P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 Annu.Rev.Neurosci.1997.20:185–215 Copyright(cid:13)c 1997byAnnualReviewsInc.Allrightsreserved SLEEP AND AROUSAL: Thalamocortical Mechanisms g DavidA.McCormickandThierryBal1 or ws. SectionofNeurobiology,YaleUniversitySchoolofMedicine,333CedarStreet, vie NewHaven,Connecticut06510 e nnualrnly. KEYWORDS: thalamus,cortex,spindlewaves,epilepsy,ascendingactivation ao s.e m arjournalpersonal us mThicalaamctiovciotyrtiicnalthaectfiovrimtyoefxhdieblittas,AtswpBoiSnTddRliesA,tiCnaTnctdsotathteesr:sl(oaw) swyanvcehsrodnuirziendgrEhEytGh-- oaded fro0/06. For ssthyleanelcaphm.rSoonpcioiznredtidlceaswlleaaenvpdeastnhadarel(abgm)etinocenrrieacttieacdcutlliaavrrigtnyeelduyurtorhinnrosguiwngvhaokalivnciygncgalnibcdoartlhainpttiheder-aeincytteir-oimnnsobicveetmwmeeemenn-t wnl3/2 brane properties of these cells and their anatomical interconnections. Specific Don 0 alterationsintheinteractionsbetweenthesecellscanresultinthegenerationof 5. y o paroxysmaleventsresemblingabsenceseizuresinchildren.Thereleaseofseveral 5-21ersit differentneurotransmittersfromthebrainstem,hypothalamus,basalforebrain, 997.20:18eller Univ arthentedirceucbelyarresbnurepauplrrcoeonssrstienaxgndrtheasenugleetsnnheinaranatcieoddnepeooxflcsailrteaiezbpaitlriihotyyntihonmfmtshaaannlyadmcpoorroctmiocraotiltcipnaylgraaanmsdtiadtthaealtlhcaeamltliiscs, ci. 1ckef conducivetosensoryprocessingandcognition. so oR Neurby v. INTRODUCTION e R u. Eventhefirstinvestigatortodirectlyrecordtheelectricalactivityinthemam- n An maliancerebralcortexnotedthatthepatternofcorticalactivitywasdependent uponthestateoftheanimal(Caton1887). Sincethisremarkablebeginning,the investigationofthecellularcorrelatesofsleepandarousalinthalamocortical systemshasenjoyedseveralperiodsofrapiddevelopment. Theseincludethe demonstrationofanascendingactivatingsysteminthebrainstemthatisessen- tialforthegenerationofsleep-wakecycles(Bremer1938,Moruzzi&Magoun 1Presentaddress: InstitutAlfredFessard,CNRS,Ave. delaTerrasse,GifSurYvette,Cedex 91198,France. 185 0147-006X/97/0301-0185$08.00 P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 186 McCORMICK&BAL 1949,Jouvet1962),andtheproposalofhypothesesconcerningthegeneration ofsleep-relatedthalamocorticalrhythms(reviewedinAndersen&Andersson 1968,Steriade&Descheˆnes1984,Steriadeetal1993c). Inthepast15years, thisbaseofinformationhasbeencomplementedbyadramaticincreaseinour knowledgeofthemechanismsoftheionic,cellular,andnetworkmechanisms through which thalamocortical activity is generated during sleep and of how thisactivityisdisruptedinthetransitiontothewakingstate. Inthisreview,we examinethesemorerecentdevelopmentswithaspecificfocusonthethalamus, a structure that is central to the generation of state-dependent activity in the forebrain. g s.or During the periods of sleep that exhibit synchronization of the electroen- w e cephalogram (EEG-synchronized sleep), a number of rhythms are present. vi e Two distinct rhythms that are particularly prominent in thalamocortical sys- nnualrnly. tems are delta waves and spindle waves (see Steriade & Descheˆnes 