ebook img

Singularities: The Brieskorn Anniversary Volume PDF

474 Pages·1998·14.268 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Singularities: The Brieskorn Anniversary Volume

Progress in Mathematics Volume 162 Series Editors H. Bass J. Oesterle A. Weinstein Singularities The Brieskom Anniversary Volume Y.I.Arnold G.-M. Greuel J.H.M. Steenbrink Editors Springer Base1 AG Editors: V.I.Amold G.-M. GreueI Department of Geometry and Topology Fachbereich Mathematik Steklov Mathematical Institute Universitiit Kaiserslautem 8, Gubkina Stree D-67653 Kaiserslautem 117966 Moscow GSP-I Germany Russia and CEREMADE J.H.M. Steenbrink Universite Paris-Dauphine Subfaculteit Wiskunde Place du Marechal de Lattre de Tassigny Katholieke Universiteit Nijmegen Postfach 3049 Toemooiveld F-75775 Paris Cedex 16e NL-6525 ED Nijmegen France The Netherlands 1991 Mathematics Subject Classification 14B05, 32SXX, 58C27 A CIP catalogue record for this book is available from the Library of Congress, Washington D.C., USA Deutsche Bibliothek Cataloging-in-Publication Data Singularities : the Brieskom anniversary volume / V. 1. Amold ... ed. (Progress in mathematics ; VoI. 162) ISBN 978-3-0348-9767-9 ISBN 978-3-0348-8770-0 (eBook) DOI 10.1007/978-3-0348-8770-0 This work is subject to copyright. Ali rights are reserved, whether the whole or part of the material is concemed, specifically the rights of translation, reprinting, re-use of illustrations, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind ofuse whatsoever, permission from the copyright owner must be obtained. © 1998 Springer Basel AG Origina1ly published by Birkhlluser Verlag, Basel, Switzerland in 1998 Printed on acid-free paper produced of chlorine-free pulp. TCF 00 ISBN 978-3-0348-9767-9 987654321 Dedicated to Egbert Brieskorn on the Occasion of His 60th Birthday Prof. Dr. Egbert Brieskorn Contents Preface ................................................................ Xlii Gert-Martin Greuel Aspects of Brieskorn's mathematical work XV Publication list ........................................................ XXlll Chapter 1: Classification and Invariants Yuri A. Drozd and Gert-Martin Greuel On Schappert's Characterization of Strictly Unimodal Plane Curve Singularities .............................................. 3 Introduction ....................................................... 3 1 Preliminaries... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Main theorem .................................................. 6 3 Ideals of ideal-unimodal plane curve singularities. . . . . . . . . . . . . . . . 17 References ......................................................... 26 Gert-Martin Greuel and Gerhard Pfister Geometric Quotients of Unipotent Group Actions II 27 Introduction ....................................................... 27 1 Special representations .......................................... 29 2 Free actions .................................................... 32 References ......................................................... 36 Helmut A. Hamm Hodge Numbers for Isolated Singularities of Non-degenerate Complete Intersections ................................................ 37 Introduction ....................................................... 37 1 Mixed Hodge numbers for the link and the vanishing cohomology ....................................... 38 2 Nondegenerate complete intersections ........................... 48 References ......................................................... 59 vii viii Contents Weiming Huang and Joseph Lipman Differential Invariants of Embeddings of Manifolds in Complex Spaces .................................................... 61 1 Normal cones................................................... 63 2 Specialization to the normal cone ............................... 67 3 Differential functoriality of the specialization over lR ............ 70 4 Multiplicities of components of C(V, W) ....................... 73 5 Relative complexification of the normal cone .................... 78 6 Segre classes .................................................... 87 References ......................................................... 92 Andras Nemethi On the Spectrum of Curve Singularities 93 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 2 The properties P(N) (2::::: N ::::: (0). ............................. 94 3 Positive results. The case of plane curve singularities ............ 96 4 The arithmetical approach revisited. Dedekind sums ............ 98 5 Germs without property P(N). ................................. 100 References ......................................................... 101 Mihai Tibiir Embedding Nonisolated Singularities into Isolated Singularities 103 1 Introduction.................................................... 103 2 The main construction.......................................... 104 3 Homotopy type of the Milnor fibre .............................. 108 4 Zeta-function of the monodromy ................................ 111 References ......................................................... 114 Chapter 2: Deformation Theory Andrew A. du Plessis and Charles T. C. Wall Discriminants and Vector Fields....................................... 119 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 120 2 General theory of the discriminant .............................. 