofa low-thresholdCa2C spikeisassociatedwiththeactivationofI , andtheacti- h vation of I results in a slow depolarization. This pacemaker potential again h activatesI andthereforeanotherlow-thresholdCa2Cspike. T Thepreciseshapeofthelow-thresholdCa2Cspikemaybecontrolledbythe activation of a variety of KC currents that have been characterized in thala- mocortical neurons (see Huguenard & McCormick 1992, Soltesz et al 1991, g s.or McCormick&Huguenard1992). Theinteractionbetweenthevoltagedepen- ew denceandthekineticsofthelow-thresholdCa2Ccurrentandthehyperpolariza- vi e tion-activatedcationcurrentresultintheintrinsicpropensityofthalamocortical nnualrnly. neuronstogeneraterhythmicoscillationsinthefrequencyrangeof0.5–4Hz ao (McCormick&Pape1990a,McCormick&Huguenard1992,Curro´Dossietal s.e m arjournalpersonal us 1ovo9fl9st2aingag)e,ledwethphieacnlhadmiesnoctcheoerotffirceeaqiltuhceeenrlclIsyTsrouarngggIheescotafnthdraeetlstasumlwtaialnvlelsash.rigfCetsoeimfnfeptcuhttseatoaionmntpahlleitmuadboeidleiotlysr oaded fro0/06. For o&fifndHsiinnugggslueeancraeerldlpsa1rtot9i9cgu2el,naTreloryathtree&lrehvyCatnrhutmntieoclltilho1ew9i-9nt2hv,reesDsthiegosalttdeixoChneao2eCfttsahplei1kme9s9ec3(haMa,bnc)iC.smoTrsmhueicsnke- Downln 03/2 derlyingthecessationofspindlewavesandtotheneurotransmittercontrolof 5. y o synchronizedthalamocorticalrhythms(seebelow). 5-21ersit ThalamicReticularNeuronsalsoExhibitTwo 8v 0:1Uni StatesofActivity 997.2eller Surroundingthethalamusandinterposedbetweenthethalamusandthecerebral ci. 1ckef cortexisacollectionofGABAergicneuronsknownasthethalamicreticularnu- osRo cleus(reviewedinSteriade&Descheˆnes1984,Jones1985). Theperigeniculate Neurby nucleusisconsideredpartofthethalamicreticularnucleusandisconnectedto v. theLGNd. TheGABAergicneuronsofthethalamicreticularandperigeniculate e R nuclei are innervated by axon collaterals of thalamocortical and corticothala- u. n micneuronsandgiverisetoadenseinnervationofthalamocorticalcellsina n A mannerthatoftenpreservesreciprocalinteractionsbetweenappropriatepoints inthethalamus,thalamicreticularnucleus,andcerebralcortex(seeSteriade& Descheˆnes1984,Jones1985,Shosakuetal1989,Uhlrichetal1991,Baletal 1995a,b,Pinaultetal1995a,b). TheGABAergicneuronsofthethalamicreticularnucleuschangetheirfiring modeinamannersimilartothatofthalamocorticalcells(Steriadeetal1986). During periods of EEG-synchronized sleep, thalamic reticular cells generate P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 THALAMOCORTICALACTIVITY 191 rhythmichigh-frequency(350–450Hz)burstsofactionpotentials,whiledur- ingwakingandREMsleep,theseneuronsgeneratesequencesoftonicaction potential activity. As in thalamocortical cells, these two activity states result fromthe propertiesofthelow-thresholdCa2C current (Figure3)(Mulle et al 1986,Avanzinietal1989,Huguenard&Prince1992,Bal&McCormick1993, Contrerasetal1993). However, theselow-thresholdCa2C spikesaredistinct fromthoseofthalamocorticalneuronsinanimportantway: Theirvoltagede- pendenceisshiftedtomorepositivemembranepotentials(Huguenard&Prince 1992,Destexheetal1996)suchthatthalamicreticularcellscangeneratelow- threshold Ca2C spikes upon depolarization, even at membrane potentials of g s.or −65mV.Thisparticularpropertyisimportantforthegenerationofsynchro- w e nizedthalamocorticalrhythms,suchasspindlewaves,becausetheexcitationof vi e thalamicreticularneuronsbythalamocorticalandcorticothalamiccellsdrives nnualrnly. theserhythms(seebelow). ao A pronounced after-hyperpolarization follows the generation of each low- s.e m arjournalpersonal us