ebook img

single view coplanar photogrammetry and uncertainty analysis for traffic accident reconstruction PDF

104 Pages·2014·2.17 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview single view coplanar photogrammetry and uncertainty analysis for traffic accident reconstruction

SINGLE VIEW COPLANAR PHOTOGRAMMETRY AND UNCERTAINTY ANALYSIS FOR TRAFFIC ACCIDENT RECONSTRUCTION A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements for the Degree of Master of Applied Science in Industrial Systems Engineering at the University of Regina by Mehrdad Bakhtiari Regina, Saskatchewan June 2014  2014:M.Bakhtiari UNIVERSITY OF REGINA FACULTY OF GRADUATE STUDIES AND RESEARCH SUPERVISORY AND EXAMINING COMMITTEE Mehrdad Bakhtiari, candidate for the degree of Master of Applied Science in Industrial Systems Engineering, has presented a thesis titled, Single View Coplanar photogrammetry and Uncertainty Analysis for Traffic Accident Reconstruction, in an oral examination held on June 9, 2014. The following committee members have found the thesis acceptable in form and content, and that the candidate demonstrated satisfactory knowledge of the subject material. External Examiner: Dr. Howard Hamilton, Department of Computer Science Supervisor: Dr. Raman Paranjape, Electronic Systems Engineering Committee Member: Dr. Amir Henni, Industrial Systems Engineering Committee Member: Dr. Adisorn Aroonwilas, Industrial Systems Engineering Chair of Defense: Dr. Jim Farney, Department of Political Science Abstract Photogrammetry is defined as the science of measuring distances and objects by using photographs. Rapid advances in computer technology and digital photography in recent years have resulted in growing applications of digital photogrammetry. Although various aspects of photogrammetry have been investigated; the question of uncertainties in measurement, which is important for forensic applications, such as traffic accident reconstruction, has not been widely explored. This study attempted to develop an applicable comprehensive mathematical model to perform coplanar photogrammetry and provide a measure of uncertainty for its measurements. Photogrammetry requires information about the interior and exterior orientation of the camera. Process maximum likelihood estimation (MLE) of the interior parameters of the camera or camera calibration and methods to provide uncertainty for those parameters are discussed. To find the maximum likelihood estimation of the exterior orientation of the camera, a new pose estimation algorithm has been developed that requires only information about the length of three or more lines in the scene while taking into account nonlinearities due to lens distortion. Formulation to find the maximum likelihood estimation of back projection of individual points to world frame considering uncertainties in interior and exterior orientation has been provided. Finally, all uncertain models have been compiled into an uncertain comprehensive model for photogrammetric measurement on a coplanar scene. A computer application equipped with a simulation tool has been developed for the Windows operating system to implement the model. A simulation has been performed to investigate the effect of various parameters on photogrammetry measurement and it was found that the error in the length of reference lines has the most significant effect. ii Aerial photos of a mock accident scene were used for the experimental study. Experiment results showed that the proposed method can provide distance measurement with an average error of 1%, while the uncertainty for its measurements follows the three-sigma rule. iii Acknowledgment Firsthand and foremost, I am indebted to my supervisor Dr. Raman Paranjape for all the guidance, supports and encouragements he provided me during my years in University of Regina, without whom my study would never have been finished. I also owe a particular thank to my program chair Dr. Amr Henni whom I benefited from his wise advice and enjoyed his backings at different stages of my study. My gratitude again goes to Sgt. Ryan Case for providing me with invaluable insight into collision reconstruction science and the opportunity to perform data collection. Thanks go as well to my colleague in the University of Regina UAV group Mr. Seang Cau for his assistance in my experiments. I also need to thank Saskatchewan Government Insurance company for providing financial support for this project. iv Table of Contents Abstract ............................................................................................................................... ii Acknowledgment ............................................................................................................... iv Table of Contents ................................................................................................................ v List of Tables ...................................................................................................................... x List of Figures .................................................................................................................... xi Nomenclature ................................................................................................................... xiii 1. Introduction ..................................................................................................................... 1 1.1. Definitions ................................................................................................................ 1 1.2. Historical Overview ................................................................................................. 1 1.3. Photogrammetry for Traffic Accident Reconstruction............................................. 3 1.4. Problem Statement ................................................................................................... 6 1.5. Thesis Structure ........................................................................................................ 7 2. Theoretical Foundation and Mathematical Models ........................................................ 9 2.1. Introduction .............................................................................................................. 9 2.2. Camera Projection Model......................................................................................... 9 2.2.1. Central Projection Camera Model and Perspective Transform ......................... 9 2.2.2. Digital Cameras and Pixel Coordinate Representation ................................... 12 2.2.3. Lens Distortion ................................................................................................ 13 2.2.4. Complete Projection Model ............................................................................. 16 v 2.3. Camera Calibration ................................................................................................ 17 2.3.1. Introduction ..................................................................................................... 17 2.3.2. Zhang’s Calibration Method ............................................................................ 19 2.3.2.1. Overview .................................................................................................. 19 2.3.2.2. Closed Form Solution .............................................................................. 22 2.3.2.3. Refining intrinsic and extrinsic parameters ............................................. 24 2.3.2.4. Finding Radial Distortion Coefficients .................................................... 25 2.3.2.5. Complete Maximum Likelihood Estimation ........................................... 25 2.3.3. Calibration Parameters .................................................................................... 26 2.4. Planar Scene Reconstruction .................................................................................. 26 2.4.1. Closed Form Initial Guess ............................................................................... 26 2.4.2. Maximum Likelihood Estimation for Back-Projection ................................... 28 2.5. Pose Estimation ...................................................................................................... 28 2.5.1. Overview ......................................................................................................... 28 2.5.2. PnP Pose Estimation Algorithms ..................................................................... 30 2.5.3. Studied PnL Pose Estimation Algorithms ....................................................... 31 2.5.4. Limitations of Conventional Pose Estimation Algorithms .............................. 32 2.5.5. Pose Estimation Algorithm .............................................................................. 34 2.5.6. Proof of Preserving Line Segment Lengths with Proposed Algorithm ........... 34 2.5.7. Maximum Likelihood Estimation for Pose ..................................................... 38 vi 2.6. Least Square Methods and Maximum Likelihood Estimation ............................... 40 2.6.1. Overview ......................................................................................................... 40 2.6.2. Definitions ....................................................................................................... 40 2.6.3. Gauss-Newton Algorithm ................................................................................ 41 2.6.4. Levenberg-Marquardt Algorithm .................................................................... 43 2.6.5. Uncertainty in Model Parameters .................................................................... 44 2.6.6. Uncertainty in Model Predictions .................................................................... 45 2.6.7. Calculation of Jacobian Matrix ........................................................................ 45 2.6.8. Uncertainties in Camera Intrinsic and Lens Distortion Parameters ................ 46 2.6.9. Uncertainty in Pose Estimation ....................................................................... 47 2.6.10. Uncertainty in Scene Reconstruction ............................................................ 47 2.6.11. Uncertainty in Measured Lengths.................................................................. 47 3. Implementation ............................................................................................................. 49 3.1. Introduction ............................................................................................................ 49 3.2. Developed Computer Software .............................................................................. 51 3.2.1. Overview ......................................................................................................... 51 3.2.2. Calibration Tab ................................................................................................ 51 3.2.3. Pose Estimation Tab ........................................................................................ 52 3.2.4. Photogrammetry Tab ....................................................................................... 52 3.3. Numerical and Image Processing Libraries ........................................................... 53 vii 3.3.1. Overview ......................................................................................................... 53 3.3.2. Emgu CV ......................................................................................................... 53 3.3.3. ALGLIB........................................................................................................... 54 3.4. Simulation Tool ...................................................................................................... 56 3.5. Summary ................................................................................................................ 58 4. Results and Discussion ................................................................................................. 59 4.1. Overview ................................................................................................................ 59 4.2. Simulation .............................................................................................................. 60 4.2.1. Scene Configuration ........................................................................................ 60 4.2.2. Simulation Results ........................................................................................... 61 4.2.3. Simulation Scenarios ....................................................................................... 61 4.2.4. Effect of Error in Reference Line Measured Length ....................................... 62 4.2.5. Effect of Error in Pixel Selection of Reference Lines ..................................... 64 4.2.6. Effect of Camera Height and Look Direction ................................................. 66 4.2.7. Camera Focal Length and Principal Point ....................................................... 68 4.3. Experiment ............................................................................................................. 70 4.3.1. Overview ......................................................................................................... 70 4.3.2. Experimental Setup.......................................................................................... 70 4.3.3. Measurement with the Total Station ................................................................ 71 4.3.4. Camera Calibration .......................................................................................... 74 viii 4.3.5. Pose Estimation and Photogrammetry Analysis .............................................. 74 4.3.6. Comparison between Total Station and Photogrammetry ............................... 77 4.3.7. Summary .......................................................................................................... 78 5. Conclusion and Further works ...................................................................................... 80 References ......................................................................................................................... 84 ix

Description:
measurement, which is important for forensic applications, such as traffic accident reconstruction the camera or camera calibration and methods to provide uncertainty for those parameters are discussed. Ryan Case for providing me with invaluable insight into collision reconstruction science and t
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.