123 3 Construction of discriminant matrices and vector fields. . . . . . . . .. 126 4 Vector fields on the target of stable maps ....................... 127 5 Vector fields in the source ....................................... 129 6 The relation between vector fields in source and target .......... 134 7 The instability locus and the discriminant matrix ............... 135 References ......................................................... 138 Contents ix Wolfgang Ebeling and Sabir M. Gusein-Zade Suspensions of Fat Points and Their Intersection Forms 141 Introduction ....................................................... 141 1 p-fold suspensions of icis ....................................... 142 2 Convenient equations and the corresponding real picture ........ 143 3 A distinguished set of vanishing cycles for the icis {x + zP = 0, x ± y2 = O} ............................ 145 4 Enumeration of vanishing cycles and the definition of their orientations ............................................... 146 5 The equivariant intersection form. The equivariant Picard-Lefschetz formula for the Ap- 1 singularity ............... 150 6 The intersection form of the suspension ......................... 152 7 Sketch of the proof of Theorem 2 ............................... 155 8 Relations between vanishing cycles of the distinguished set ...... 158 9 Examples....................................................... 159 References ......................................................... 165 Claus H ertling Brieskorn Lattices and Torelli Type Theorems for Cubics in lP'3 and for Brieskorn-Pham Singularities with Coprime Exponents ............ 167 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 167 2 Hypersurface singularities and polarized mixed Hodge structures 171 3 Brieskorn lattice ................................................ 175 4 The invariant BL ............................................... 180 5 Semiquasihomogeneous singularities with weights (~, ~, ~, ~) ... 183 6 Brieskorn-Pham singularities with pairwise coprime exponents .. 188 References ......................................................... 193 Eugenii Shustin Equiclassical Deformation of Plane Algebraic Curves .................. 195 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 2 Preliminaries................................................... 198 3 Proof of Theorem 1.1 ........................................... 199 4 Proof of Corollary 1.3 ........................................... 202 5 Proof of Theorem 1.4 ........................................... 203 References ......................................................... 203 Victor A. Vassiliev Monodromy of Complete Intersections and Surface Potentials ......... 205 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 205 2 Vanishing homology and local monodromy of complete intersections .......................................... 207 3 Surface potentials and Newton-Ivory-Arnold theorem........... 211 x Contents 4 Monodromy group responsible for the ramification of potentials .................................................... 214 5 Description of the small monodromy group and finiteness theorems in the cases n = 2 and d = 2 .......................... 222 6 Proof of Theorems 7, 8 ......................................... 226 References ......................................................... 233 Appendix to the paper of V.A. Vassiliev (by Wolfgang Ebeling) ..... 235 References ......................................................... 237 Chapter 3: Resolution Klaus Altmann P-Resolutions of Cyclic Quotients from the Toric Viewpoint 241 1 Introduction... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 241 2 Cyclic quotient singularities ..................................... 242 3 The maximal resolution ......................................... 244 4 P-resolutions................................................... 246 References ......................................................... 249 Antonio Campillo and Gerard Gonzalez-Sprinberg On Characteristic Cones, Clusters and Chains of Infinitely Near Points ................................................. 251 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 251 2 Characteristic cones, complete ideals and sandwiched varieties ........................................... . 252 3 Cones and constellations of infinitely near points ............... . 254 4 Clusters and chains of infinitely near points .................... . 258 References ........................................................ . 261 Heiko Cassens and Peter Slodowy On Kleinian Singularities and Quivers 263 Introduction ...................................................... . 263 1 Reminder on Kleinian singularities ............................. . 264 2 McKay's observation ........................................... . 266 3 Symplectic geometry and momentum maps .................... . 267 4 Kronheimer's work ............................................. . 271 5 Quivers ........................................................ . 273 6 Linear modifications ........................................... . 277 7 Simultaneous resolution ........................................ . 280 References ........................................................ . 285

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.