MtshernceCssihotiorvmlediCcCkaa212CC9-9asc3pt)ii.vkaeTtehindistKhaafCtleacrm-ohniycdpureecrttpiaconulcalearri(zInaKetCiuoarn)on(bAsyvaiastnseazlifnreicsaeuntltabolef1s9aun8f9fia,cpiBaemnaltin&in- oaded fro0/06. For auspmlaikprelnite(uFudiregounarsnedto3dAureras)u.tilotTnihntroothureegmhgoeavnneerienanttieoorunagchotifoinnaancbteaitvdwadteiiteoionnnIoafl IaloTnwdin-Iththraels,ahmtohliedcrerCfeoatir2ceC-, Downln 03/2 these cells may g1enerate rhythmic bursts of action poTtentialsK.CTahe kinetics 5. y o of IT and IKCa interact with the properties of thalamic reticular cells such 85-21versit tthhaetmrheymthbmraincefiprointegntoicacluorfstahtefcreeqllu(eAnvcaienszionfi0e.t5alto191829H, Bz,alde&peMndciCngormupiockn 0:1Uni 1993). Hyperpolarization of thalamic reticular neurons facilitates the occur- 997.2eller rence and intensity of low-threshold Ca2C spikes, but also reduces the fre- ci. 1ckef quency with which these neurons intrinsically oscillate (Bal & McCormick osRo 1993). Neurby Rhythmicburstfiringinthalamicreticularneuronsisoftenfollowedbyapro- ev. longed“tail”ofsingle-spikeactivityinvivoandinvitro(Figure3A1)(Domich R et al 1986, Steriade et al 1986, Bal & McCormick 1993). This tonic tail of nu. activityappearstobegeneratedthroughtheactivationofaCa2C-activatednon- n A selectivecationcurrent(I ). Thus,thalamicreticularcellsareendowedwith CAN theintrinsicpropensitytogenerate(a)sequencesofactivitythattaketheform of burst-burst-burst-burst-tonic firing at relatively hyperpolarized membrane potentials(e.g. −65mVorso)and(b)tonic,alsoknownassingle-spike,activ- ityfollowingdepolarizationtomembranepotentialspositivetoapproximately −55mV(Figure3), astatethatcanbeimposeduponthesecellsthroughthe actionsofavarietyofneuromodulatorytransmitters(seebelow). P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 192 McCORMICK&BAL g or s. w e vi e nnualrnly. ao s.e wnloaded from arjournal3/20/06. For personal us F(scrapepulissegiroukrruieelragtn,esretewi3nInlihNictkiahucIeelahdlanyeatadeactc)ltovtiicizvavaeearaclditlttoiseiosuv.scnsahRatoKeeefhmCmhCiigeogachov2uh-Cfar-frtltr-heheaonreqcfetutissaioev,hnhnacoiyctolceydpldbleeCbaKrcuspatiCrio2svsCltoceaulfrocyirrufzrhrrieaeynrnceftgttehniracomtrsnune,idrdcrrpetebtohfnouteeterrarsnprestetufiaIdolaKnsrltee.dsoaIrtmhnoenesneaaurdidefclittdaeafisitrstrei-iinhdIonCynagbap,.liyetonhTrwttpehhh-oeefatlahlateasrrrntmeaiztsNnrihasycatoiiCeroloendfntsti.CCpcNiuTaakal22heaCCCesr Don 0 depthanddurationofthisafter-hyperpolarizationdeterminestheamplitudeofthesubsequentlow- 5-215. ersity o ttohraecsthivoaldtinCga2aCCsap2iCk-ea,cwtihviacthedisKacCticvuartreednbt,yththeeernetlrayxoatfiCona2oCftihnetoafthteer-cheyllpiesraplosloarpirzoaptioosne.dItnoaadcdtiivtiaotne 997.20:18eller Univ tasheCeroagt2oeCnn-eianrcaettriigvoianct,eondfontroaondnirsceenldeeicsrgtciihvcae,rocgraetgiaoltunttahcmeuraertneednmto(efItCtahAbeNoto)rsotchpiailtclarrteeoscruyelptbstouirrnsstarefissrluionlwtgsai(nfAtae1r,t-odAne2ipc)o.dlAeaprcioztilavatariiotzinoantainoodnf ci. 1ckef ionftshinegcleel-ls,pinikpeaartctthivriotuygihntthheerferdeuqcuteionncyofraanrgeestionfg3“0l–ea6k0”Hpzo.taTsshiuemfrecqounednuccytaonfceth(iIsKLto)nthicatarcetsivuilttys so Neuroby R imnvaoyllvaerdgeinlyabcetiodnetperomteinnteiadlbgyentheeraitniotenra(Bct1io,nB2o)f.t(hFeropmersBisatlen&tNMacCCocurmrriecnkt1(I9N9a3p.))andthecurrents v. e R nu. SYNAPTICINTERACTIONSBETWEEN n A THALAMOCORTICAL,THALAMICRETICULAR, ANDCORTICOTHALAMICCELLS ThalamicReticulartoThalamocortical Thalamocorticalandthalamicreticularcellsarehighlyinterconnectedinsitu (Yenetal1985,Cucchiaroetal1991,Uhlrichetal1991,Liuetal1995,Pinault et al 1995a,b). Activation of the thalamic reticular and/or perigeniculate nu- clei,eitherartificiallyorspontaneouslythroughthegenerationofspindlewaves P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 THALAMOCORTICALACTIVITY 193 (seebelow),resultsinthegenerationofGABA receptor–mediatedinhibitory A postsynapticpotentials(IPSPs)inthalamocorticalneurons(Figure4A–C)(De- scheˆnes et al 1984, Thomson 1988, Huguenard & Prince 1994, Warren et al 1994,Baletal1995a,b,Sanchez-Vivesetal1995). TheseIPSPscanbesuffi- cientlylargeinamplitudeandlongindurationtoresultinthegenerationofa reboundlow-thresholdCa2C spike,eveniftheyaregeneratedbyonlyasingle perigeniculateneuron(Figure4C). The activation of thalamic reticular neurons can also activate GABA re- B ceptorsinthalamocorticalcells(Huguenard&Prince1994,Baletal1995a,b, Sanchez-Vives et al 1995). The activation of GABA receptors results, as it g B s.or doesinothercentralneurons,inthegenerationofslowinhibitorypostsynap- ew tic potentials through the activation of a G protein and an increase in a KC vi e conductance(Crunellietal1988,McCormick1991,Soltesz&Crunelli1992). annualronly. oTfheinlaocntgivdatuiroantioonf tohfeGlAowB-AthBrersehcoelpdtoCr–am2CedciuartreednIt;PSthPesrefafocrileittahteessethIePSrePmsocvaanl s.e m arjournalpersonal us sbcuoegrftgiocelasloltwctheealdltsibntoyobrpedreoarnbtoloeutanocctgeivdeanlteoerwaetn-etohaurergeshbhooofuldandCGlaAo2wBC-AtshpBri-ekrseehcso.elpdItnoCirtaiIa2PClSisPnpviienksetth,igsaealavtimeornoas-l oaded fro0/06. For thhiaglhamraitce(rSetaincuchlaerz-oVripveersigeetnailc1u9la9t5e).cells must discharge simultaneously at a wnl3/2 ThalamocorticaltoThalamicReticular Don 0 5. y o Activationofthalamocorticalinputstothalamicreticularand/orperigeniculate 85-21versit ntheruoruognhstrheesualctstivinattihoengoefneexrcaittiaotnoroyfaemxciintoataocryidproesctespytnoarpst(iFcipgoutreen4tiDal–sF()E.PSSimPsi)- 0:1Uni larly,activationofcorticothalamicfiberstothalamicreticularneuronsalsore- 997.2eller sultsinpronouncedexcitation,owingtotheactivationofexcitatoryaminoacid ci. 1ckef receptors,andthisexcitationoftenresultsinthegenerationofrhythmicburst osRo firinginthesecells(DeCurtisetal1989,Bal&McCormick1993,Contreras Neurby &Steriade1996). v. Baletal(1995b)recentlyconfirmedthatthalamicreticularorperigeniculate e R neuronsformdisynapticloopswiththalamocorticalcellsintheferretLGNd. u. n Activation of a burst of action potentials with the intracellular injection of a n A current pulse into a single perigeniculate neuron typically results in the gen- eration of a return barrage of EPSPs at a latency of approximately 100–150 ms(Figure4GandH).ThesereturnEPSPsaregeneratedthroughtherebound burst firing of thalamocortical neurons. Thus, the prolonged delay (100–150 ms) from the burst of action potentials in the perigeniculate cell and the re- turn EPSPs is largely due to the duration of the GABA receptor–mediated A IPSPinthethalamocorticalneuron(80–130ms). Asecondcauseforthede- lay is the time required for the generation of a Ca2C spike to result in the P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 194 McCORMICK&BAL g or s. w e vi e nnualrnly. ao s.e m arjournalpersonal us oaded fro0/06. For wnl3/2 Don 0 5. y o 5-21ersit 8v 0:1Uni 7.2er 99ell ci. 1ckef so oR Neurby v. e R u. n n A

Description:
Mar 20, 2006 During the periods of sleep that exhibit synchronization of the of thalamic neurons and neuronal circuits may be particularly fruitful in the.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.