1984, ao Niedermeyer 1993). Delta waves in the normal adult are 0.5- to 4-Hz os- s.e m arjournalpersonal us ctpoiolls3ae-tdsiopunepsroitonhdatshteoafroewthlaaexrrginrehgsytatdhnumdriswnoganfditnehegep7Es-ElteGoep1(,4sew-HehzFilioegsuscprielilna5dt,iloebnewsloatwvhea)st.aaRrpeepsseeuaaprrecarhsiem1rs-- oaded fro0/06. For h(wraehvvieciehkwanesodpweinnciSffiotcerhrsiyaopdmoeteh&etismDiseeostcfhhgaeeˆtnnseepsria1nti9do8lne4w)w,aaasvnpedrsothaperoesseegdrehn(yAetrhnamdteesdrsweinenr&tehteAhetnhdfiaerlarsstmsfouonsr Downln 03/2 1968). 5. y o Extracellularandintracellularrecordingsfromthalamocorticalneuronsdur- 85-21versit icnegllsEEgeGn-esryantechrreopneitzietidveslbeeuprstindnisacthuararglleysstlheaetpirnidgeanoinmtaolpsroefveaalseldowtheartdthepesoe- 0:1Uni larizing potential (Figure 1) (Hirsch et al 1983, McCarley et al 1983). The 997.2eller transition from EEG-synchronized sleep to the waking or REM-sleep states ci. 1ckef occurred with the progressive depolarization of thalamocortical cells and the osRo abolitionoftheslowdepolarizingspikeanditsassociatedburstoffastaction Neurby potentials(Figure1B).Thesealterationsinthefiringmodeofthalamicneurons v. areassociatedwithdramaticchangesintheneurons’responsivenesstoperiph- e R eral stimuli. For example, during EEG-synchronized sleep, there is a marked u. n diminution of the responsiveness of LGNd thalamic neurons to activation of n A their receptive fields (Livingstone & Hubel 1981), presumably owing to the hyperpolarizedstateoftheseneurons, theinterruptingeffectsofspontaneous thalamocorticalrhythms,andthefrequencylimitationsoftheburstfiringmode (seeMcCormick&Feeser1990,Steriade&McCarley1990). Over-powerful inhibitionalsomayaffectneuronalresponsivenessduringEEG-synchronized sleep;thisinhibitionisspecificallyreducedbyactivationofascendingcholin- ergicpathways(Ahlsenetal1984,Francesconietal1988,McCormick&Pape 1988,Curro´ Dossietal1992b,Pape&McCormick1995). P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 THALAMOCORTICALACTIVITY 187 g or s. w e vi e nnualrnly. ao s.e m arjournalpersonal us oaded fro0/06. For Finigreulraeti1ontLoabteehraalvgioenraiclustlaatteearenldayelneecutrrooennscdeipshpalaloygtwraomd(iEstEinGct).mDoudreinsgofpaecritoiodnspooftselnotwia-lwgaevneersaletieopn, wnl3/2 theEEGexhibitssynchronousslowwaves,andLGNdrelayneuronsdischargeinburstsofaction Don 0 potentials(A).Incontrast,duringwakingorREMsleep,LGNdneuronsfireinthesinglespike 5. y o or tonic mode of action potential generation (A). Intracellular recordings in vivo during these 5-21ersit t(rBa)n.s(iPtiaorntsAinfrdoimcatMecthCaatrtlheeyyetarael1ac9c8o3m.PplairsthBedfrboymdHepiroslcahrizeattaioln19o8f3t.h)emembraneby10–20mV 8v 0:1Uni 997.2eller These results, coupled with the earlier observations on the importance of ci. 1ckef thethalamusinthegenerationofsleeprhythms,suggestthattheinvestigation osRo of thalamic neurons and neuronal circuits may be particularly fruitful in the Neurby search to uncover the cellular mechanisms of sleep-wake alterations in the v. forebrain. e R u. n n THALAMICNEURONSEXHIBITTWOSTATES A OFACTIVITY Early intracellular