ebook img

Singularities of the area preserving curve shortening flow with a Neumann free boundary condition PDF

0.18 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Singularities of the area preserving curve shortening flow with a Neumann free boundary condition

SINGULARITIES OF THE AREA PRESERVING CURVE SHORTENING FLOW WITH A FREE BOUNDARY CONDITION ELENAMA¨DER-BAUMDICKER Abstract. WeconsidertheareapreservingcurveshorteningflowwithNeumann 7 freeboundaryconditionsoutsideofaconvexdomainoratastraightline.Wegive 1 acriteriononconvex initialcurves thatguarantees theappearance ofatypeII 0 2 singularityinfinitetime. Anappropriaterescalingatthefinitemaximaltimeof existenceyieldsagrimreaperorhalfagrimreaperaslimitflow. Weconstruct n examplesofinitialcurvessatisfyingthementionedcriterion. a J 1 3 1. Introduction ] G Theareapreservingcurveshorteningflow(APCSF)forclosedplanecurveswas D introduced byM.Gagein1986[6]. Itisthe“steepest descendflow”forthelength . functional under the constraint that the enclosed area is constant. For a family of h simpleclosedcurvesγ : S1×[0,T) → R2,theevolution equationturnsouttobe t a m d κds 2π γ = κ− ν = κ− ν, [ dt  R L  L ! 1 where we use the following notation: ν = Jτ is the normal of the curves, where v J is the rotation by +π; κ is the curvature with respect to ν, L is the length of 8 2 4 the curves and ds denotes integration by arclength. M. Gage proved in [6] that a 9 strictly convexsimpleclosedcurveremainsstrictly convexundertheAPCSF.The 8 curves converge for t → ∞smoothly to acircle enclosing the same enclosed area 0 asγ . Thus,theflowconverges tothesolution oftheisoperimetric problem inR2. . 0 1 This problem consists in finding the shortest closed curve enclosing a fixed area. 0 7 Theanalogresultforn-surfacesinRn+1,n ≥ 2wasprovedbyG.Huiskenin[9]: A 1 uniformly convex, embedded surface moving according to the volume preserving v: meancurvatureflowstaysuniformlyconvexandexistsforalltimest ∈ [0,∞). The i moving surfaces converge smoothly toasphere enclosing the samevolume as the X initialsurface. r a Weconsider theAPCSFinafreeboundary setting andwanttoknowwhenand how singularities develop. Butatfirst werecall what isknown about singularities intheclosedsituation. J. Escher and K. Ito considered in [5] immersed closed curves possibly with self-intersections. Then the evolution equation is dγ = κ− 2πm ν where m ∈ Z dt L is the index (or turning number) of the immersed closed(cid:16)curves.(cid:17)The index m is independent of time. Escher and Ito proved that an immersed curve with m ≥ 1 andenclosedareaA < 0orm ≥ 2andL2 < 4πmA developsasingularityinfinite 0 0 0 time. TheproofisinspiredbytheworkofK.-S.Chouonthesurfacediffusionflow KarlsruheInstitute ofTechnology,Institute forAnalysis, Englerstr. 2, 76131Kalrsruhe, Germany E-mail address: [email protected]. 1 2 E.MA¨DER-BAUMDICKER for curves [2]. X.-L. Wang and L.-H. Kong also studied immersed closed curves movingaccordingtotheAPCSF[16]. Theyprovedthattheflowexistsforalltimes andconvergessmoothlytoanm-foldcirclewhentheinitialcurveisconvexandhas so-called “n-fold rotational symmetry” and index m (n > 2m). Onthe other hand, “Abresch-Langertype”curveseitherconvergetoamultiplecoverofacircle(when A > 0) or the curvature blows up at finite time (when A < 0) or the curvature 0 0 blows upat themaximal time ofexistence (when A = 0), see [16, Theorem 1.2]. 0 Notethatthereareexamples whereonlyaslightchange isnecessary todeform an initialcurvewithA < 0intoonewith A = 0andthenintoonewithA > 0. 0 0 0 Wenow explain the free boundary setting of the APCSFwhich was studied by the author in [12, 11]. Let Σ ⊂ R2 be a convex simple closed curve in the plane and orient it positively. Wecall Σ the support curve. It is not moving in time. An initialcurveγ : [a,b] → R2 isacurvethatsatisfiesγ (a),γ (b) ∈ Σand 0 0 0 π π (1) ∠ τ (a),Σ~τ(γ (a)) = , ∠ τ (b),Σ~τ(γ (b)) = − , R2 0 0 R2 0 0 2 2 (cid:16) (cid:17) (cid:16) (cid:17) where ∠ denotes the oriented angle in R2, Σ~τ is the tangent of Σ and τ is the 0 tangent ofγ . Theseconditions meanthatthecurveγ startsinΣinto theexterior 0 0 domain with respect to Σ and comes back from the exterior. The contact angles are 90 degree angles. Wenow let the curve γ flow according to the APCSFsuch 0 that these conditions are preserved, i.e. γ : [a,b] ×[0,T) → R2 satisfies (1) and γ(a,t),γ(b,t) ∈ Σforallt ∈ [0,T)and d κds γ = κ− ν. dt  R L  Asthecurvesarenotclosedthequantity κdsisnotanintegertimes2πingeneral. It is in fact the first step to find conditioRns that guarantee a bound of κ¯ := κds R L independent of t. In [12], the author proved that the flow in this setting does not developasingularity whentheinitialcurvesatisfiesfourconditions: i) γ isstrictlyconvex, 0 ii) itisembedded, iii) itiscontained intheexteriordomainwithrespecttoΣand iv) itsatisfies L < 4 arcsin A0 , 0 5max|Σκ| L2 (cid:18) 0(cid:19) where A istheenclosed areaofthedomainenclosed byγ andthepartofΣcon- 0 0 necting γ (b) and γ (b). Furthermore, the curves γ(·,t) subconverge smoothly for 0 0 t → ∞toanarcofacirclesittingoutside ofΣandmeetingΣperpendicularly. Inthispaperweanswerthefollowingquestionsthatnaturallyarisewhenstudy- ingthissetting: • Can convex curves develop a singularity under the APCSF in the free boundary setting? • Dotheyappearinfinitetime? • Ofwhattypearethesingularities? • Howdoesablowupatthesingulartimelooklike? Forourmaintheoremwehavetointroduce somenotation. Letγ :[a,b] → R2 be 0 an initial curve with κ > 0. Define σ˜ as the connection of γ (a) to γ (b) along 0 0 0 0 Σ (with the positive orientation of Σ). In the case γ (a) = γ (b) we choose σ˜ to 0 0 0 SINGULARITIESFORACONSTRAINTCURVATUREFLOW 3 be one full circulation of Σ. The assembled curve γ −σ˜ is a closed curve with 0 0 exterior angles +π. Then we call the index of γ − σ˜ , l := ind(γ − σ˜ ) ∈ Z, 2 0 0 0 0 the loop number of γ . Define Σd ≔ min{|x− y| : x,y ∈ Σ,Σ~τ(x) = −Σ~τ(y)} and 0 let A(γ ,σ˜ ) be the oriented enclosed area of γ −σ˜ . The enclosed area of Σ is 0 0 0 0 denotedby A(Σ). Withthisnotation wecanstateourmaintheorem: Theorem1.1. Letγ : [a,b] →R2beaninitialcurvewithloopnumberlsatisfying 0 Σ κ > 0and L < d. Weconsider threedifferentsituations: 0 0 i) Either∠ Σ~τ(γ (a)),Σ~τ(γ (b)) ∈ (0,π)andγ satisfies A(γ ,σ˜ )> 0and R2 0 0 0 0 0 L20 ≤ π(cid:16)(2l−1)2. (cid:17) A(γ0,σ˜0) l ii) Or∠ Σ~τ(γ (a)),Σ~τ(γ (b)) ∈ (π,2π]andγ satisfiesA(γ ,σ˜ )+A(Σ)> 0 R2 0 0 0 0 0 and (cid:16) L20 ≤ π(2l+1)2.(cid:17) A(γ0,σ˜0)+A(Σ) l+1 iii) Or∠ Σ~τ(γ (a)),Σ~τ(γ (b)) ∈ (0,π)and A(γ ,σ˜ )< 0. R2 0 0 0 0 Inanyofthesec(cid:16)asesthesolutionof(cid:17)theareapreservingcurveshorteningflowwith Neumann free boundary conditions outside of Σ develops a singularity in finite time,i.e.T < ∞. Thesingularity isoftypeIIinthesensethat max sup |κ|(p,t) → ∞(t → T )and max p∈[a,b] sup |κ|2(p,t)(T −t) isunbounded. max p∈[a,b](cid:16) (cid:17) The“Hamiltonblow-up” atT yieldseither agrim reaperwithout boundary or max halfagrimreaperatastraightline. Remark i) The “Hamilton blow-up” was defined in [7]. We will explain it intheproofofCorollary2.19. ii) There is numerical evidence given by U. F. Mayer [13] that there are em- bedded closed curves that at first get a self-intersection and then develop a singularity under the APCSF. In the free boundary setting, it seems to bethecasethatthereareinitiallyembeddedcurvesthatstayembeddedbut developasingularityinfinitetime. Theseexamplesofinitialcurvessatisfy conditionii)fromTheorem1.1,seeExampleThreeinSection3. Wethink thatthesecurvesdevelopasingularity attheboundary. Wealsostudythesituation atastraightline. Theresultisasfollows. Theorem 1.2. Let γ : [a,b] → R2 be an initial curve at a straight line Σ with 0 κ > 0. Let δ be the closed curve getting by reflecting γ at Σ. Let ind(δ ) =: m 0 0 0 0 be the index of δ . Then m = 2k+1, k ∈ N∪{0}. And the area preserving curve 0 shortening flow with Neumann free boundary conditions at the line Σ develops a typeIIsingularity infinitetimeifoneofthefollowingconditions issatisfied: i) Either A(δ ) < 0. 0 ii) Orm ≥ 3and L(δ )2 < 4πmA(δ ). 0 0 The structure of this paper is as follows. In Section 2 we recall definitions and some results from [11]that are necessary for the proof of Theorem 1.1. Then, we prove uniform bounds 0 < c ≤ κ¯(t) ≤ c < ∞ and L(γ(·,t)) ≥ c > 0 under 1 2 3 the conditions of Theorem 1.1. These bounds imply with [12] subconvergence to a part of a circle that is possibly (partly) multicovered. Together with the results from[12]wegetthatthatthesingularity isoftypeII. 4 E.MA¨DER-BAUMDICKER InSection3,wegiveexamplesofcurvesthatdosatisfytheconditions ofTheo- rem1.1andthusdevelopatypeIIsingularity infinitetime. Section4contains theproof ofTheorem 1.2. WereflectthecurvesatthelineΣ andapplytheresultsfrom[5]. Wecombinethiswithresultsfrom[12]toshowthat thesingularity isoftypeII. Acknowledgment TheauthorwouldliketothankJonasHirschforveryusefuldiscussions. 2. SingularitiesoftypeIIinfinitetime Notations Let f : [a,b] → Rn, n ∈ {1,2}, be a C1-map, f = f(p). Let γ : [a,b] → R2 be a piecewise smooth, regular curve. We denote by ∂ f ≔ 1 ∂ f s |∂pγ| p the derivative with respect to arclength of f. We define ds ≔ |∂ γ|dp. We recall p theformulaforthecurvature ofγ κ(p) = h∂2γ(p),ν(p)i, s where ν = Jτ = J∂ γ is the normal of the curve γ, J is the rotation by +π in the s 2 plane. Definition 2.1. We call a smooth, regular, convex, simple and smoothly closed curve Σf : [Σa,Σb] → R2 a support curve. We assume Σf to be parametrized by arclength. We choose the orientation of the curve in the way that Σκ ≥ 0. We use thenotation Σ ≔ Σf [Σa,Σb] . (cid:16) (cid:17) ConsidertheperiodicextensionofΣf andcallitΣf˜:R → R2. Weusethenotation a2ΣκdsΣ fortheintegralofthecurvature ΣκofΣf˜froma ∈ Rtoa ∈ R. a1 1 2 BRy the Jordan curve theorem, the curve Σ separates R2 into a bounded and an unbounded domain. Thebounded domainisenclosed byΣandisdenoted byGΣ. We define Σd ≔ min{|x − y| : x,y ∈ Σ,Σ~τ(x) = −Σ~τ(y)}, the smallest distance betweentwoparallellinesinR2 thattouchGΣ. Definition 2.2. A planar, smooth, regular curve γ : [a,b] → R2 is called initial 0 curveifitsatisfiestheconditions γ (a),γ (b) ∈ Σ 0 0 π ∠ τ (a),Σ~τ(γ (a)) = , R2 0 0 2 (cid:16) (cid:17) π ∠ τ (b),Σ~τ(γ (b)) = − , R2 0 0 2 (cid:16) (cid:17) whereτ = ∂ γ isthetangent ofγ andΣ~τisdefinedby 0 s 0 0 Σ~τ: Σ → S1 ⊂ R2, Στ= Σ~τ◦Σf, where Στ is the tangent of Σ. The symbol ∠ (v,w) denotes the oriented angle R2 betweentwovectorsv,w ∈ R2. SINGULARITIESFORACONSTRAINTCURVATUREFLOW 5 Definition2.3. Letγ : [a,b] →R2beaninitialcurve. Asmoothfamilyofsmooth, 0 regularcurvesγ :[a,b]×[0,T) → R2 thatsatisfies ∂γ (p,t) = (κ(p,t)−κ¯(t))ν(p,t) ∀(p,t) ∈ [a,b]×[0,T), ∂t γ(p,0) = γ (p) ∀p∈ [a,b], 0 (2) γ(a,t),γ(b,t) ∈ Σ ∀t ∈ [0,T), π ∠ τ(a,t),Σ~τ(γ(a,t)) = ∀t ∈ [0,T), R2 2 (cid:16) (cid:17) π ∠ τ(b,t),Σ~τ(γ(b,t)) = − ∀t ∈ [0,T) R2 2 (cid:16) (cid:17) iscalledasolutionoftheareapreservingcurveshorteningproblemwithNeumann freeboundary conditions. Here,κ¯ denotestheaverage ofthecurvature, κ(p,t)ds κ(p,t)ds κ¯(t)≔ = . R ds RL(γ(·,t)) R Remark For a smooth initial curve, the existence and uniqueness of the solution of (2) is standard. One gets short time existence on a short time interval [0,T ]. 0 The solution can be extended up to a maximal time of existence T ≤ ∞. By max regularity theoryforparabolic Neumannproblemsthecurvessatisfy γ ∈C2+α,1+α2 [a,b]×[0,Tmax),R2 ∩C∞ [a,b]×(0,Tmax),R2 , α ∈(0,1), (cid:16) (cid:17) (cid:16) (cid:17) where C2+α,1+α2 denotes the usual parabolic Ho¨lder space. If Tmax < ∞ then max |κ|(·,t) → ∞ (t → T ). A source for the existence for closed curves [a,b] max moving by a geometric flow with a constraint is for example [4]. The technique how to transform the free boundary problem into a standard Neumann boundary problem can be found in [14, 15]. For our specific situation a sketch of the exis- tenceandregularity resultisin[12,Proposition 2.4]. Definition 2.4. Let Σ be a support curve and let γ : [a,b] → R2 be a curve with γ(a),γ(b) ∈ Σ. Then we call a curve σ : [a˜,b˜] → Σ ⊂ R2 with σ(a˜) = γ(a) and σ(b˜) = γ(b)aboundary curveonΣwithrespecttoγ. Definition 2.5. Let γ : [a,b] × [0,T) → R2 be a solution of (2). Consider a C1-family of smooth curves σ : [a˜,b˜] × [0,T) → Σ with σ(a˜,t) = γ(a,t) and σ(b˜,t) = γ(b,t) for all t ∈ [0,T), i.e. σ ≔ σ(·,t) is a boundary curve on Σ with t respect to γ ≔ γ(·,t). Then for each t ∈ [0,T), we call the following expression t theorientedareaenclosed byγ andΣ: t 1 1 (3) A(γ,σ)≔ p1dp2− p2dp1 − p1dp2 − p2dp1. t t 2Z 2Z γt σt Werecallsomebasicproperties provedin[12]. Lemma2.6(Lemma2.6,Lemma2.11andCorollary 2.14[12]). Letγ : [a,b] → 0 R2 be a smooth initial curve. Then we have the following properties: The area preserving curve shortening flow is curve shortening and area preserving, i.e. dL(γ) ≤ 0 and dA(γ,σ) = 0 on [0,T), where γ : [a,b] × [0,T) → R2 is a dt t dt t t solution of (2)and σ : [a˜,b˜]×[0,T) → Σ is aC1-family of boundary curve on Σ withrespecttoγ. 6 E.MA¨DER-BAUMDICKER AsthedomainGΣ isconvexandweare“outside”ofΣtheflowimprovesconvexity tostrictconvexity. Thisis,κ ≥ 0fortheinitialcurveimpliesκ > 0on[a,b]×(0,T). 0 Remark Ifγ isasmooth initialcurve thenaC1-familyofboundary curvesσon 0 Σ with respect to γ exists. This was proved in [12, Lemma 2.9]. In the case that κ > 0wewillalsoshowthisinLemma2.13. 0 Wenowstartwithprovingsomebasicgeometricproperties ofourcurves. Definition 2.7. Let f : [a,b] → R2 be a piecewise smooth, regular and closed curve. Thenumber ind(f) ≔n(∂ f,0) ∈ Z p is called the index (or turning number) of f. Here, n(∂ f,0) denotes the winding p numberofthecurve∂ f :[a,b] → R2 withrespectto0 ∈ R2. p Proposition 2.8. LetΣ ⊂ R2 beapositively oriented convex smoothJordan curve andletγ : [a,b] → R2 beaC2-curvewithκ > 0and γ(a),γ(b) ∈ Σ, π ∠ τ(a),Σ~τ(γ(a)) = , R2 2 (cid:16) (cid:17) π ∠ τ(b),Σ~τ(γ(b)) = − . R2 2 (cid:16) (cid:17) Thenwehavethat κds ≥ π. Furthermore, ifγ(a) = γ(b)then κds ≥ 3π. R R Proof. In [12, Proposition 3.1], it was shown that the geometric situation of the curves imply κds ≥ π. Thestatement therewasformulated forasolution of(2). Buttheonly pRroperties ofthecurves thatareused intheproof arestrict convexity andtheboundary conditions. Ifγ(a) = γ(b)then (4) κds > π Z was proved in [12, Proposition 3.1] as well. We improve this to κds ≥ 3π. By assumption, γ is a closed piecewise smooth curve with exterior aRngle π at γ(a) = γ(b). Bytheindextheorem (seeTheoremA.1)wegetthat 1 1 Z ∋ k := ind(γ) = κds+ . 2π Z 2 We use (4) to get π < κds = 2kπ−π which implies k > 1. Thus, we have that k ≥ 2and κds = 2kπR−π ≥ 3π. (cid:3) R Lemma 2.9. Let γ : [a,b] → R2 be an initial curve with κ > 0. Define the 0 0 “simplest”boundarycurveσ˜ onΣwithrespecttoγ astheconnectionofγ (a)to 0 0 0 γ (b) along Σ (with the positive orientation of Σf). In the case that γ (a) = γ (b) 0 0 0 then we choose σ˜ to be one full circulation of Σ. With these definitions we have 0 that (5) ind(γ −σ˜ ) =:l∈ N, 0 0 whereγ −σ˜ denotes thecurve whichisassembled byγ and (inreversed direc- 0 0 0 tion)σ˜ . 0 SINGULARITIESFORACONSTRAINTCURVATUREFLOW 7 Proof. LetΣf˜: R → ΣbetheperiodicextensionofthesupportcurveΣf anddefine a ≔Σf−1(γ (a)), 0 0 Σf−1(γ (b)) ifΣf−1(γ (b)) > a b ≔ 0 0 0 0 ( Σf−1(γ0(b))+(Σb−Σa) ifΣf−1(γ0(b)) ≤ a0. This definition makes sure that a < b ≤ a + (Σb − Σa). Now the “simplest” 0 0 0 boundary curveonΣwithrespecttoγ is 0 σ˜ (p) ≔ Σf˜((b −a )p+a ) for p∈ [0,1]. 0 0 0 0 Thiscurveistheconnectionofγ (a)toγ (b)alongΣ,inparticularwiththepositive 0 0 orientation ofΣf˜. Itissmooth andregular. Notethat inthecase γ (a) = γ (b) the 0 0 boundarycurveσ˜ isexactlyoneperiodofΣf˜,thusσ˜ isclosedand κ ds = 0 0 σ˜0 σ˜0 σ˜0 b0ΣκdsΣ = 2πinthis case. Ingeneral, thecurve σ˜ satisfies 0 ≤ bR0ΣκdsΣ ≤ 2π a0 0 a0 bRecauseofa < b ≤ a +(Σb−Σa). Nowwedefineγ˜ = γ −σ˜ :R[a,b+1] → R2 0 0 0 0 0 0 by γ (p) for p ∈ [a,b], γ˜ (p) ≔ 0 0 Σf˜(−(b −a )(p−b)+b ) for p ∈ (b,b+1]×[0,T).  0 0 0 This is the closedcurve assembled by γ and in reversed direction σ˜ . The curve 0 0 γ˜ ispiecewisesmooth, regularandhasexteriorangles π. 0 2 Bytheformulafortheindex(seeTheoremA.1inAppendixA)wehave ind(γ˜0) = 1 κds|t=0 − 1 b0ΣκdsΣ + 1 ≕ l∈ Z. 2π Z 2π Z 2 a0 Weprovel∈ N. Ifl ≤ −1then b0Σ Σ κds|t=0 ≤ κds −3π ≤ 2π−3π < 0, Z Z a0 acontradiction toκ > 0,hencel≥ 0. Butweevenhavel ≥ 1: Ifl = 0then 0 (6) π ≤ κds|t=0 = −π+ b0ΣκdsΣ ≤ −π+2π = π, Z Z a0 where we used κds|t=0 ≥ π from Proposition 2.8. The boundary conditions imply that thereRcannot be any curvature of Σ between γ (a) and γ (b): Since 0 0 γ0(a) = γ0(b) would imply κds|t=0 ≥ 3π (due to Proposition 2.8) we have that γ (a) , γ (b). AfterrotationRand translating weare inthe situation γ (a) = 0and 0 0 0 γ0(b)−γ0(a) = −e . Because of the convexity and the positive orientation of Σ, we |γ0(b)−γ0(a)| 1 have Σ hγ(b)−γ(a), ν(γ(a))i ≥ 0. We hence get hΣ~τ(γ(a)),e i ≥ 0 and hΣ~τ(γ(b)),e i ≤ 0. The boundary conditions 2 2 imply hτ(a),e1i ≥ 0 and hτ(b),e1i ≥ 0. The only way to get κds|t=0 = π is that τ (a) = e and τ (b) = −e , every other angle of the tangentRwould imply more 0 2 0 2 contribution to the angle κds|t=0. But by the convexity of Σ the line segment between γ (a) and γ (b) mRustbe inΣ, soweare inthe situation ofFigure 1. This 0 0 8 E.MA¨DER-BAUMDICKER Σ γ (b) γ (a) 0 0 Figure1. Thecase κds = π R impliesthattheboundarycurveσ˜ isthestraightlinebetweenγ (a)andγ (b). By 0 0 0 theformulafortheindex,wethenhave 1 1 ind(γ˜0)= κds|t=0 + = 1 2π Z 2 whichcontradicts l = 0. (cid:3) Definition 2.10. Let γ : [a,b] → R2 be an initial curve with κ > 0 on [a,b]. 0 0 Then wecall l ≔ ind(γ −σ˜ ) the loop number of γ , where σ˜ is the “simplest” 0 0 0 0 boundary curveonΣwithrespecttoγ dueLemma2.9. Wehaveprovedl∈ N. 0 Lemma2.11. Letγ : [a,b] → R2 bean initial curve withκ > 0on [a,b]. Then 0 0 thereisaboundary curveσ :[0,1] → ΣonΣwithrespecttoγ suchthat 0 0 ind(γ −σ ) = +1, 0 0 whereγ −σ denotes thecurve whichisassembled byγ and (inreversed direc- 0 0 0 tion)σ . 0 Proof. In Lemma 2.9 we showed that the loop number l of γ satisfies l ∈ N. In 0 general, l can be big. We now define a boundary curve on Σ with respect to γ 0 that compensates high contribution of κds|t=0 to the index l. If l = ind(γ˜0) = 1 we are done and define σ ≔ σ˜ . So wRe assume l ≥ 2. Now we define σ to be 0 0 0 theboundarycurvewhichstartsinγ (a)andendsinγ (b)butcirculatestheclosed 0 0 curveΣ(l−1)-manytimes: σ (p) ≔ Σf˜ (b +(l−1)(Σb−Σa)−a )p+a , p ∈ [0,1]. 0 0 0 0 (cid:16) (cid:17) Thenγˆ = γ −σ isregularbecause a < b ≤ b +(l−1)(Σb−Σa). Theclosed, 0 0 0 0 0 0 piecewise smooth curve γˆ has exterior angles +π. We use the formula for the 0 2 index(TheoremA.1),toget ind(γˆ0)= 1 κds|t=0 − 1 b0+(l−1)(Σb−Σa)ΣκdsΣ + 1 2π Z 2π Z 2 a0 = 21π Z κds|t=0 − 21π Z b0ΣκdsΣdsγˆ0 + 12 − 21π(l−1)2π a0 = ind(γ˜ )−(l−1) = 1. 0 (cid:3) SINGULARITIESFORACONSTRAINTCURVATUREFLOW 9 Lemma2.12. Letγ : [a,b] → R2beaninitialcurvewithκ > 0andloopnumber 0 0 l ∈ N. Letγ : [a,b]×[0,T) → R2 bethesolution of(2). Recall a ≔ Σf−1(γ (a)), 0 0 Σf−1(γ (b)) ifΣf−1(γ (b)) > a b ≔ 0 0 0 0 ( Σf−1(γ0(b))+(Σb−Σa) ifΣf−1(γ0(b)) ≤ a0. Thenthereexistuniquemapsa :[0,T) → Randb :[0,T) → Rsuchthat a(0) = a andΣf˜(a(t)) = γ(a,t)∀t ∈ [0,T), 0 b(0) = b andΣf˜(b(t)) = γ(b,t)∀t ∈ [0,T). 0 ThesemapsareC1 on[0,T)andsmoothon(0,T). Proof. Themapsa,b : [0,T) → Raretheliftsofγ(a,t)andγ(b,t)witha(0) = a 0 and b(0) = b , see [3, Chapter 5.6, Proposition 2]. Tobe very precise we get lifts 0 on[0,T−ǫ]foreveryǫ > 0. Byuniquenesstheliftsa,barewell-definedon[0,T). The differentiability follows because γ(a,·) and γ(b,·) are C1 in zero and smooth on(0,T). (cid:3) Lemma2.13. Letγ : [a,b] → R2beaninitialcurvewithκ > 0andloopnumber 0 0 l ∈ N. Letγ : [a,b]×[0,T) → R2 bethesolution of(2). Define σ(p,t)≔ Σf˜ (b(t)+(l−1)(Σb−Σa)−a(t))p+a(t) , p∈ [0,1], wherea,b : [0,T) →(cid:16)Raretheliftsofγ(a,t)andγ(a,t)from(cid:17) Lemma2.12. Define theassembledcurves γ¯ ≔γ−σ. Thenγ¯ hasthefollowing properties: i) a(t) < b(t) +(l−1)(Σb−Σa) ∀t ∈ [0,T). This implies in particular that γ¯(·,t)=:γ¯ isregular foreveryt ∈ [0,T). t ii) For all t ∈ [0,T), the curves γ¯ are piecewise smooth, regular, closed and t theyhaveexteriorangles π. Withrespecttot,γ¯ isC1 on[0,T)andsmooth 2 on(0,T). iii) ind(γ¯ )= 1 ∀t ∈ [0,T). t iv) κds = (2l−1)π+ b(t)ΣκdsΣ ∀t ∈ [0,T). a(t) R R Proof. Asl ∈ Nandthedefinitionofa ,b wegeta < b ≤ b +(l−1)(Σb−Σa). 0 0 0 0 0 Weassumethat thereisatimet ∈ (0,T)witha(t ) = b(t )+(l−1)(Σb−Σa)and 0 0 0 a(t) < b(t)+(l−1)(Σb−Σa)on[0,t ). Thenσ areregularfort ∈ [0,t ). Theindex 0 t 0 formula(Theorem A.1)implies 1 1 b(t)+(l−1)(Σb−Σa) 1 ind(γ −σ) = κds− ΣκdsΣ + , t t 2π Z 2π Z 2 a(t) where we used that −σ is negatively oriented. We have ind(γ −σ ) = 1 due to t 0 0 thedefinitionofγ andLemma2.11. Continuityoftheindexintimplies t b(t)+(l−1)(Σb−Σa) (7) κds = π+ ΣκdsΣ fort ∈ [0,t ). 0 Z Z a(t) This yields κdst=t0 = π and we get a contradiction to Proposition 2.8 because a(t ) = b(t )R+(l−1)(Σb−Σa)impliesγ(a,t ) = γ(b,t ). Thisshows(i). Nowthe 0 0 0 0 otherproperties followimmediately. (cid:3) 10 E.MA¨DER-BAUMDICKER Remark We mention here that the statements from the beginning of Section 2 up to here were proved in [11, Section 3 & 4]. In Theorem 4.2.4 [11], a bound 0 < c ≤ κ¯(t) ≤ c < ∞wasshownundertheconditionT < ∞. Wewanttofind 1 2 max conditions on the initial curve that guarantee a bound on κ¯ even if T = ∞. We max dothisinthefollowing. Proposition 2.14. Let γ : [a,b] → R2 be an initial curve with κ > 0 and loop 0 0 number l ∈ N and L < Σd = min{|x − y| : x,y ∈ Σ,Σ~τ(x) = −Σ~τ(y)}. Let 0 γ : [a,b]×[0,T)bethesolutionof(2). Thentherearetwopossibilities. i) Either∠ Σ~τ(γ (a)),Σ~τ(γ (b)) ∈ (0,π). Thenwehavethat R2 0 0 (cid:16) (cid:17) κds ∈ ((2l−2)π,2lπ)∀t ∈ [0,T). Z ii) Or∠ Σ~τ(γ (a)),Σ~τ(γ (b)) ∈ (π,2π]. Then R2 0 0 (cid:16) (cid:17) κds ∈ (2lπ,(2l+2)π)∀t ∈ [0,T). Z Proof. As|γ (a)−γ (b)| ≤ L < ΣdwegetΣ~τ(γ (a)) , −Σ~τ(γ (b)). ByLemma2.13 0 0 0 0 0 wehaveforeveryt ∈ [0,T) b(t) (8) κds = (2l−1)π+ ΣκdsΣ Z Z a(t) Casei)meansthat∠ Σ~τ(γ (a)),Σ~τ(γ (b)) = b0ΣκdsΣ ∈ (0,π).Nowweget R2 0 0 a0 (cid:16) (cid:17) R b(t) Σ Σ (9) κds ∈ (−π,π)forallt ∈ [0,T). Z a(t) We prove this by contradiction. If there is a t ∈ [0,T) with b(t)ΣκdsΣ < −π a(t) b(t)Σ Σ R (or κds > π) then continuity implies that there must be a t < t such that a(t) 0 b(t0R)ΣκdsΣ = −π(orπ). Butthisyields a(t0) R ∠ Σ~τ(γ(a,t ),Σ~τ(γ(b,t )) = −πor R2 0 0 ∠ (cid:16)Σ~τ(γ(a,t ),Σ~τ(γ(b,t ))(cid:17) = π. R2 0 0 (cid:16) (cid:17) InanycaseΣ~τ(γ(a,t )) = −Σ~τ(γ(b,t ))whichcontradicts 0 0 Σ |γ(a,t )−γ(b,t )| ≤ L(γ ) ≤ L < d. 0 0 t0 0 In Case ii) wehave that ∠ Σ~τ(γ (a)),Σ~τ(γ (b)) = b0ΣκdsΣ ∈ (π,2π]. With (8) R2 0 0 a0 wehavetoprove b(t)ΣκdsΣ(cid:16)∈ (π,3π)forallt ∈ ((cid:17)0,TR). ThisfollowsasinCasei). a(t) (cid:3) R Proposition 2.15. Letγ : [a,b]×[0,T ) → R2 be the solution of (2)where the max initial curve γ : [a,b] → R2 has loopnumber land satisfies κ > 0and L < Σd. 0 0 0 Furthermore, weassumethatγ satisfies 0 i) A(γ ,σ ) , −(l−1)A(Σ) if∠ Σ~τ(γ (a)),Σ~τ(γ (b)) ∈ (0,π)or 0 0 R2 0 0 ii) A(γ ,σ ) , −lA(Σ) if∠ Σ~τ(γ(cid:16)(a)),Σ~τ(γ (b)) ∈ (π(cid:17),2π]. 0 0 R2 0 0 Thenthereisaconstant δ > 0such(cid:16)that L(γ) ≥ δforal(cid:17)lt ∈ [0,T ). t max

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.