97909_FrontEP_FrontEP_pF2_RefPage1-2_97909_FrontEP_FrontEP_pF2_RefPage1-2 9/24/10 5:36 PM Page 1 REFERENCE PAGE 1 ALGEBRA GEOMETRY e Arithmetic Operations Geometric Formulas c n ere a(cid:2)b(cid:4)c(cid:3)(cid:2)ab(cid:4)ac a (cid:4) c (cid:2) ad(cid:4)bc Formulas for area A, circumference C, and volume V: ef b d bd ep for r a(cid:4)c (cid:2) a (cid:4) c ab (cid:2) a (cid:2) d (cid:2) ad TAri(cid:2)an12gbleh CAir(cid:2)cle(cid:3)r2 SAe(cid:2)cto12rr o2f(cid:6) Circle e b b b c b c bc (cid:2)1absin (cid:6) C(cid:2)2(cid:3)r s(cid:2)r(cid:6) (cid:2)(cid:6)in radians(cid:3) k 2 d d n a ere Exponents and Radicals a h r s h ut xm ¨ r C xmxn(cid:2)xm(cid:4)n (cid:2)xm(cid:5)n b ¨ xn r 1 (cid:2)xm(cid:3)n(cid:2)xmn x(cid:5)n(cid:2) xn (cid:4) (cid:5) x n xn Sphere Cylinder Cone (cid:2)xy(cid:3)n(cid:2)xnyn (cid:2) y yn V(cid:2)4(cid:3)r3 V(cid:2)(cid:3)r2h V(cid:2)1(cid:3)r2h 3 3 x1(cid:8)n(cid:2)snx xm(cid:8)n(cid:2)snxm(cid:2)(snx)m A(cid:2)4(cid:3)r2 A(cid:2)(cid:3)rsr2(cid:4)h2 (cid:7) snxy(cid:2)snxsny n x (cid:2) snx r y sny r h h Factoring Special Polynomials r x2(cid:5)y2(cid:2)(cid:2)x(cid:4)y(cid:3)(cid:2)x(cid:5)y(cid:3) x3(cid:4)y3(cid:2)(cid:2)x(cid:4)y(cid:3)(cid:2)x2(cid:5)xy(cid:4)y2(cid:3) x3(cid:5)y3(cid:2)(cid:2)x(cid:5)y(cid:3)(cid:2)x2(cid:4)xy(cid:4)y2(cid:3) Distance and Midpoint Formulas Binomial Theorem Distance between P(cid:2)x, y(cid:3)and P(cid:2)x, y(cid:3): 1 1 1 2 2 2 (cid:2)x(cid:4)y(cid:3)2(cid:2)x2(cid:4)2xy(cid:4)y2 (cid:2)x(cid:5)y(cid:3)2(cid:2)x2(cid:5)2xy(cid:4)y2 (cid:2)x(cid:4)y(cid:3)3(cid:2)x3(cid:4)3x2y(cid:4)3xy2(cid:4)y3 d(cid:2)s(cid:2)x2(cid:5)x1(cid:3)2(cid:4)(cid:2)y2(cid:5)y1(cid:3)2 (cid:2)x(cid:5)y(cid:3)3(cid:2)x3(cid:5)3x2y(cid:4)3xy2(cid:5)y3 (cid:4) (cid:5) (cid:2)x(cid:4)y(cid:3)n(cid:2)xn(cid:4)nxn(cid:5)1y(cid:4) n(cid:2)n(cid:5)1(cid:3) xn(cid:5)2y2 Midpoint of P1P2: x1(cid:4)2 x2, y1(cid:4)2 y2 2 (cid:4) (cid:5) n (cid:4)(cid:10)(cid:10)(cid:10)(cid:4) xn(cid:5)kyk(cid:4)(cid:10)(cid:10)(cid:10)(cid:4)nxyn(cid:5)1(cid:4)yn k (cid:4) (cid:5) Lines n n(cid:2)n(cid:5)1(cid:3)(cid:10)(cid:10)(cid:10)(cid:2)n (cid:5)k(cid:4)1(cid:3) where (cid:2) Slope of line through P(cid:2)x, y(cid:3)and P(cid:2)x, y(cid:3): k 1(cid:2)2(cid:2)3(cid:2)(cid:10)(cid:10)(cid:10)(cid:2)k 1 1 1 2 2 2 y (cid:5)y Quadratic Formula m(cid:2) 2 1 x (cid:5)x 2 1 (cid:5)b(cid:9)sb2(cid:5)4ac If ax2(cid:4)bx(cid:4)c(cid:2)0, then x(cid:2) . 2a Point-slope equation of line through P(cid:2)x, y(cid:3)with slope m: 1 1 1 Inequalities and Absolute Value y(cid:5)y (cid:2)m(cid:2)x(cid:5)x(cid:3) 1 1 If a(cid:7)band b(cid:7)c, then a(cid:7)c. Slope-intercept equation of line with slope mand y-intercept b: If a(cid:7)b, then a(cid:4)c(cid:7)b(cid:4)c. If a(cid:7)band c(cid:8)0, then ca(cid:7)cb. y(cid:2)mx(cid:4)b If a(cid:7)band c(cid:7)0, then ca(cid:8)cb. If a(cid:8)0, then Circles (cid:6)x(cid:6)(cid:2)a means x(cid:2)a or x(cid:2)(cid:5)a (cid:6)x(cid:6)(cid:7)a means (cid:5)a(cid:7)x(cid:7)a Equation of the circle with center (cid:2)h, k(cid:3)and radius r: (cid:6)x(cid:6)(cid:8)a means x(cid:8)a or x(cid:7)(cid:5)a (cid:2)x(cid:5)h(cid:3)2(cid:4)(cid:2)y(cid:5)k(cid:3)2(cid:2)r2 97909_FrontEP_FrontEP_pF2_RefPage1-2_97909_FrontEP_FrontEP_pF2_RefPage1-2 9/24/10 5:36 PM Page 2 REFERENCE PAGE 2 TRIGONOMETRY Angle Measurement Fundamental Identities (cid:2)radians(cid:2)180(cid:3) 1 1 s csc (cid:4)(cid:2) sec (cid:4)(cid:2) r sin (cid:4) cos (cid:4) (cid:2) 180(cid:3) 1(cid:3)(cid:2) rad 1rad(cid:2) ¨ 180 (cid:2) sin (cid:4) cos (cid:4) s(cid:2)r(cid:4) r tan (cid:4)(cid:2) cos (cid:4) cot (cid:4)(cid:2) sin (cid:4) (cid:3)(cid:4)in radians(cid:4) cot (cid:4)(cid:2) 1 sin2(cid:4)(cid:5)cos2(cid:4)(cid:2)1 tan (cid:4) Right Angle Trigonometry 1(cid:5)tan2(cid:4)(cid:2)sec2(cid:4) 1(cid:5)cot2(cid:4)(cid:2)csc2(cid:4) opp hyp sin (cid:4)(cid:2) hyp csc (cid:4)(cid:2) opp hyp sin(cid:3)(cid:6)(cid:4)(cid:4)(cid:2)(cid:6)sin (cid:4) cos(cid:3)(cid:6)(cid:4)(cid:4)(cid:2)cos (cid:4) opp (cid:5) (cid:6) adj hyp (cid:2) cos (cid:4)(cid:2) sec (cid:4)(cid:2) ¨ tan(cid:3)(cid:6)(cid:4)(cid:4)(cid:2)(cid:6)tan (cid:4) sin (cid:6)(cid:4) (cid:2)cos (cid:4) hyp adj 2 adj (cid:5) (cid:6) (cid:5) (cid:6) opp adj tan (cid:4)(cid:2) cot (cid:4)(cid:2) (cid:2) (cid:2) adj opp cos (cid:6)(cid:4) (cid:2)sin (cid:4) tan (cid:6)(cid:4) (cid:2)cot (cid:4) 2 2 Trigonometric Functions The Law of Sines B sin (cid:4)(cid:2) y csc (cid:4)(cid:2) r y r y sin A (cid:2) sin B (cid:2) sin C a x r (x, y) a b c cos (cid:4)(cid:2) sec (cid:4)(cid:2) r C r x c tan (cid:4)(cid:2) xy cot (cid:4)(cid:2) yx ¨ x The Law of Cosines b a2(cid:2)b2(cid:5)c2(cid:6)2bccos A Graphs of Trigonometric Functions b2(cid:2)a2(cid:5)c2(cid:6)2accos B y y y y=tan x c2(cid:2)a2(cid:5)b2(cid:6)2abcos C A y=sin x y=cos x 1 1 π 2π 2π Addition and Subtraction Formulas x π 2πx π x sin(cid:3)x(cid:5)y(cid:4)(cid:2)sin x cos y(cid:5)cos x sin y _1 _1 sin(cid:3)x(cid:6)y(cid:4)(cid:2)sin x cos y(cid:6)cos x sin y cos(cid:3)x(cid:5)y(cid:4)(cid:2)cos x cos y(cid:6)sin x sin y y y=csc x y y=sec x y y=cot x cos(cid:3)x(cid:6)y(cid:4)(cid:2)cos x cos y(cid:5)sin x sin y tan x(cid:5)tan y tan(cid:3)x(cid:5)y(cid:4)(cid:2) 1 1 1(cid:6)tan x tan y tan x(cid:6)tan y π 2πx π 2πx π 2πx tan(cid:3)x(cid:6)y(cid:4)(cid:2) 1(cid:5)tan x tan y _1 _1 Double-Angle Formulas sin 2x(cid:2)2 sin x cos x Trigonometric Functions of Important Angles cos 2x(cid:2)cos2x(cid:6)sin2x(cid:2)2 cos2x(cid:6)1(cid:2)1(cid:6)2 sin2x (cid:4) radians sin (cid:4) cos (cid:4) tan (cid:4) 2 tan x tan 2x(cid:2) 0(cid:3) 0 0 1 0 1(cid:6)tan2x 30(cid:3) (cid:2)(cid:2)6 1(cid:2)2 s3(cid:2)2 s3(cid:2)3 45(cid:3) (cid:2)(cid:2)4 