recordings of thalamocortical neurons in vivo revealed an unusual rebound burst discharge following hyperpolarization; this discharge could be generated by the intracellular injection of current or by the natural occurrence of an inhibitory postsynaptic potential (reviewed in Andersen & Andersson 1968, Descheˆnes et al 1984, Roy et al 1984). In vitro investiga- tionsrevealedthatthereboundpotentialoccurringfollowinghyperpolarization P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 188 McCORMICK&BAL is generated by activation of a specialized Ca2C current, known as the low- threshold,ortransient(I ),Ca2Ccurrent(Jahnsen&Llina´s1984a,b). Voltage- T clampanalysisconfirmedthepresenceofalargelow-thresholdCa2C current, aswellashigh-thresholdCa2C currents,inthalamocorticalcells(Coulteretal 1989, Crunelli et al 1989, Hernandez-Crus & Pape 1989). These investiga- tionsrevealedthatI showsbothactivationandinactivation. Activationoccurs T atmembranepotentialspositivetoapproximately−65mV,whileinactivation becomescomplete,atsteadystate,atmembranepotentialspositivetoapproxi- mately−65mV.ThekineticsofactivationofI areconsiderablyfasterthanare T g thekineticsofinactivation,similartotheNaCcurrentunderlyingthegeneration s.or ofthemoretypicalfastactionpotential. Therefore,ifthemembranepotential w e isdepolarizedfromarelativelyhyperpolarizedmembranepotential(negative vi nnualrenly. taotin−g6a5lmowV-)t,htrheesnhoIlTdmCaay2Cfirssptikacet(ivFaigteuarend2Bth).enThmeosereCsalo2Cwlsypiikneascttiyvpaitcea,lglyenlaesr-t s.ae o ontheorderof100–200ms,andinturnbringthemembranepotentialpositive m arjournalpersonal us etoigTthhotrnefiaschstodaledcpt(oiaolpanrpiprzooatxteiionmntiaatolesfly(tFh−eig5mu5reemm2VbBr))af(noJearhpthnoesteegnnet&niaelrLapltioinosa´nitsiov1fe9a8to4baua,rpbsp)t.roofxtihmraeteetloy Downloaded fron 03/20/06. For tpd−ioios6snc5tshsmyathrnVgaaetprsbtei(rsceiun.pglgto.sttFheinenigttmiuhareelesmi,2nbrAaerc)as.tuniFvleotapltilinoootwnethnioentfigagIltTehpnaeoenirsdnaitatiticvhoteenivrteoaoftfoi−osrn5ein5otghfmleeIVT,s,u,oppsrhuptacrreashisicnassisdoeeonpxfooc,iflataacbrttiuoizorrasny-t 5. y o potentials; however, they do not generate high-frequency bursts (Jahnsen & 5-21ersit Llina´s 1984a,b, McCormick & Feeser 1990). Thus, the properties of IT im- 8v parttwodistinctstatesofactionpotentialgenerationontothalamocorticalcells: 7.20:1er Uni (a)burstfiringuponremovalofahyperpolarizationthatsurpasses−65mVfora 99ell sufficientperiodoftimeand(b)tonicsingle-spikeactivityupondepolarization ci. 1ckef positivetoapproximately−55mV. so oR Neurby RhythmicBurstFiringandtheInteraction v. ofTwoIonicCurrents e R DuringEEG-synchronizedsleep,thalamocorticalcellsgeneraterhythmicbursts u. n ofactionpotentialsinthefrequencyrangeof0.5–4Hz, evenduringthegen- n A eration of spindle waves, which occur at frequencies of 7–14 Hz (McCarley 1983, Royetal1984, Amzica&Steriade1995a). Intracellularrecordingsin slices of cat LGNd maintained in vitro revealed a similar pattern of activity. Left unperturbed, a subpopulation of thalamocortical neurons generates low- threshold Ca2C spikes in a rhythmic