SKID RESISTANCE AND THE EFFECT OF TEMPERATURE MOHD AMIN BIN SHAFII A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil - Transportation and Highway) Faculty of Civil Engineering Universiti Teknologi Malaysia NOVEMBER 2009 V ABSTRACT Skid resistance is the force developed when a tire that is prevented from rotating slides along the pavement surface. It is the most important characteristic of the road pavement. In the wet conditions, skidding will occur easily when the water film covering the pavement act as lubricant and reduce the friction between the tire and pavement. There are several factors that influence skid resistance such as road pavement texture, aggregate characteristic and surface temperature. Although a number of researcher have attempted to explain and quantify the effect of temperature on pavement skid resistance properties, the result are still unclear. Therefore, the objective of this study is to investigate the effect of pavement surface temperature on the pavement skid resistance properties of different type of mixtures. Besides, this study also wants to investigate whether the type of gradation has a significant effect on skid resistance based on temperature difference. To accomplish the objectives of the study, five types of mixture consist of ACW 14, ACW 10, Porous Mix Grade A, Porous Mix Grade B and SMA 14 were prepared. Then, the skid resistance test using British Pendulum Tester was conducted. The test was conducted using heated temperature method and natural temperature method. The results of skid resistance using heated temperature method were compared with the result of skid resistance using natural temperature method. In this study, it is found that temperature has a significant effect on skid resistance value and the relationship between skid resistance value and temperature can be represent using quadratic curve. Based on temperature different, type of gradation also has significant effect to the skid resistance value. vi ABSTRAK Rintangan gelinciran adalah daya yang terhasil apabila tayar kenderaan dihalang daripada berputar. menggelongsor sepanjang permukaan turapan. Rintangan gelinciran adalah ciri penting bagi turapan jalan. Dalam keadaan basah, kegelinciran lebih mudah terjadi apabila lapisan air yang menutupi permukaan turapan bertindak sebagai pelincir yang mengurangkan geseran antara tayar kenderaan dengan turapan jalan. Terdapat beberapa faktor yang mempengaruhi rintangan gelinciran seperti tekstur permukaan turapan jalan, ciri-ciri agregate dan suhu permukaan turapan. Walaupun ramai penyelidik cuba untuk menerangkan kesan suhu terhadap rintangan gelinciran, tetapi hasilnya masih belum jelas. Oleh itu, kajian ini dijalankan untuk mengetahui kesan suhu permukaan turapan terhadap rintangan gelinciran bagi pelbagai jenis campuran. Disamping itu, kajian ini juga dijalankan untuk mengetahui samada, pada suhu yang berlainan, jenis penggredan aggregat mempengaruhi rintangan gelinciran atau tidak. Untuk menyempurnakan kajian ini, lima jenis campuran terdiri daripada ACW 14, ACW 10, Campuran Poros Gred A, Campuran Poros Gred B dan SMA 14 disediakan. Ujian rintangan gelinciran kemudiannya dijalankan dengan meggunakan alat British Pendulum Tester. Ujian dijalankan menggunakan kaedah suhu pemanasan (heated temperature method) dan kaedah suhu semulajadi (natural temperature method). Keputusan ujian rintangan gelinciran menggunakan kaedah suhu pemanasan (heated temperature method) kemudiannya dibandingkan dengan keputusan ujian rintangan gelinciran menggunakan kaedah suhu semulajadi (natural temperature method). Daripada kajian ini, didapati bahawa suhu permukaan turapan memberi kesan kepada nilai rintangan gelinciran dan hubungan antaranya boleh diwakili oleh lengkung kuadratik. Daripada kajian ini juga, didapati bahawa, pada suhu yang berlainan, jenis penggredan aggregat mempengaruhi rintangan gelinciran. vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION ii DEDICATION iii ACKNOWLEDGEMENT iv ABSTRACT v ABSTRAK vi TABLE OF CONTENTS vii LIST OF TABLES x LIST OF FIGURES xii LIST OF APPENDICES xiv 1 INTRODUCTION 1 1.1 Background of Study 1 1.2 Problem Statement 2 1.3 Aim and Objective of the Study 2 1.4 Scope of the Study 3 2 LITERATURE REVIEW 4 2.1 Introduction 4 2.2 Factors Influence Skid Resistance 4 2.2.1 Aggregate Characteristic 5 2.2.2 Road Surface Texture 5 2.2.2.1 Micro texture 6 2.2.2.2 Macro texture 6 2.2.3 Temperature Effects 8 viii 2.2.3.1 Air Temperature 8 2.2.3.2 Tire Temperature 9 2.2.3.3 Pavement Temperature 10 2.2.4 Vehicle Factors 11 2.2.5 Driver Factors 11 