SINGULARITIES OF THE AREA PRESERVING CURVE SHORTENING FLOW WITH A FREE BOUNDARY CONDITION ELENAMA¨DER-BAUMDICKER Abstract. WeconsidertheareapreservingcurveshorteningflowwithNeumann 7 freeboundaryconditionsoutsideofaconvexdomainoratastraightline.Wegive 1 acriteriononconvex initialcurves thatguarantees theappearance ofatypeII 0 2 singularityinfinitetime. Anappropriaterescalingatthefinitemaximaltimeof existenceyieldsagrimreaperorhalfagrimreaperaslimitflow. Weconstruct n examplesofinitialcurvessatisfyingthementionedcriterion. a J 1 3 1. Introduction ] G Theareapreservingcurveshorteningflow(APCSF)forclosedplanecurveswas D introduced byM.Gagein1986[6]. Itisthe“steepest descendflow”forthelength . functional under the constraint that the enclosed area is constant. For a family of h simpleclosedcurvesγ : S1×[0,T) → R2,theevolution equationturnsouttobe t a m d κds 2π γ = κ− ν = κ− ν, [ dt R L L ! 1 where we use the following notation: ν = Jτ is the normal of the curves, where v J is the rotation by +π; κ is the curvature with respect to ν, L is the length of 8 2 4 the curves and ds denotes integration by arclength. M. Gage proved in [6] that a 9 strictly convexsimpleclosedcurveremainsstrictly convexundertheAPCSF.The 8 curves converge for t → ∞smoothly to acircle enclosing the same enclosed area 0 asγ . Thus,theflowconverges tothesolution oftheisoperimetric problem inR2. . 0 1 This problem consists in finding the shortest closed curve enclosing a fixed area. 0 7 Theanalogresultforn-surfacesinRn+1,n ≥ 2wasprovedbyG.Huiskenin[9]: A 1 uniformly convex, embedded surface moving according to the volume preserving v: meancurvatureflowstaysuniformlyconvexandexistsforalltimest ∈ [0,∞). The i moving surfaces converge smoothly toasphere enclosing the samevolume as the X initialsurface. r a Weconsider theAPCSFinafreeboundary setting andwanttoknowwhenand how singularities develop. Butatfirst werecall what isknown about singularities intheclosedsituation. J. Escher and K. Ito considered in [5] immersed closed curves possibly with self-intersections. Then the evolution equation is dγ = κ− 2πm ν where m ∈ Z dt L is the index (or turning number) of the immersed closed(cid:16)curves.(cid:17)The index m is independent of time. Escher and Ito proved that an immersed curve with m ≥ 1 andenclosedareaA < 0orm ≥ 2andL2 < 4πmA developsasingularityinfinite 0 0 0 time. TheproofisinspiredbytheworkofK.-S.Chouonthesurfacediffusionflow KarlsruheInstitute ofTechnology,Institute forAnalysis, Englerstr. 2, 76131Kalrsruhe, Germany E-mail address: [email protected]. 1 2 E.MA¨DER-BAUMDICKER for curves [2]. X.-L. Wang and L.-H. Kong also studied immersed closed curves movingaccordingtotheAPCSF[16]. Theyprovedthattheflowexistsforalltimes andconvergessmoothlytoanm-foldcirclewhentheinitialcurveisconvexandhas so-called “n-fold rotational symmetry” and index m (n > 2m). Onthe other hand, “Abresch-Langertype”curveseitherconvergetoamultiplecoverofacircle(when A > 0) or the curvature blows up at finite time (when A < 0) or the curvature 0 0 blows upat themaximal time ofexistence (when A = 0), see [16, Theorem 1.2]. 0 Notethatthereareexamples whereonlyaslightchange isnecessary todeform an initialcurvewithA < 0intoonewith A = 0andthenintoonewithA > 0. 0 0 0 Wenow explain the free boundary setting of the APCSFwhich was studied by the author in [12, 11]. Let Σ ⊂ R2 be a convex simple closed curve in the plane and orient it positively. Wecall Σ the support curve. It is not moving in time. An initialcurveγ : [a,b] → R2 isacurvethatsatisfiesγ (a),γ (b) ∈ Σand 0 0 0 π π (1) ∠ τ (a),Σ~τ(γ (a)) = , ∠ τ (b),Σ~τ(γ (b)) = − , R2 0 0 R2 0 0 2 2 (cid:16) (cid:17) (cid:16) (cid:17) where ∠ denotes the oriented angle in R2, Σ~τ is the tangent of Σ and τ is the 0 tangent ofγ . Theseconditions meanthatthecurveγ startsinΣinto theexterior 0 0 domain with respect to Σ and comes back from the exterior. The contact angles are 90 degree angles. Wenow let the curve γ flow according to the APCSFsuch 0 that these conditions are preserved, i.e. γ : [a,b] ×[0,T) → R2 satisfies (1) and γ(a,t),γ(b,t) ∈ Σforallt ∈ [0,T)and d κds γ = κ− ν. dt R L Asthecurvesarenotclosedthequantity κdsisnotanintegertimes2πingeneral. It is in fact the first step to find conditioRns that guarantee a bound of κ¯ := κds R L independent of t. In [12], the author proved that the flow in this setting does not developasingularity whentheinitialcurvesatisfiesfourconditions: i) γ isstrictlyconvex, 0 ii) itisembedded, iii) itiscontained intheexteriordomainwithrespecttoΣand iv) itsatisfies L < 4 arcsin A0 , 0 5max|Σκ| L2 (cid:18) 0(cid:19) where A istheenclosed areaofthedomainenclosed byγ andthepartofΣcon- 0 0 necting γ (b) and γ (b). Furthermore, the curves γ(·,t) subconverge smoothly for 0 0 t → ∞toanarcofacirclesittingoutside ofΣandmeetingΣperpendicularly. Inthispaperweanswerthefollowingquestionsthatnaturallyarisewhenstudy- ingthissetting: • Can convex curves develop a singularity under the APCSF in the free boundary setting? • Dotheyappearinfinitetime? • Ofwhattypearethesingularities? • Howdoesablowupatthesingulartimelooklike? Forourmaintheoremwehavetointroduce somenotation. Letγ :[a,b] → R2 be 0 an initial curve with κ > 0. Define σ˜ as the connection of γ (a) to γ (b) along 0 0 0 0 Σ (with the positive orientation of Σ). In the case γ (a) = γ (b) we choose σ˜ to 0 0 0 SINGULARITIESFORACONSTRAINTCURVATUREFLOW 3 be one full circulation of Σ. The assembled curve γ −σ˜ is a closed curve with 0 0 exterior angles +π. Then we call the index of γ − σ˜ , l := ind(γ − σ˜ ) ∈ Z, 2 0 0 0 0 the loop number of γ . Define Σd ≔ min{|x− y| : x,y ∈ Σ,Σ~τ(x) = −Σ~τ(y)} and 0 let A(γ ,σ˜ ) be the oriented enclosed area of γ −σ˜ . The enclosed area of Σ is 0 0 0 0 denotedby A(Σ). Withthisnotation wecanstateourmaintheorem: Theorem1.1. Letγ : [a,b] →R2beaninitialcurvewithloopnumberlsatisfying 0 Σ κ > 0and L < d. Weconsider threedifferentsituations: 0 0 i) Either∠ Σ~τ(γ (a)),Σ~τ(γ (b)) ∈ (0,π)andγ satisfies A(γ ,σ˜ )> 0and R2 0 0 0 0 0 L20 ≤ π(cid:16)(2l−1)2. (cid:17) A(γ0,σ˜0) l ii) Or∠ Σ~τ(γ (a)),Σ~τ(γ (b)) ∈ (π,2π]andγ satisfiesA(γ ,σ˜ )+A(Σ)> 0 R2 0 0 0 0 0 and (cid:16) L20 ≤ π(2l+1)2.(cid:17) A(γ0,σ˜0)+A(Σ) l+1 iii) Or∠ Σ~τ(γ (a)),Σ~τ(γ (b)) ∈ (0,π)and A(γ ,σ˜ )< 0. R2 0 0 0 0 Inanyofthesec(cid:16)asesthesolutionof(cid:17)theareapreservingcurveshorteningflowwith Neumann free boundary conditions outside of Σ develops a singularity in finite time,i.e.T < ∞. Thesingularity isoftypeIIinthesensethat max sup |κ|(p,t) → ∞(t → T )and max p∈[a,b] sup |κ|2(p,t)(T −t) isunbounded. max p∈[a,b](cid:16) (cid:17) The“Hamiltonblow-up” atT yieldseither agrim reaperwithout boundary or max halfagrimreaperatastraightline. Remark i) The “Hamilton blow-up” was defined in [7]. We will explain it intheproofofCorollary2.19. ii) There is numerical evidence given by U. F. Mayer [13] that there are em- bedded closed curves that at first get a self-intersection and then develop a singularity under the APCSF. In the free boundary setting, it seems to bethecasethatthereareinitiallyembeddedcurvesthatstayembeddedbut developasingularityinfinitetime. Theseexamplesofinitialcurvessatisfy conditionii)fromTheorem1.1,seeExampleThreeinSection3. Wethink thatthesecurvesdevelopasingularity attheboundary. Wealsostudythesituation atastraightline. Theresultisasfollows. Theorem 1.2. Let γ : [a,b] → R2 be an initial curve at a straight line Σ with 0 κ > 0. Let δ be the closed curve getting by reflecting γ at Σ. Let ind(δ ) =: m 0 0 0 0 be the index of δ . Then m = 2k+1, k ∈ N∪{0}. And the area preserving curve 0 shortening flow with Neumann free boundary conditions at the line Σ develops a typeIIsingularity infinitetimeifoneofthefollowingconditions issatisfied: i) Either A(δ ) < 0. 0 ii) Orm ≥ 3and L(δ )2 < 4πmA(δ ). 0 0 The structure of this paper is as follows. In Section 2 we recall definitions and some results from [11]that are necessary for the proof of Theorem 1.1. Then, we prove uniform bounds 0 < c ≤ κ¯(t) ≤ c < ∞ and L(γ(·,t)) ≥ c > 0 under 1 2 3 the conditions of Theorem 1.1. These bounds imply with [12] subconvergence to a part of a circle that is possibly (partly) multicovered. Together with the results from[12]wegetthatthatthesingularity isoftypeII. 4 E.MA¨DER-BAUMDICKER InSection3,wegiveexamplesofcurvesthatdosatisfytheconditions ofTheo- rem1.1andthusdevelopatypeIIsingularity infinitetime. Section4contains theproof ofTheorem 1.2. WereflectthecurvesatthelineΣ andapplytheresultsfrom[5]. Wecombinethiswithresultsfrom[12]toshowthat thesingularity isoftypeII. Acknowledgment TheauthorwouldliketothankJonasHirschforveryusefuldiscussions. 2. SingularitiesoftypeIIinfinitetime Notations Let f : [a,b] → Rn, n ∈ {1,2}, be a C1-map, f = f(p). Let γ : [a,b] → R2 be a piecewise smooth, regular curve. We denote by ∂ f ≔ 1 ∂ f s |∂pγ| p the derivative with respect to arclength of f. We define ds ≔ |∂ γ|dp. We recall p theformulaforthecurvature ofγ κ(p) = h∂2γ(p),ν(p)i, s where ν = Jτ = J∂ γ is the normal of the curve γ, J is the rotation by +π in the s 2 plane. Definition 2.1. We call a smooth, regular, convex, simple and smoothly closed curve Σf : [Σa,Σb] → R2 a support curve. We assume Σf to be parametrized by arclength. We choose the orientation of the curve in the way that Σκ ≥ 0. We use thenotation Σ ≔ Σf [Σa,Σb] . (cid:16) (cid:17) ConsidertheperiodicextensionofΣf andcallitΣf˜:R → R2. Weusethenotation a2ΣκdsΣ fortheintegralofthecurvature ΣκofΣf˜froma ∈ Rtoa ∈ R. a1 1 2 BRy the Jordan curve theorem, the curve Σ separates R2 into a bounded and an unbounded domain. Thebounded domainisenclosed byΣandisdenoted byGΣ. We define Σd ≔ min{|x − y| : x,y ∈ Σ,Σ~τ(x) = −Σ~τ(y)}, the smallest distance betweentwoparallellinesinR2 thattouchGΣ. Definition 2.2. A planar, smooth, regular curve γ : [a,b] → R2 is called initial 0 curveifitsatisfiestheconditions γ (a),γ (b) ∈ Σ 0 0 π ∠ τ (a),Σ~τ(γ (a)) = , R2 0 0 2 (cid:16) (cid:17) π ∠ τ (b),Σ~τ(γ (b)) = − , R2 0 0 2 (cid:16) (cid:17) whereτ = ∂ γ isthetangent ofγ andΣ~τisdefinedby 0 s 0 0 Σ~τ: Σ → S1 ⊂ R2, Στ= Σ~τ◦Σf, where Στ is the tangent of Σ. The symbol ∠ (v,w) denotes the oriented angle R2 betweentwovectorsv,w ∈ R2. SINGULARITIESFORACONSTRAINTCURVATUREFLOW 5 Definition2.3. Letγ : [a,b] →R2beaninitialcurve. Asmoothfamilyofsmooth, 0 regularcurvesγ :[a,b]×[0,T) → R2 thatsatisfies ∂γ (p,t) = (κ(p,t)−κ¯(t))ν(p,t) ∀(p,t) ∈ [a,b]×[0,T), ∂t γ(p,0) = γ (p) ∀p∈ [a,b], 0 (2) γ(a,t),γ(b,t) ∈ Σ ∀t ∈ [0,T), π ∠ τ(a,t),Σ~τ(γ(a,t)) = ∀t ∈ [0,T), R2 2 (cid:16) (cid:17) π ∠ τ(b,t),Σ~τ(γ(b,t)) = − ∀t ∈ [0,T) R2 2 (cid:16) (cid:17) iscalledasolutionoftheareapreservingcurveshorteningproblemwithNeumann freeboundary conditions. Here,κ¯ denotestheaverage ofthecurvature, κ(p,t)ds κ(p,t)ds κ¯(t)≔ = . R ds RL(γ(·,t)) R Remark For a smooth initial curve, the existence and uniqueness of the solution of (2) is standard. One gets short time existence on a short time interval [0,T ]. 0 The solution can be extended up to a maximal time of existence T ≤ ∞. By max regularity theoryforparabolic Neumannproblemsthecurvessatisfy γ ∈C2+α,1+α2 [a,b]×[0,Tmax),R2 ∩C∞ [a,b]×(0,Tmax),R2 , α ∈(0,1), (cid:16) (cid:17) (cid:16) (cid:17) where C2+α,1+α2 denotes the usual parabolic Ho¨lder space. If Tmax < ∞ then max |κ|(·,t) → ∞ (t → T ). A source for the existence for closed curves [a,b] max moving by a geometric flow with a constraint is for example [4]. The technique how to transform the free boundary problem into a standard Neumann boundary problem can be found in [14, 15]. For our specific situation a sketch of the exis- tenceandregularity resultisin[12,Proposition 2.4]. Definition 2.4. Let Σ be a support curve and let γ : [a,b] → R2 be a curve with γ(a),γ(b) ∈ Σ. Then we call a curve σ : [a˜,b˜] → Σ ⊂ R2 with σ(a˜) = γ(a) and σ(b˜) = γ(b)aboundary curveonΣwithrespecttoγ. Definition 2.5. Let γ : [a,b] × [0,T) → R2 be a solution of (2). Consider a C1-family of smooth curves σ : [a˜,b˜] × [0,T) → Σ with σ(a˜,t) = γ(a,t) and σ(b˜,t) = γ(b,t) for all t ∈ [0,T), i.e. σ ≔ σ(·,t) is a boundary curve on Σ with t respect to γ ≔ γ(·,t). Then for each t ∈ [0,T), we call the following expression t theorientedareaenclosed byγ andΣ: t 1 1 (3) A(γ,σ)≔ p1dp2− p2dp1 − p1dp2 − p2dp1. t t 2Z 2Z γt σt Werecallsomebasicproperties provedin[12]. Lemma2.6(Lemma2.6,Lemma2.11andCorollary 2.14[12]). Letγ : [a,b] → 0 R2 be a smooth initial curve. Then we have the following properties: The area preserving curve shortening flow is curve shortening and area preserving, i.e. dL(γ) ≤ 0 and dA(γ,σ) = 0 on [0,T), where γ : [a,b] × [0,T) → R2 is a dt t dt t t solution of (2)and σ : [a˜,b˜]×[0,T) → Σ is aC1-family of boundary curve on Σ withrespecttoγ. 6 E.MA¨DER-BAUMDICKER AsthedomainGΣ isconvexandweare“outside”ofΣtheflowimprovesconvexity tostrictconvexity. Thisis,κ ≥ 0fortheinitialcurveimpliesκ > 0on[a,b]×(0,T). 0 Remark Ifγ isasmooth initialcurve thenaC1-familyofboundary curvesσon 0 Σ with respect to γ exists. This was proved in [12, Lemma 2.9]. In the case that κ > 0wewillalsoshowthisinLemma2.13. 0 Wenowstartwithprovingsomebasicgeometricproperties ofourcurves. Definition 2.7. Let f : [a,b] → R2 be a piecewise smooth, regular and closed curve. Thenumber ind(f) ≔n(∂ f,0) ∈ Z p is called the index (or turning number) of f. Here, n(∂ f,0) denotes the winding p numberofthecurve∂ f :[a,b] → R2 withrespectto0 ∈ R2. p Proposition 2.8. LetΣ ⊂ R2 beapositively oriented convex smoothJordan curve andletγ : [a,b] → R2 beaC2-curvewithκ > 0and γ(a),γ(b) ∈ Σ, π ∠ τ(a),Σ~τ(γ(a)) = , R2 2 (cid:16) (cid:17) π ∠ τ(b),Σ~τ(γ(b)) = − . R2 2 (cid:16) (cid:17) Thenwehavethat κds ≥ π. Furthermore, ifγ(a) = γ(b)then κds ≥ 3π. R R Proof. In [12, Proposition 3.1], it was shown that the geometric situation of the curves imply κds ≥ π. Thestatement therewasformulated forasolution of(2). Buttheonly pRroperties ofthecurves thatareused intheproof arestrict convexity andtheboundary conditions. Ifγ(a) = γ(b)then (4) κds > π Z was proved in [12, Proposition 3.1] as well. We improve this to κds ≥ 3π. By assumption, γ is a closed piecewise smooth curve with exterior aRngle π at γ(a) = γ(b). Bytheindextheorem (seeTheoremA.1)wegetthat 1 1 Z ∋ k := ind(γ) = κds+ . 2π Z 2 We use (4) to get π < κds = 2kπ−π which implies k > 1. Thus, we have that k ≥ 2and κds = 2kπR−π ≥ 3π. (cid:3) R Lemma 2.9. Let γ : [a,b] → R2 be an initial curve with κ > 0. Define the 0 0 “simplest”boundarycurveσ˜ onΣwithrespecttoγ astheconnectionofγ (a)to 0 0 0 γ (b) along Σ (with the positive orientation of Σf). In the case that γ (a) = γ (b) 0 0 0 then we choose σ˜ to be one full circulation of Σ. With these definitions we have 0 that (5) ind(γ −σ˜ ) =:l∈ N, 0 0 whereγ −σ˜ denotes thecurve whichisassembled byγ and (inreversed direc- 0 0 0 tion)σ˜ . 0 SINGULARITIESFORACONSTRAINTCURVATUREFLOW 7 Proof. LetΣf˜: R → ΣbetheperiodicextensionofthesupportcurveΣf anddefine a ≔Σf−1(γ (a)), 0 0 Σf−1(γ (b)) ifΣf−1(γ (b)) > a b ≔ 0 0 0 0 ( Σf−1(γ0(b))+(Σb−Σa) ifΣf−1(γ0(b)) ≤ a0. This definition makes sure that a < b ≤ a + (Σb − Σa). Now the “simplest” 0 0 0 boundary curveonΣwithrespecttoγ is 0 σ˜ (p) ≔ Σf˜((b −a )p+a ) for p∈ [0,1]. 0 0 0 0 Thiscurveistheconnectionofγ (a)toγ (b)alongΣ,inparticularwiththepositive 0 0 orientation ofΣf˜. Itissmooth andregular. Notethat inthecase γ (a) = γ (b) the 0 0 boundarycurveσ˜ isexactlyoneperiodofΣf˜,thusσ˜ isclosedand κ ds = 0 0 σ˜0 σ˜0 σ˜0 b0ΣκdsΣ = 2πinthis case. Ingeneral, thecurve σ˜ satisfies 0 ≤ bR0ΣκdsΣ ≤ 2π a0 0 a0 bRecauseofa < b ≤ a +(Σb−Σa). Nowwedefineγ˜ = γ −σ˜ :R[a,b+1] → R2 0 0 0 0 0 0 by γ (p) for p ∈ [a,b], γ˜ (p) ≔ 0 0 Σf˜(−(b −a )(p−b)+b ) for p ∈ (b,b+1]×[0,T). 0 0 0 This is the closedcurve assembled by γ and in reversed direction σ˜ . The curve 0 0 γ˜ ispiecewisesmooth, regularandhasexteriorangles π. 0 2 Bytheformulafortheindex(seeTheoremA.1inAppendixA)wehave ind(γ˜0) = 1 κds|t=0 − 1 b0ΣκdsΣ + 1 ≕ l∈ Z. 2π Z 2π Z 2 a0 Weprovel∈ N. Ifl ≤ −1then b0Σ Σ κds|t=0 ≤ κds −3π ≤ 2π−3π < 0, Z Z a0 acontradiction toκ > 0,hencel≥ 0. Butweevenhavel ≥ 1: Ifl = 0then 0 (6) π ≤ κds|t=0 = −π+ b0ΣκdsΣ ≤ −π+2π = π, Z Z a0 where we used κds|t=0 ≥ π from Proposition 2.8. The boundary conditions imply that thereRcannot be any curvature of Σ between γ (a) and γ (b): Since 0 0 γ0(a) = γ0(b) would imply κds|t=0 ≥ 3π (due to Proposition 2.8) we have that γ (a) , γ (b). AfterrotationRand translating weare inthe situation γ (a) = 0and 0 0 0 γ0(b)−γ0(a) = −e . Because of the convexity and the positive orientation of Σ, we |γ0(b)−γ0(a)| 1 have Σ hγ(b)−γ(a), ν(γ(a))i ≥ 0. We hence get hΣ~τ(γ(a)),e i ≥ 0 and hΣ~τ(γ(b)),e i ≤ 0. The boundary conditions 2 2 imply hτ(a),e1i ≥ 0 and hτ(b),e1i ≥ 0. The only way to get κds|t=0 = π is that τ (a) = e and τ (b) = −e , every other angle of the tangentRwould imply more 0 2 0 2 contribution to the angle κds|t=0. But by the convexity of Σ the line segment between γ (a) and γ (b) mRustbe inΣ, soweare inthe situation ofFigure 1. This 0 0 8 E.MA¨DER-BAUMDICKER Σ γ (b) γ (a) 0 0 Figure1. Thecase κds = π R impliesthattheboundarycurveσ˜ isthestraightlinebetweenγ (a)andγ (b). By 0 0 0 theformulafortheindex,wethenhave 1 1 ind(γ˜0)= κds|t=0 + = 1 2π Z 2 whichcontradicts l = 0. (cid:3) Definition 2.10. Let γ : [a,b] → R2 be an initial curve with κ > 0 on [a,b]. 0 0 Then wecall l ≔ ind(γ −σ˜ ) the loop number of γ , where σ˜ is the “simplest” 0 0 0 0 boundary curveonΣwithrespecttoγ dueLemma2.9. Wehaveprovedl∈ N. 0 Lemma2.11. Letγ : [a,b] → R2 bean initial curve withκ > 0on [a,b]. Then 0 0 thereisaboundary curveσ :[0,1] → ΣonΣwithrespecttoγ suchthat 0 0 ind(γ −σ ) = +1, 0 0 whereγ −σ denotes thecurve whichisassembled byγ and (inreversed direc- 0 0 0 tion)σ . 0 Proof. In Lemma 2.9 we showed that the loop number l of γ satisfies l ∈ N. In 0 general, l can be big. We now define a boundary curve on Σ with respect to γ 0 that compensates high contribution of κds|t=0 to the index l. If l = ind(γ˜0) = 1 we are done and define σ ≔ σ˜ . So wRe assume l ≥ 2. Now we define σ to be 0 0 0 theboundarycurvewhichstartsinγ (a)andendsinγ (b)butcirculatestheclosed 0 0 curveΣ(l−1)-manytimes: σ (p) ≔ Σf˜ (b +(l−1)(Σb−Σa)−a )p+a , p ∈ [0,1]. 0 0 0 0 (cid:16) (cid:17) Thenγˆ = γ −σ isregularbecause a < b ≤ b +(l−1)(Σb−Σa). Theclosed, 0 0 0 0 0 0 piecewise smooth curve γˆ has exterior angles +π. We use the formula for the 0 2 index(TheoremA.1),toget ind(γˆ0)= 1 κds|t=0 − 1 b0+(l−1)(Σb−Σa)ΣκdsΣ + 1 2π Z 2π Z 2 a0 = 21π Z κds|t=0 − 21π Z b0ΣκdsΣdsγˆ0 + 12 − 21π(l−1)2π a0 = ind(γ˜ )−(l−1) = 1. 0 (cid:3) SINGULARITIESFORACONSTRAINTCURVATUREFLOW 9 Lemma2.12. Letγ : [a,b] → R2beaninitialcurvewithκ > 0andloopnumber 0 0 l ∈ N. Letγ : [a,b]×[0,T) → R2 bethesolution of(2). Recall a ≔ Σf−1(γ (a)), 0 0 Σf−1(γ (b)) ifΣf−1(γ (b)) > a b ≔ 0 0 0 0 ( Σf−1(γ0(b))+(Σb−Σa) ifΣf−1(γ0(b)) ≤ a0. Thenthereexistuniquemapsa :[0,T) → Randb :[0,T) → Rsuchthat a(0) = a andΣf˜(a(t)) = γ(a,t)∀t ∈ [0,T), 0 b(0) = b andΣf˜(b(t)) = γ(b,t)∀t ∈ [0,T). 0 ThesemapsareC1 on[0,T)andsmoothon(0,T). Proof. Themapsa,b : [0,T) → Raretheliftsofγ(a,t)andγ(b,t)witha(0) = a 0 and b(0) = b , see [3, Chapter 5.6, Proposition 2]. Tobe very precise we get lifts 0 on[0,T−ǫ]foreveryǫ > 0. Byuniquenesstheliftsa,barewell-definedon[0,T). The differentiability follows because γ(a,·) and γ(b,·) are C1 in zero and smooth on(0,T). (cid:3) Lemma2.13. Letγ : [a,b] → R2beaninitialcurvewithκ > 0andloopnumber 0 0 l ∈ N. Letγ : [a,b]×[0,T) → R2 bethesolution of(2). Define σ(p,t)≔ Σf˜ (b(t)+(l−1)(Σb−Σa)−a(t))p+a(t) , p∈ [0,1], wherea,b : [0,T) →(cid:16)Raretheliftsofγ(a,t)andγ(a,t)from(cid:17) Lemma2.12. Define theassembledcurves γ¯ ≔γ−σ. Thenγ¯ hasthefollowing properties: i) a(t) < b(t) +(l−1)(Σb−Σa) ∀t ∈ [0,T). This implies in particular that γ¯(·,t)=:γ¯ isregular foreveryt ∈ [0,T). t ii) For all t ∈ [0,T), the curves γ¯ are piecewise smooth, regular, closed and t theyhaveexteriorangles π. Withrespecttot,γ¯ isC1 on[0,T)andsmooth 2 on(0,T). iii) ind(γ¯ )= 1 ∀t ∈ [0,T). t iv) κds = (2l−1)π+ b(t)ΣκdsΣ ∀t ∈ [0,T). a(t) R R Proof. Asl ∈ Nandthedefinitionofa ,b wegeta < b ≤ b +(l−1)(Σb−Σa). 0 0 0 0 0 Weassumethat thereisatimet ∈ (0,T)witha(t ) = b(t )+(l−1)(Σb−Σa)and 0 0 0 a(t) < b(t)+(l−1)(Σb−Σa)on[0,t ). Thenσ areregularfort ∈ [0,t ). Theindex 0 t 0 formula(Theorem A.1)implies 1 1 b(t)+(l−1)(Σb−Σa) 1 ind(γ −σ) = κds− ΣκdsΣ + , t t 2π Z 2π Z 2 a(t) where we used that −σ is negatively oriented. We have ind(γ −σ ) = 1 due to t 0 0 thedefinitionofγ andLemma2.11. Continuityoftheindexintimplies t b(t)+(l−1)(Σb−Σa) (7) κds = π+ ΣκdsΣ fort ∈ [0,t ). 0 Z Z a(t) This yields κdst=t0 = π and we get a contradiction to Proposition 2.8 because a(t ) = b(t )R+(l−1)(Σb−Σa)impliesγ(a,t ) = γ(b,t ). Thisshows(i). Nowthe 0 0 0 0 otherproperties followimmediately. (cid:3) 10 E.MA¨DER-BAUMDICKER Remark We mention here that the statements from the beginning of Section 2 up to here were proved in [11, Section 3 & 4]. In Theorem 4.2.4 [11], a bound 0 < c ≤ κ¯(t) ≤ c < ∞wasshownundertheconditionT < ∞. Wewanttofind 1 2 max conditions on the initial curve that guarantee a bound on κ¯ even if T = ∞. We max dothisinthefollowing. Proposition 2.14. Let γ : [a,b] → R2 be an initial curve with κ > 0 and loop 0 0 number l ∈ N and L < Σd = min{|x − y| : x,y ∈ Σ,Σ~τ(x) = −Σ~τ(y)}. Let 0 γ : [a,b]×[0,T)bethesolutionof(2). Thentherearetwopossibilities. i) Either∠ Σ~τ(γ (a)),Σ~τ(γ (b)) ∈ (0,π). Thenwehavethat R2 0 0 (cid:16) (cid:17) κds ∈ ((2l−2)π,2lπ)∀t ∈ [0,T). Z ii) Or∠ Σ~τ(γ (a)),Σ~τ(γ (b)) ∈ (π,2π]. Then R2 0 0 (cid:16) (cid:17) κds ∈ (2lπ,(2l+2)π)∀t ∈ [0,T). Z Proof. As|γ (a)−γ (b)| ≤ L < ΣdwegetΣ~τ(γ (a)) , −Σ~τ(γ (b)). ByLemma2.13 0 0 0 0 0 wehaveforeveryt ∈ [0,T) b(t) (8) κds = (2l−1)π+ ΣκdsΣ Z Z a(t) Casei)meansthat∠ Σ~τ(γ (a)),Σ~τ(γ (b)) = b0ΣκdsΣ ∈ (0,π).Nowweget R2 0 0 a0 (cid:16) (cid:17) R b(t) Σ Σ (9) κds ∈ (−π,π)forallt ∈ [0,T). Z a(t) We prove this by contradiction. If there is a t ∈ [0,T) with b(t)ΣκdsΣ < −π a(t) b(t)Σ Σ R (or κds > π) then continuity implies that there must be a t < t such that a(t) 0 b(t0R)ΣκdsΣ = −π(orπ). Butthisyields a(t0) R ∠ Σ~τ(γ(a,t ),Σ~τ(γ(b,t )) = −πor R2 0 0 ∠ (cid:16)Σ~τ(γ(a,t ),Σ~τ(γ(b,t ))(cid:17) = π. R2 0 0 (cid:16) (cid:17) InanycaseΣ~τ(γ(a,t )) = −Σ~τ(γ(b,t ))whichcontradicts 0 0 Σ |γ(a,t )−γ(b,t )| ≤ L(γ ) ≤ L < d. 0 0 t0 0 In Case ii) wehave that ∠ Σ~τ(γ (a)),Σ~τ(γ (b)) = b0ΣκdsΣ ∈ (π,2π]. With (8) R2 0 0 a0 wehavetoprove b(t)ΣκdsΣ(cid:16)∈ (π,3π)forallt ∈ ((cid:17)0,TR). ThisfollowsasinCasei). a(t) (cid:3) R Proposition 2.15. Letγ : [a,b]×[0,T ) → R2 be the solution of (2)where the max initial curve γ : [a,b] → R2 has loopnumber land satisfies κ > 0and L < Σd. 0 0 0 Furthermore, weassumethatγ satisfies 0 i) A(γ ,σ ) , −(l−1)A(Σ) if∠ Σ~τ(γ (a)),Σ~τ(γ (b)) ∈ (0,π)or 0 0 R2 0 0 ii) A(γ ,σ ) , −lA(Σ) if∠ Σ~τ(γ(cid:16)(a)),Σ~τ(γ (b)) ∈ (π(cid:17),2π]. 0 0 R2 0 0 Thenthereisaconstant δ > 0such(cid:16)that L(γ) ≥ δforal(cid:17)lt ∈ [0,T ). t max