manner at a frequency of approximately 0.5–4Hz(Figure2)(McCormick&Pape1990a,Lerescheetal1991,Soltesz etal1991). Thisrhythmicburstfiringresultsfromtheinteractionofthelow- thresholdCa2Cspikeandahyperpolarization-activatedcationcurrentknownas P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 THALAMOCORTICALACTIVITY 189 g or s. w e vi e nnualrnly. ao s.e m arjournalpersonal us oaded fro0/06. For wnl3/2 Don 0 5. y o 5-21ersit 8v 0:1Uni 7.2er 99ell ci. 1ckef Figure 2 Thalamocortical neurons generate two distinct patterns of action potentials via the osRo interactionofioniccurrents.(A)ThiscatLGNdneurongeneratedrhythmicburstfiringatarateof Neurby about2Hz.Depolarizationofthecellto−58mVwiththeintracellularinjectionofcurrent(depol. v. currentinjection)haltedtherhythmicactivityandswitchedtheneurontothetonic,orsinglespike, Re modeofactionpotentialgeneration,owingtotheinactivationofIT.Removalofthedepolarization u. reinstated the oscillatory activity. (B) Expanded trace of oscillatory activity and the proposed n An cthuerrmenetmsbthraatnelatrogwelayrdmtehdreiastheoiltd.fAorcativbautriostnooffNthaCe-loawnd-thKrCes-hdoelpdencdalecnitufmasctuarcrteionnt,pITo,tednetpiaollsa.rTizhees depolarizationdeactivatestheportionofIh thatwasactiveimmediatelybeforetheCa2C spike. RepolarizationofthemembraneduetoITinactivationisfollowedbyahyperpolarizingovershoot, whichisduetothereduceddepolarizingeffectofIh.Thehyperpolarizationinturnde-inactivates IT andactivatesIh, whichdepolarizesthemembranetowardthresholdforanotherCa2C spike. (C)Expandedtraceofsingle-spikeactivity.(FromMcCormick&Pape1990a.) P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 190 McCORMICK&BAL theh-current(I ). Hyperpolarizationofthalamocorticalneuronstomembrane h potentials negative to approximately −55 mV slowly activates a mixed NaC andKC currentthatdepolarizestheneuronbacktowardthereversalpotential ofthiscurrent(approximately−35mV).Consequently,thefallingphaseofa low-thresholdCa2C spikeisassociatedwiththeactivationofI , andtheacti- h vation of I results in a slow depolarization. This pacemaker potential again h activatesI andthereforeanotherlow-thresholdCa2Cspike. T Thepreciseshapeofthelow-thresholdCa2Cspikemaybecontrolledbythe activation of a variety of KC currents that have been characterized in thala- mocortical neurons (see Huguenard & McCormick 1992, Soltesz et al 1991, g s.or McCormick&Huguenard1992). Theinteractionbetweenthevoltagedepen- ew denceandthekineticsofthelow-thresholdCa2Ccurrentandthehyperpolariza- vi e tion-activatedcationcurrentresultintheintrinsicpropensityofthalamocortical nnualrnly. neuronstogeneraterhythmicoscillationsinthefrequencyrangeof0.5–4Hz ao (McCormick&Pape1990a,McCormick&Huguenard1992,Curro´Dossietal s.e m arjournalpersonal us 1ovo9fl9st2aingag)e,ledwethphieacnlhadmiesnoctcheoerotffirceeaqiltuhceeenrlclIsyTsrouarngggIheescotafnthdraeetlstasumlwtaialnvlelsash.rigfCetsoeimfnfeptcuhttseatoaionmntpahlleitmuadboeidleiotlysr oaded fro0/06. For o&fifndHsiinnugggslueeancraeerldlpsa1rtot9i9cgu2el,naTreloryathtree&lrehvyCatnrhutmntieoclltilho1ew9i-9nt2hv,reesDsthiegosalttdeixoChneao2eCfttsahplei1kme9s9ec3(haMa,bnc)iC.smoTrsmhueicsnke- Downln 03/2 derlyingthecessationofspindlewavesandtotheneurotransmittercontrolof 5. y o synchronizedthalamocorticalrhythms(seebelow). 