2.3 Pavement Tire Friction Theory 12 2.4 Skid Resistance Measurement , 16 2.4.1 Locked Wheel Tester 16 2.4.2 British Pendulum Tester 17 2.4.3 Sideways Force Coefficient Routine Investigation Machine (SCRIM) 18 2.4.4 Grip Tester 19 3 METHODOLOGY 22 3.1 Introduction 22 3.2 Operational Framework 22 3.3 Preparation Material for Mix 25 3.4 Aggregate Test 25 3.4.1 Sieve Analysis 25 3.4.2 Specific Gravity 29 3.4.2.1 Specific Gravity and Water Absorption of Coarse Aggregate (> 5.00 mm) 29 3.4.2.2 Specific Gravity and Water Absorption of Fine Aggregate (<5.00 mm) 30 3.4.3 Theoretical Maximum Density 31 3.5 Bitumen Test 32 3.5.1 Penetration Test 33 3.5.2 Softening Point Test 36 3.5.3 Penetration Index 38 3.6 Determination of Optimum Bitumen Content 40 3.6.1 Asphaltic Concrete (AC) - ACW 10 and ACW 14 40 3.6.1.1 Preparation of Marshall Sample 41 3.6.1.2 Bulk Specific Gravity Measurement 42 3.6.1.3 Marshall Flow and Stability Test 43 3.6.1.4 Voids in Total Mix (VTM) 3.6.1.5 Void Filled with Bitumen 3.6.2 Porous Mix (Grade A and Grade B) 3.6.2.1 Air Void Test 3.6.2.2 Drain-down Test 3.6.2.3 Cantabro Test 3.7 Preparation of Test Sample 3.8 Sand Patch Test 3.9 Skid Resistance Test 4 RESULT AND ANALYSIS 4.1 Introduction 4.2 Aggregate Gradation 4.3 Washed Sieve Analysis 4.4 Specific Gravity and Water Absorption 4.4.1 Coarse Aggregate 4.4.2 Fine Aggregate 4.5 Theoretical Maximum Density 4.6 Bitumen Test Result 4.6.1 Penetration 4.6.2 Softening Point 4.7 Optimum Bitumen Content 4.8 Sand Patch Result 4.9 Skid Resistance Result 5 CONCLUSION AND RECOMMENDATIONS 5.1 Introduction 5.2 Summary of the Findings and Conclusion 5.3 Recommendation REFERENCES APPENDICES XI LIST OF TABLES TABLE NO. TITLE PAGE 3.1 Gradation limit for ACW10 26 3.2 Gradation limit for ACW14 27 3.3 Gradation limit for Porous Mix Grade A 27 3.4 Gradation limit for Porous Mix Grade B 27 3.5 Gradation limit for SMA 14 28 3.6 Design Bitumen Content 40 4.1 Gradation limit for ACW10 61 4.2 Gradation limit for ACW 14 61 4.3 Gradation limit for Porous Mix Grade A 62 4.4 Gradation limit for Porous Mix Grade B 62 4.5 Gradation limit for SMA 14 62 4.6 Washed sieve analysis result for ACW 10 63 4.7 Washed sieve analysis result for ACW 14 63 4.8 Washed sieve analysis result for Porous Mix Grade A 63 4.9 Washed sieve analysis result for Porous Mix Grade B 63 4.10 Washed sieve analysis result for SMA 14 64 4.11 Specific gravity of coarse aggregate for ACW 64 4.12 Specific gravity of coarse aggregate for Porous Mix 65 4.13 Specific gravity of coarse aggregate for SMA 65 4.14 Specific gravity of fine aggregate for ACW 66 4.15 Specific gravity of fine aggregate for Porous Mix 66 4.16 Specific gravity of fine aggregate for SMA 67 4.17 Theoretical Maximum Density for ACW 10 68 XI 4.18 Theoretical Maximum Density for ACW 14 68 4.19 Theoretical Maximum Density for Porous Mix Grade A 69 4.20 Theoretical Maximum Density for Porous Mix Grade B 69 4.21 Theoretical Maximum Density for SMA 14 70 4.22 Penetration value for bitumen 80/100 and PG 76 70 4.23 Softening point for bitumen 80/100 and PG 76 71 4.24 Mean texture depth . 72 xii LIST OF FIGURES FIGURE NO. TITLE PAGE 2.1 Illustration of terms used to describe roads surface texture 7 2.2 Mechanism of Rubber Friction 14 2.3 Locked Wheel Tester 17 2.4 British Pendulum Tester 18 2.5 Sideways Force Coefficient Routine Investigation Machine (SCRIM) 19 2.6 Grip Tester 20 3.1 Flow diagram for methodology 23 3.2 Flow diagram for laboratory work 24 3.3 Penetration test 33 3.4 Penetration test samples 34 3.5 Test samples were immersing in water bath at 25 °C 35 3.6 Penetration reading taken 35 3.7 Apparatus for bitumen Softening Point Test 36 3.8 Test sample for softening point test 37 3.9 Nomograph for bitumen penetration index. 39 3.10 Flow and stability test. 45 3.11 Basket used for drain-down test 49 3.12 Sample basket and metal tray before drain-down test 50 3.13 Samples before Cantabro test 51 3.14 Samples after Cantabro test. 52 3.15 Mould for skid test sample 53 3.16 Roller compactor 54 xiii 3.17 Test sample 54 3.18 The apparatus and elements used on Sand Patch Test 55 3.19 Circular area of the sand cover 56 3.20 British Pendulum Tester 57 3.21 Dryer 58 3.22 Water spray 58 3.23 Infrared temperature gun . 59 4.1 Graph of Pendulum Test Value (PTV) versus Temperature for all types of mixtures using heated temperature method 73 4.2 Graph of Pendulum Test Value (PTV) versus Temperature for all types of mixtures using natural temperature method 73 4.3 Some of the bitumen is pill out from the sample surface after skid resistance test 74
Description: