ebook img

Singular Linear-Quadratic Zero-Sum Differential Games and H∞ Control Problems: Regularization Approach PDF

211 Pages·2022·2.031 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Singular Linear-Quadratic Zero-Sum Differential Games and H∞ Control Problems: Regularization Approach

Static & Dynamic Game Theory: Foundations & Applications Series Editor Tamer Ba¸sar, University of Illinois, Urbana-Champaign, IL, USA Editorial Board Daron Acemoglu, Massachusetts Institute of Technology, Cambridge, MA, USA Pierre Bernhard, INRIA, Sophia-Antipolis, France Maurizio Falcone , Università degli Studi di Roma “La Sapienza”, Roma, Italy Alexander Kurzhanski, University of California, Berkeley, CA, USA Ariel Rubinstein, Tel Aviv University, Ramat Aviv, Israel Yoav Shoham, Stanford University, Stanford, CA, USA Georges Zaccour, GERAD, HEC Montréal, QC, Canada · Valery Y. Glizer Oleg Kelis Singular Linear-Quadratic Zero-Sum Differential Games and H Control ∞ Problems Regularization Approach Valery Y. Glizer Oleg Kelis The Galilee Research Center for Applied The Galilee Research Center for Applied Mathematics Mathematics ORT Braude College of Engineering ORT Braude College of Engineering Karmiel, Israel Karmiel, Israel Faculty of Mathematics Technion-Israel Institute of Technology Haifa, Israel ISSN 2363-8516 ISSN 2363-8524 (electronic) Static & Dynamic Game Theory: Foundations & Applications ISBN 978-3-031-07050-1 ISBN 978-3-031-07051-8 (eBook) https://doi.org/10.1007/978-3-031-07051-8 Mathematics Subject Classification: 49N70, 91A05, 91A10, 91A23, 93B36, 93C70, 93C73 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland To my family Elena, Evgeny and Svetlana V.Y.G. To my wife Tanya and my children Louisa, Nadav and Gavriel O.K. Contents 1 Introduction ................................................... 1 References ..................................................... 4 2 Examples of Singular Extremal Problems and Some Basic Notions ........................................................ 7 2.1 Introduction .............................................. 7 2.2 Academic Examples ....................................... 8 2.2.1 Minimization of a Function ........................... 8 2.2.1.1 The First Way of the Reformulation of (2.1)–(2.2) ............................... 8 2.2.1.2 The Second Way of the Reformulation of (2.1)–(2.2) ............................... 9 2.2.2 Optimal Control Problem ............................ 11 2.2.2.1 The First Way of the Reformulation of (2.11)–(2.12), (2.13) ...................... 13 2.2.2.2 The Second Way of the Reformulation of (2.11)–(2.12), (2.13) ...................... 14 2.2.3 Saddle Point of a Function of Two Variables ............ 18 2.2.3.1 The First Way of the Reformulation of the Saddle-Point Problem for the Function (2.45)–(2.46) ................ 20 2.2.3.2 The Second Way of the Reformulation of the Saddle-Point Problem for the Function (2.45)–(2.46) ................ 21 2.2.4 Zero-Sum Differential Game ......................... 23 2.2.4.1 The First Way of the Reformulation of the Game (2.57)–(2.58) .................... 32 2.2.4.2 The Second Way of the Reformulation of the Game (2.57)–(2.58) .................... 33 vii viii Contents 2.3 Mathematical Models of Real-Life Problems .................. 37 2.3.1 Planar Pursuit-Evasion Engagement: Zero-Order Dynamics of Participants ............................. 37 2.3.2 Planar Pursuit-Evasion Engagement: First-Order Dynamics of Participants ............................. 39 2.3.3 Three-Dimensional Pursuit-Evasion Engagement: Zero-Order Dynamics of Participants .................. 40 2.3.4 Infinite-Horizon Robust Vibration Isolation ............. 42 2.4 Concluding Remarks and Literature Review ................... 44 References ..................................................... 49 3 Preliminaries .................................................. 51 3.1 Introduction .............................................. 51 3.2 Solvability Conditions of Regular Problems ................... 52 3.2.1 Finite-Horizon Differential Game ..................... 52 3.2.2 Infinite-Horizon Differential Game .................... 56 3.2.3 Finite-Horizon H∞ Problem .......................... 60 3.2.4 Infinite-Horizon H∞ Problem ......................... 62 3.3 State Transformation in Linear System and Quadratic Functional ................................................ 66 3.4 Concluding Remarks and Literature Review ................... 70 References ..................................................... 71 4 Singular Finite-Horizon Zero-Sum Differential Game ............. 73 4.1 Introduction .............................................. 73 4.2 Initial Game Formulation ................................... 74 4.3 Transformation of the Initially Formulated Game .............. 76 4.4 Regularization of the Singular Finite-Horizon Game ............ 79 4.4.1 Partial Cheap Control Finite-Horizon Game ............ 79 4.4.2 Saddle-Point Solution of the Game (4.8), (4.12) ......... 79 4.5 Asymptotic Analysis of the Game (4.8), (4.12) ................ 81 4.5.1 Transformation of the Problem (4.14) .................. 81 4.5.2 Asymptotic Solution of the Terminal-Value Problem (4.23)–(4.25) ....................................... 83 4.5.3 Asymptotic Representation of the Value of the Game (4.8), (4.12) ........................................ 88 4.6 Reduced Finite-Horizon Differential Game .................... 89 4.7 Saddle-Point Sequence of the SFHG ......................... 90 4.7.1 Main Assertions .................................... 90 4.7.2 Proof of Lemma 4.5 ................................. 91 4.7.3 Proof of Lemma 4.6 ................................. 96 4.7.3.1 Stage 1: Regularization of (4.85)–(4.86) ........ 97 4.7.3.2 Stage 2: Asymptotic Analysis of the Problem (4.85), (4.90) ................. 97 4.7.3.3 Stage 3: Deriving the Expression for the Optimal Value of the Functional in the Problem (4.85)–(4.86) .................. 100 Contents ix 4.8 Examples ................................................ 101 4.8.1 Example 1 ......................................... 101 4.8.2 Example 2: Solution of Planar Pursuit-Evasion Game with Zero-Order Dynamics of Players ............ 102 4.8.3 Example 3: Solution of Three-Dimensional Pursuit-Evasion Game with Zero-Order Dynamics of Players .......................................... 104 4.8.3.1 Pursuit-Evasion Game with One “Regular” and One “Singular” Coordinates of the Pursuer’s Control ...................... 105 4.8.3.2 Pursuit-Evasion Game with Both “Singular” Coordinates of the Pursuer’s Control .................................... 107 4.9 Concluding Remarks and Literature Review ................... 109 References ..................................................... 110 5 Singular Infinite-Horizon Zero-Sum Differential Game ............ 113 5.1 Introduction .............................................. 113 5.2 Initial Game Formulation ................................... 114 5.3 Transformation of the Initially Formulated Game .............. 116 5.4 Auxiliary Lemma ......................................... 118 5.5 Regularization of the Singular Infinite-Horizon Game .......... 120 5.5.1 Partial Cheap Control Infinite-Horizon Game ........... 120 5.5.2 Saddle-Point Solution of the Game (5.9), (5.29) ......... 121 5.6 Asymptotic Analysis of the Solution to the Game (5.9), (5.29) ... 122 5.6.1 Transformation of the Eq. (5.33) ...................... 122 5.6.2 Asymptotic Solution of the Set (5.44)–(5.46) ............ 124 5.6.3 Asymptotic Representation of the Value of the Game (5.9), (5.29) ........................................ 129 5.7 Reduced Infinite-Horizon Differential Game .................. 129 5.8 Saddle-Point Sequence of the SIHG .......................... 131 5.8.1 Main Assertions .................................... 131 5.8.2 Proof of Lemma 5.6 ................................. 133 5.8.3 Proof of Lemma 5.7 ................................. 135 5.8.3.1 Stage 1: Regularization of (5.95)–(5.96) ........ 136 5.8.3.2 Stage 2: Asymptotic Analysis of the Problem (5.95), (5.100) ................ 137 5.8.3.3 Stage 3: Deriving the Expression for the Optimal Value of the Functional in the Problem (5.95)–(5.96) .................. 139 5.9 Examples ................................................ 140 5.9.1 Example 1 ......................................... 140 5.9.2 Example 2: Solution of Infinite-Horizon Vibration Isolation Game ..................................... 141 5.10 Concluding Remarks and Literature Review ................... 145 References ..................................................... 147 x Contents 6 Singular Finite-Horizon H∞ Problem ............................ 149 6.1 Introduction .............................................. 149 6.2 Initial Problem Formulation ................................. 150 6.3 Transformation of the Initially Formulated H∞ Problem ........ 151 6.4 Regularization of the Singular Finite-Horizon H∞ Problem ...... 153 6.4.1 Partial Cheap Control Finite-Horizon H∞ Problem ...... 153 6.4.2 Solution of the H∞ Problem (6.9), (6.11) ............... 154 6.5 Asymptotic Analysis of the H∞ Problem (6.9), (6.11) .......... 154 6.5.1 Transformation of the Problem (6.13) .................. 155 6.5.2 Asymptotic Solution of the Problem (6.20)–(6.22) ....... 156 6.6 Reduced Finite-Horizon H∞ Problem ........................ 159 6.7 Controller for the SFHP .................................... 160 6.7.1 Formal Design of the Controller ....................... 160 6.7.2 Properties of the Simplified Controller (6.39) ........... 162 6.7.3 Proof of Theorem 6.1 ................................ 163 6.7.4 Proof of Theorem 6.2 ................................ 168 6.7.4.1 Auxiliary Proposition ........................ 168 6.7.4.2 Main Part of the Proof ....................... 169 6.8 Example ................................................. 171 6.9 Concluding Remarks and Literature Review ................... 172 References ..................................................... 173 7 Singular Infinite-Horizon H∞ Problem ........................... 175 7.1 Introduction .............................................. 175 7.2 Initial Problem Formulation ................................. 176 7.3 Transformation of the Initially Formulated H∞ Problem ........ 177 7.4 Regularization of the Singular Infinite-Horizon H∞ Problem .... 179 7.4.1 Partial Cheap Control Infinite-Horizon H∞ Problem ..... 179 7.4.2 Solution of the H∞ Problem (7.9), (7.15) ............... 179 7.5 Asymptotic Analysis of the H∞ Problem (7.9), (7.15) .......... 180 7.5.1 Transformation of Eq. (7.17) ......................... 180 7.5.2 Asymptotic Solution of the Set (7.24) .................. 181 7.6 Reduced Infinite-Horizon H∞ Problem ....................... 184 7.7 Controller for the SIHP ..................................... 185 7.7.1 Formal Design of the Controller ....................... 185 7.7.2 Properties of the Simplified Controller (7.45) ........... 187 7.7.3 Proof of Theorem 7.1 ................................ 188 7.7.4 Proof of Theorem 7.2 ................................ 191 7.8 Examples ................................................ 195 7.8.1 Example 1 ......................................... 195 7.8.2 Example 2: H∞ Control in Infinite-Horizon Vibration Isolation Problem .......................... 196 7.9 Concluding Remarks and Literature Review ................... 199 References ..................................................... 200 Index ............................................................. 201

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.