5-21ersit ThalamicReticularNeuronsalsoExhibitTwo 8v 0:1Uni StatesofActivity 997.2eller Surroundingthethalamusandinterposedbetweenthethalamusandthecerebral ci. 1ckef cortexisacollectionofGABAergicneuronsknownasthethalamicreticularnu- osRo cleus(reviewedinSteriade&Descheˆnes1984,Jones1985). Theperigeniculate Neurby nucleusisconsideredpartofthethalamicreticularnucleusandisconnectedto v. theLGNd. TheGABAergicneuronsofthethalamicreticularandperigeniculate e R nuclei are innervated by axon collaterals of thalamocortical and corticothala- u. n micneuronsandgiverisetoadenseinnervationofthalamocorticalcellsina n A mannerthatoftenpreservesreciprocalinteractionsbetweenappropriatepoints inthethalamus,thalamicreticularnucleus,andcerebralcortex(seeSteriade& Descheˆnes1984,Jones1985,Shosakuetal1989,Uhlrichetal1991,Baletal 1995a,b,Pinaultetal1995a,b). TheGABAergicneuronsofthethalamicreticularnucleuschangetheirfiring modeinamannersimilartothatofthalamocorticalcells(Steriadeetal1986). During periods of EEG-synchronized sleep, thalamic reticular cells generate P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 THALAMOCORTICALACTIVITY 191 rhythmichigh-frequency(350–450Hz)burstsofactionpotentials,whiledur- ingwakingandREMsleep,theseneuronsgeneratesequencesoftonicaction potential activity. As in thalamocortical cells, these two activity states result fromthe propertiesofthelow-thresholdCa2C current (Figure3)(Mulle et al 1986,Avanzinietal1989,Huguenard&Prince1992,Bal&McCormick1993, Contrerasetal1993). However, theselow-thresholdCa2C spikesaredistinct fromthoseofthalamocorticalneuronsinanimportantway: Theirvoltagede- pendenceisshiftedtomorepositivemembranepotentials(Huguenard&Prince 1992,Destexheetal1996)suchthatthalamicreticularcellscangeneratelow- threshold Ca2C spikes upon depolarization, even at membrane potentials of g s.or −65mV.Thisparticularpropertyisimportantforthegenerationofsynchro- w e nizedthalamocorticalrhythms,suchasspindlewaves,becausetheexcitationof vi e thalamicreticularneuronsbythalamocorticalandcorticothalamiccellsdrives nnualrnly. theserhythms(seebelow). ao A pronounced after-hyperpolarization follows the generation of each low- s.e m arjournalpersonal us MtshernceCssihotiorvmlediCcCkaa212CC9-9asc3pt)ii.vkaeTtehindistKhaafCtleacrm-ohniycdpureecrttpiaconulcalearri(zInaKetCiuoarn)on(bAsyvaiastnseazlifnreicsaeuntltabolef1s9aun8f9fia,cpiBaemnaltin&in- oaded fro0/06. For auspmlaikprelnite(uFudiregounarsnedto3dAureras)u.tilotTnihntroothureegmhgoeavnneerienanttieoorunagchotifoinnaancbteaitvdwadteiiteoionnnIoafl IaloTnwdin-Iththraels,ahmtohliedcrerCfeoatir2ceC-, Downln 03/2 these cells may g1enerate rhythmic bursts of action poTtentialsK.CTahe kinetics 5. y o of IT and IKCa interact with the properties of thalamic reticular cells such 85-21versit tthhaetmrheymthbmraincefiprointegntoicacluorfstahtefcreeqllu(eAnvcaienszionfi0e.t5alto191829H, Bz,alde&peMndciCngormupiockn 0:1Uni 1993). Hyperpolarization of thalamic reticular neurons facilitates the occur- 997.2eller rence and intensity of low-threshold Ca2C spikes, but also reduces the fre- ci. 1ckef quency with which these neurons intrinsically oscillate (Bal & McCormick osRo 1993). Neurby Rhythmicburstfiringinthalamicreticularneuronsisoftenfollowedbyapro- ev. longed“tail”ofsingle-spikeactivityinvivoandinvitro(Figure3A1)(Domich R et al 1986, Steriade et al 1986, Bal & McCormick 1993). This tonic tail of nu. activityappearstobegeneratedthroughtheactivationofaCa2C-activatednon- n A selectivecationcurrent(I ). Thus,thalamicreticularcellsareendowedwith CAN theintrinsicpropensitytogenerate(a)sequencesofactivitythattaketheform of burst-burst-burst-burst-tonic firing at relatively hyperpolarized membrane potentials(e.g. −65mVorso)and(b)tonic,alsoknownassingle-spike,activ- ityfollowingdepolarizationtomembranepotentialspositivetoapproximately −55mV(Figure3), astatethatcanbeimposeduponthesecellsthroughthe actionsofavarietyofneuromodulatorytransmitters(seebelow). P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 192 McCORMICK&BAL g or s. w e vi e nnualrnly. ao s.e wnloaded from arjournal3/20/06. For personal us F(scrapepulissegiroukrruieelragtn,esretewi3nInlihNictkiahucIeelahdlanyeatadeactc)ltovtiicizvavaeearaclditlttoiseiosuv.scnsahRatoKeeefhmCmhCiigeogachov2uh-Cfar-frtltr-heheaonreqcfetutissaioev,hnhnacoiyctolceydpldbleeCbaKrcuspatiCrio2svsCltoceaulfrocyirrufzrhrrieaeynrnceftgttehniracomtrsnune,idrdcrrpetebtohfnouteeterrarsnprestetufiaIdolaKnsrltee.dsoaIrtmhnoenesneaaurdidefclittdaeafisitrstrei-iinhdIonCynagbap,.liyetonhTrwttpehhh-oeefatlahlateasrrrntmeaiztsNnrihasycatoiiCeroloendfntsti.CCpcNiuTaakal22heaCCCesr Don 0 depthanddurationofthisafter-hyperpolarizationdeterminestheamplitudeofthesubsequentlow- 5-215. ersity o ttohraecsthivoaldtinCga2aCCsap2iCk-ea,cwtihviacthedisKacCticvuartreednbt,yththeeernetlrayxoatfiCona2oCftihnetoafthteer-cheyllpiesraplosloarpirzoaptioosne.dItnoaadcdtiivtiaotne 997.20:18eller Univ tasheCeroagt2oeCnn-eianrcaettriigvoianct,eondfontroaondnirsceenldeeicsrgtciihvcae,rocgraetgiaoltunttahcmeuraertneednmto(efItCtahAbeNoto)rsotchpiailtclarrteeoscruyelptbstouirrnsstarefissrluionlwtgsai(nfAtae1r,t-odAne2ipc)o.dlAeaprcioztilavatariiotzinoantainoodnf ci. 1ckef ionftshinegcleel-ls,pinikpeaartctthivriotuygihntthheerferdeuqcuteionncyofraanrgeestionfg3“0l–ea6k0”Hpzo.taTsshiuemfrecqounednuccytaonfceth(iIsKLto)nthicatarcetsivuilttys so Neuroby R imnvaoyllvaerdgeinlyabcetiodnetperomteinnteiadlbgyentheeraitniotenra(Bct1io,nB2o)f.t(hFeropmersBisatlen&tNMacCCocurmrriecnkt1(I9N9a3p.))andthecurrents v. e R nu. SYNAPTICINTERACTIONSBETWEEN n A THALAMOCORTICAL,THALAMICRETICULAR, ANDCORTICOTHALAMICCELLS ThalamicReticulartoThalamocortical Thalamocorticalandthalamicreticularcellsarehighlyinterconnectedinsitu (Yenetal1985,Cucchiaroetal1991,Uhlrichetal1991,Liuetal1995,Pinault et al 1995a,b). Activation of the thalamic reticular and/or perigeniculate nu- clei,eitherartificiallyorspontaneouslythroughthegenerationofspindlewaves P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 THALAMOCORTICALACTIVITY 193 (seebelow),resultsinthegenerationofGABA receptor–mediatedinhibitory A postsynapticpotentials(IPSPs)inthalamocorticalneurons(Figure4A–C)(De- scheˆnes et al 1984, Thomson 1988, Huguenard & Prince 1994, Warren et al 1994,Baletal1995a,b,Sanchez-Vivesetal1995). TheseIPSPscanbesuffi- cientlylargeinamplitudeandlongindurationtoresultinthegenerationofa reboundlow-thresholdCa2C spike,eveniftheyaregeneratedbyonlyasingle perigeniculateneuron(Figure4C). The activation of thalamic reticular neurons can also activate GABA re- B ceptorsinthalamocorticalcells(Huguenard&Prince1994,Baletal1995a,b, Sanchez-Vives et al 1995). The activation of GABA receptors results, as it g B s.or doesinothercentralneurons,inthegenerationofslowinhibitorypostsynap- ew tic potentials through the activation of a G protein and an increase in a KC vi e conductance(Crunellietal1988,McCormick1991,Soltesz&Crunelli1992). annualronly. oTfheinlaocntgivdatuiroantioonf tohfeGlAowB-AthBrersehcoelpdtoCr–am2CedciuartreednIt;PSthPesrefafocrileittahteessethIePSrePmsocvaanl s.e m arjournalpersonal us sbcuoegrftgiocelasloltwctheealdltsibntoyobrpedreoarnbtoloeutanocctgeivdeanlteoerwaetn-etohaurergeshbhooofuldandCGlaAo2wBC-AtshpBri-ekrseehcso.elpdItnoCirtaiIa2PClSisPnpviienksetth,igsaealavtimeornoas-l oaded fro0/06. For thhiaglhamraitce(rSetaincuchlaerz-oVripveersigeetnailc1u9la9t5e).cells must discharge simultaneously at a wnl3/2 ThalamocorticaltoThalamicReticular Don 0 5. y o Activationofthalamocorticalinputstothalamicreticularand/orperigeniculate 85-21versit ntheruoruognhstrheesualctstivinattihoengoefneexrcaittiaotnoroyfaemxciintoataocryidproesctespytnoarpst(iFcipgoutreen4tiDal–sF()E.PSSimPsi)- 0:1Uni larly,activationofcorticothalamicfiberstothalamicreticularneuronsalsore- 997.2eller sultsinpronouncedexcitation,owingtotheactivationofexcitatoryaminoacid ci. 1ckef receptors,andthisexcitationoftenresultsinthegenerationofrhythmicburst osRo firinginthesecells(DeCurtisetal1989,Bal&McCormick1993,Contreras Neurby &Steriade1996). v. Baletal(1995b)recentlyconfirmedthatthalamicreticularorperigeniculate e R neuronsformdisynapticloopswiththalamocorticalcellsintheferretLGNd. u. n Activation of a burst of action potentials with the intracellular injection of a n A current pulse into a single perigeniculate neuron typically results in the gen- eration of a return barrage of EPSPs at a latency of approximately 100–150 ms(Figure4GandH).ThesereturnEPSPsaregeneratedthroughtherebound burst firing of thalamocortical neurons. Thus, the prolonged delay (100–150 ms) from the burst of action potentials in the perigeniculate cell and the re- turn EPSPs is largely due to the duration of the GABA receptor–mediated A IPSPinthethalamocorticalneuron(80–130ms). Asecondcauseforthede- lay is the time required for the generation of a Ca2C spike to result in the P1:mbl December12,1996 2:34 AnnualReviews AR24-08 AR24-8 194 McCORMICK&BAL g or s. w e vi e nnualrnly. ao s.e m arjournalpersonal us oaded fro0/06. For wnl3/2 Don 0 5. y o 5-21ersit 8v 0:1Uni 7.2er 99ell ci. 1ckef so oR Neurby v. e R u. n n A
Description: