ebook img

Site-specific labeling of affinity molecules for in vitro and in vivo studies PDF

83 Pages·2014·5.93 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Site-specific labeling of affinity molecules for in vitro and in vivo studies

Site-specific labeling of affinity molecules for in vitro and in vivo studies ANNA PEROLS Royal Institute of Technology School of Biotechnology Stockholm 2014 © Anna Perols Stockholm 2014 KTH Royal Institute of Technology School of Biotechnology AlbaNova University Center SE-106 91 Stockholm Printed by Universitetsservice US-AB Drottning Kristinas väg 53B SE-100 44 Stockholm Sweden TRITA-BIO Report 2014:14 ISSN 1654-2312 ISBN 978-91-7595-252-9 Anna Perols (2014): Site-specific labeling of affinity molecules for in vitro and in vivo studies. School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden. Abstract The thesis is focused on site-specific labeling of affinity molecules for different applications where two types of binding proteins, Affibody molecules and antibodies, have been used. For the purpose of improving the properties of Affibody molecules for in vivo imaging, novel bi- functional chelators for radiolabeling using the radionuclide 111In were evaluated. In a first study, two chelators denoted NOTA and DOTA, respectively, were separately conjugated via maleimide chemistry to a C-terminal cysteine residue in a HER2-binding Affibody molecule (ZHER2:2395). In vivo evaluation using mice with prostate carcinoma cell line xenografts showed that the 111In-NOTA-MMA-ZHER2:2395 tracer exhibited faster clearance from blood than the 111In-DOTA- MMA-ZHER2:2395 counterpart, resulting in improved tumor-to-organ ratios. In a second study the in vivo imaging properties of a third tracer, 111In-NODAGA-MMA-ZHER2:2395, was investigated in tumor-bearing mice. While the tumor uptake was lower than seen for the 111In-DOTA-MMA- ZHER2:2395 tracer, a low uptake in non-targeted organs and a fast clearance from blood resulted in higher tumor-to-organ ratios for 111In-NODAGA-MMA-ZHER2:2395 compared to the DOTA variant. In a following study, a synthetically produced HER2-targeting affibody variant, denoted ZHER2:S1, was used where NODAGA, NOTA and DOTA chelators instead were conjugated via an amide bond to the N-terminus. In vivo evaluation in mice showed an unfavorable uptake in liver for 111In-NOTA-ZHER2:S1, resulting in a discontinuation. The study showed faster clearance of 111In- NODAGA-ZHER2:S1 from blood, but also an increased uptake in bone in comparison to 111In-DOTA- ZHER2:S1. As bone is a common metastatic site in prostate cancer, the favorable tumor-to-bone ratio for 111In-DOTA-ZHER2:S1 suggests it as the tracer of choice for prostate cancer. Further, the DOTA chelator was also evaluated as conjugated to either N- or C-terminus or to the back of helix 3 via an amide bond, where the in vivo evaluation showed that that C-terminal conjugation resulted in the highest contrast. Site specificity is also of great importance for labeling antibodies, as conjugation in the antigen- binding regions might influence the affinity. A method for site-specific labeling of antibodies using an IgG-binding domain that becomes covalently attached to the Fc-region of an antibody by photoconjugation was optimized. By investigation of positions most suitable for incorporation of the photoreactive probe, the conjugation efficiencies were increased for antibody subclasses important for both diagnostic and therapeutic applications. In addition, optimized variants were used in combination with an incorporated click-reactive handle for selective labeling of the antibody with a detection molecule. Key words: Affibody molecules, molecular imaging, site-specific labeling, solid phase peptide synthesis, IgG-binding domains, photoconjugation. Sammanfattning Avhandlingen är baserad på arbeten som varit inriktade på inmärkning av två olika typer av affinitetsmolekyler, dels affibodymolekyler och dels antikroppar. Inmärkningen har skett på ett kontrollerat sätt som för affibodymolekyler lett till förbättrad tumördiagnostik, och för antikroppar bibehållen affinitet efter inmärkning. I första delen av avhandlingen har egenskaper hos Affibodymolekyler som binder den tumör- associerade biomarkören HER2 med hög affinitet studerats i syfte att förbättra visualiseringen av HER2-uttryckande tumörer i djurmodeller. För att kunna urskilja en HER2-uttryckande tumör från övriga organ krävs att den målsökande spårmolekylen ansamlas i tumörvävnaden, och samtidigt har lågt upptag i omgivande vävnad, dvs. ger en bra kontrast. I dessa studier har olika typer av kelatkomplex, DOTA, NOTA och NODAGA, testats för att binda den radioaktiva isotopen 111In till affibodymolekylen. Utvärdering i djurmodeller med tumörer implanterade visade att både val av kelatkomplex samt var kelatkomplexet positionerades i affibodymolekylen resulterade i skillnader i kontrasten. Då metastaser vanligen förekommer i skelett för prostatacancer och i lever för bröstcancer, är det viktigt att dessa organ har ett lågt, icke-specifikt upptag av affibodymolekyler för att kunna urskilja möjliga metastasbildningar. Studierna konkluderade att NOTA och NODAGA är lovande kelat-strukturer för visualisering av prostatacancertumörer vid konjugering C-terminalt med maleimide/tiol-kemi. Uppföljande studier visade vidare att konjugering via en amidbindning N-terminalt gav förbättrad kontrast för DOTA för visualisering av metastaser i lever och skelett i jämförelse mot NOTA och NODAGA, samt att en C-terminal amid-konjugering av DOTA är den mest lovande. I andra delen av avhandlingen har en metod för inmärkning av antikroppar använts, där den antikroppsbindande domänen Z har syntetiserats med en fotoreaktiv grupp för att kovalent kunna korslänkas till en antikropp med UV-ljus, utan att påverka dess bindning. I studien förbättrades konjugeringseffektiviteten genom att optimera placeringen av den fotoreaktiva molekylen i domän Z. En optimerad variant användes i en efterföljande studie i kombination med en funktionell grupp för klick-kemi, för att selektivt kunna koppla en reportergrupp till antikroppen. Vanligen resulterar antikroppsinmärkning i en heterogen produkt vilket kan påverka bindningen, men ovanstående studier presenterar ett lovade alternativ för selektiv inmärkning av antikroppar med bibehållen affinitet. Sammanfattningsvis visar studierna i denna avhandling att en kontrollerad inmärkning av affinitetsproteiner är viktigt, dels för användning av Affibodymolekyler i tumördiagnostiskt syfte, och dels i en metod för selektiv inmärkning av antikroppar utan förlust av dess specificitet. List of publications This thesis is based on the following articles or manuscript, which are referred to in the text by their Roman numerals (I-VI). The articles can be found in the appendix. I Tolmachev V, Altai M, Sandström M, Perols A, Karlström AE, Boschetti F, and Orlova A. (2011) Evaluation of a maleimido derivative of NOTA for site-specific labeling of Affibody molecules. Bioconjug Chem. 22:894-902 II Altai M, Perols A, Karlström AE, Sandström M, Boschetti F, Orlova A, and Tolmachev V. (2012) Preclinical evaluation of anti-HER2 Affibody molecules site-specifically labeled with 111In using a maleimido derivative of NODAGA. Nucl Med Biol. 39:518-529 III Malmberg J*, Perols A*, Varasteh Z, Altai M, Braun A, Sandström M, Garske U, Tolmachev V, Orlova A, and Karlström AE. (2012) Comparative evaluation of synthetic anti-HER2 Affibody molecules site-specifically labelled with 111In using N-terminal DOTA, NOTA and NODAGA chelators in mice bearing prostate cancer xenografts. Eur J Nucl Med Mol Imaging. 39:481-492. IV Perols A*, Honarvar H*, Strand J, Selvaraju RK, Orlova A, Karlström AE, and Tolmachev V. (2012) Influence of DOTA chelator position on biodistribution and targeting properties of 111In-labeled synthetic anti-HER2 Affibody molecules. Bioconjug Chem. 23:1661-1670 V Perols A, and Karlström AE. (2014) Site-specific photoconjugation of antibodies using chemically synthesized IgG-binding domains. Bioconjug Chem. 25:481-488. VI Perols A, Famme MA, and Karlström AE. Site-specific antibody labeling by covalent photoconjugation of Z domains functionalized for alkyne-azide cycloaddition reactions. Manuscript * These authors contributed equally to this work. All papers are reproduced with permission from the copyright holders. Contributions to the papers Paper I Designed, performed and evaluated the protein characterization analyses prior to the radiolabeling and in vitro and in vivo evaluation. Contributed to the writing and editing of the paper. Paper II Designed, performed and evaluated the protein characterization analyses prior to the radiolabeling and in vitro and in vivo evaluation. Contributed to the writing and editing of the paper Paper III Synthesized the variants, designed, performed and evaluated the experiments for protein characterization prior to the radiolabeling and in vitro and in vivo evaluation. Contributed to the writing and editing of the paper Paper IV Synthesized and purified the variants used in the study. Performed all parts of protein characterization experiments prior to the radiolabeling and in vitro and in vivo evaluation. Wrote the paper together with co-authors. Paper V Synthesized the IgG-binding variants used in the study. Designed, performed the conjugation optimization studies and analyzed the results. Created the images for the paper and wrote the paper together with co-author. Paper VI Synthesized the IgG-binding variants used in the study. Design, performed and analyzed the results for the conjugations optimization studies. Created the images for the paper and wrote the paper together with co-authors. Related publications Strand J, Honarvar H, Perols A, Orlova A, Selvaraju RK, Karlström AE, and Tolmachev V. (2013) Influence of macrocyclic chelators on the targeting properties of 68Ga-labeled synthetic Affibody molecules: comparison with 111In-labeled counterparts. PLoS One 8: e70028 Rönnlund D, Xu L, Perols A, Gad AK, Karlström AE, Auer G, and Widengren J. (2014) Multicolor fluorescence nanoscopy by photobleaching: concept, verification, and its application to resolve selective storage of proteins in platelets. ACS Nano 8: 4358-65 Honarvar H, Strand J, Perols A, Orlova A, Selvaraju RK, Karlstrom AE, and Tolmachev V. Position for site-specific attachment of a DOTA chelator to synthetic Affibody molecules has a different influence on the targeting properties of 68Ga- compared to 111In-labeled conjugates. Molecular Imaging, in press. Contents Introduction Chapter 1 - Proteins ..................................................................................................................... 1 Protein chemistry ........................................................................................................................................... 1 Affinity proteins ............................................................................................................................................ 4 Antibody structure and function ........................................................................................................... 4 Antibody fragments ............................................................................................................................... 7 Antibody generation .............................................................................................................................. 8 Antibody therapy ................................................................................................................................... 8 Alternative scaffolds .............................................................................................................................. 9 Affibody molecules .............................................................................................................................. 10 Chapter 2 - Chemical protein synthesis ............................................................................... 14 From solution to solid phase ........................................................................................................................ 14 Solid phase peptide synthesis (SPPS) .......................................................................................................... 15 Fmoc/tBu strategy ................................................................................................................................ 15 Side chain protecting groups........................................................................................................................ 17 Aggregation ................................................................................................................................................. 20 Microwave synthesis ............................................................................................................................ 20 Limitations in solid phase peptide chemistry ............................................................................................. 22 Chapter 3 - Protein labeling.....................................................................................................23 Chemical approaches .................................................................................................................................. 23 Amino groups ...................................................................................................................................... 23 Thiol groups ......................................................................................................................................... 24 Bioorthogonal reactions for labeling proteins ............................................................................................ 24 Cu(I) catalyzed [3+2] alkyne-azide cycloaddition ............................................................................... 25 Strain-promoted [3+2] alkyne-azide cycloaddition ............................................................................ 27 Alternative ligation strategies .............................................................................................................. 28 Introduction of chemoselective handles in recombinantly produced proteins ................................... 28 Radiolabeling for molecular imaging .......................................................................................................... 29 PET and SPECT ................................................................................................................................... 29 Radiometals and chelators for imaging ............................................................................................... 30 Application-specific considerations ..................................................................................................... 32 Present investigation Aim of the thesis ........................................................................................................................ 35 Chapter 4 - Functionalization of Affibody Molecules for Detection of HER2 using Molecular Imaging .................................................................................................................... 36 HER2 as a molecular target......................................................................................................................... 36 Papers I, II and III - The influence of macrocyclic chelators and different conjugation chemistries for radiolabeling of Affibody molecules in molecular imaging. .................................................................. 37 Papers I and II...................................................................................................................................... 37 Paper III ............................................................................................................................................... 40 Conclusions and future outlook ........................................................................................................... 42 Paper IV – The influence on biodistribution from the positioning of the DOTA chelator in the Affibody molecule .................................................................................................................................. 43 Conclusions and future outlook .......................................................................................................................... 45 Chapter 5 - Site specific labeling of antibodies using IgG-binding domains ............. 47 Paper V – Site-specific photoconjugation of antibodies using chemically synthesized IgG-binding domains .................................................................................................................................. 48 Conclusions and future outlook ............................................................................................................51 Paper VI – Site-specific antibody labeling by covalent photoconjugation of Z domains functionalized for alkyne-azide cycloaddition reactions .......................................................................................................... 52 Conclusions and future outlook ........................................................................................................... 55 Concluding remarks and future outlook..............................................................................5 7 Acknowledgements ................................................................................................................... 60 References ................................................................................................................................... 62 List of acronyms %ID/g Percent injected dosage per gram ADC Antibody-drug conjugates ADCC Antibody-dependent cell-mediated cytotoxicity DAR Drug-antibody-ratio DNA Deoxyribonucleic acid DOTA 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid DTPA Diethylenetriaminepentaacetic acid E. coli Escherichia coli EDTA Ethylenediaminetetraacetic acid EGFR Human epidermal growth factor receptor Fab Fragment, antigen binding Fc Fragment crystalizable FcRn Neonatal Fc receptor FDA The Food and Drug Administration FISH Fluorescence in situ hybridization HBTU 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronoium hexa fluorophosphate HC Heavy chain HER2 Human epidermal growth factor receptor 2 HF Hydrofluoric acid HOBt 1-hydroxybenzotriazole kDa kilo Dalton LC Light chain MMA Maleimidoethylmonoamide NODAGA 1-(1,3-carboxypropyl)-4,7-carboxymethyl-1,4,7-triazacyclononane NOTA 1,4,7-triazacyclononane-N,N’,N’’-triacetic acid p.i. post injection PEG Polyethylene glycol PET Positron emission tomography SPECT Single-photon emission computed tomography SPPS Solid phase peptide synthesis TETA 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid TFA Trifluoroacetic acid

Description:
SE-106 91 Stockholm. Printed by TRITA-BIO Report 2014:14. ISSN 1654-2312 studies. School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden. 10. Chapter 2 - Chemical protein synthesis . FcRn. Neonatal Fc receptor. FDA. The Food and Drug Administration. FISH.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.