s2(cid:2)2 s2(cid:2)2 1 Half-Angle Formulas 60(cid:3) (cid:2)(cid:2)3 s3(cid:2)2 1(cid:2)2 s3 1(cid:6)cos 2x 1(cid:5)cos 2x 90(cid:3) (cid:2)(cid:2)2 1 0 — sin2x(cid:2) 2 cos2x(cid:2) 2 98678_FMSVET_FMSVET_pi-xxiii.qk_98678_FMSVET_FMSVET_pi-xxiii 9/24/10 10:11 AM Page i S I N G L E V A R I A B L E C A L C U L U S E A R L Y T R A N S C E N D E N T A L S SEVENTH EDITION JAMES STEWART McMASTER UNIVERSITY AND UNIVERSITY OF TORONTO Australia.Brazil.Japan.Korea.Mexico.Singapore.Spain.UnitedKingdom.United States This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for materials in your areas of interest. 98678_FMSVET_FMSVET_pi-xxiii.qk_98678_FMSVET_FMSVET_pi-xxiii 9/24/10 10:11 AM Page ii Single Variable Calculus: Early Transcendentals, © 2012, 2008Brooks/Cole, Cengage Learning Seventh Edition ALL RIGHTS RESERVED. No part of this work covered by the copy- James Stewart right herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including Executive Editor: Liz Covello but not limited to photocopying, recording, scanning, digitizing, AssistantEditor: Liza Neustaetter taping, Web distribution, information networks, or information stor- EditorialAssistant: Jennifer Staller age and retrieval systems, except as permitted under Section 107or 108of the 1976United States Copyright Act, without the prior writ- Media Editor: Maureen Ross ten permission of the publisher. MarketingManager: Jennifer Jones MarketingCoordinator: Michael Ledesma For product information and technology assistance, contact us at MarketingCommunicationsManager: Mary Anne Payumo Cengage Learning Customer & Sales Support, 1-800-354-9706. Content ProjectManager: Cheryll Linthicum For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions. ArtDirector: Vernon T. Boes PrintBuyer: Becky Cross Further permissions questions can be e-mailed to [email protected]. Rights Acquisitions Specialist: Don Schlotman ProductionService: TECH·arts Library of Congress Control Number: 2010936598 TextDesigner: TECH·arts Student Edition: PhotoResearcher: Terri Wright ISBN-13: 978-0-538-49867-8 CopyEditor: Kathi Townes ISBN-10: 0-538-49867-6 CoverDesigner: Irene Morris CoverIllustration: Irene Morris Brooks/Cole Compositor: Stephanie Kuhns, TECH·arts 20Davis Drive Belmont, CA 94002-3098 USA Cengage Learning is a leading provider of customized learning solu- tions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at www.cengage.com/global. Cengage Learning products are represented in Canada by Nelson Education, Ltd. To learn more about Brooks/Cole, visit www.cengage.com/brookscole. Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com. Trademarks ExamView®and ExamViewPro®are registered trademarks of FSCreations, Inc. Windows is a registered trademark of the Microsoft Corporation and used herein under license. Macintosh and Power Macintosh are registered trademarks of Apple Computer, Inc. Used herein under license. Derive is a registered trademark of Soft Warehouse, Inc. Maple is a registered trademark of Waterloo Maple, Inc. 0 1 Mathematica is a registered trademark of Wolfram Research, Inc. T 9 Tools for Enriching is a trademark used herein under license. K0 Printed in the United States of America 1 2 3 4 5 6 7 14 13 12 11 10 98678_FMSVET_FMSVET_pi-xxiii.qk_98678_FMSVET_FMSVET_pi-xxiii 9/24/10 10:11 AM Page iii To Bill Ralph and Bruce Thompson This page intentionally left blank 98678_FMSVET_FMSVET_pi-xxiii.qk_98678_FMSVET_FMSVET_pi-xxiii 9/24/10 10:11 AM Page v Contents Preface xi To the Student xxii Diagnostic Tests xxiv A PREVIEW OF CALCULUS 2 1 Functions and Models 9 1.1 Four Ways to Represent a Function 10 1.2 Mathematical Models: A Catalog of Essential Functions 23 1.3 New Functions from Old Functions 36 1.4 Graphing Calculators and Computers 44 1.5 Exponential Functions 51 1.6 Inverse Functions and Logarithms 58 Review 72 Principles of Problem Solving 75 2 Limits and Derivatives 81 2.1 The Tangent and Velocity Problems 82 2.2 The Limit of a Function 87 2.3 Calculating Limits Using the Limit Laws 99 2.4 The Precise Definition of a Limit 108 2.5 Continuity 118 2.6 Limits at Infinity; Horizontal Asymptotes 130 2.7 Derivatives and Rates of Change 143 Writing Project Early Methods for Finding Tangents 153 N 2.8 The Derivative as a Function 154 Review 165 Problems Plus 170 v 98678_FMSVET_FMSVET_pi-xxiii.qk_98678_FMSVET_FMSVET_pi-xxiii 9/24/10 10:11 AM Page vi vi CONTENTS 3 Differentiation Rules 173 3.1 Derivatives of Polynomials and Exponential Functions 174 Applied Project Building a Better Roller Coaster 184 N 3.2 The Product and Quotient Rules 184 3.3 Derivatives of Trigonometric Functions 191 3.4 The Chain Rule 198 Applied Project Where Should a Pilot Start Descent? 208 N 3.5 Implicit Differentiation 209 Laboratory Project Families of Implicit Curves 217 N 3.6 Derivatives of Logarithmic Functions 218 3.7 Rates of Change in the Natural and Social Sciences 224 3.8 Exponential Growth and Decay 237 3.9 Related Rates 244 3.10 Linear Approximations and Differentials 250 Laboratory Project Taylor Polynomials 256 N 3.11 Hyperbolic Functions 257 Review 264 Problems Plus 268 4 Applications of Differentiation 273 4.1 Maximum and Minimum Values 274 Applied Project The Calculus of Rainbows 282 N 4.2 The Mean Value Theorem 284 4.3 How Derivatives Affect the Shape of a Graph 290 4.4 Indeterminate Forms and l’Hospital’s Rule 301 Writing Project The Origins of l’Hospital’s Rule 310 N 4.5 Summary of Curve Sketching 310 4.6 Graphing with Calculus andCalculators 318 4.7 Optimization Problems 325 Applied Project The Shape of a Can 337 N 4.8 Newton’s Method 338 4.9 Antiderivatives 344 Review 351 Problems Plus 355