C a l c u l u s 6 Edition Single & Multivariable th Hughes-Hallett Gleason McCallum et al. CALCULUS SixthEdition CALCULUS SixthEdition ProducedbytheCalculusConsortiumandinitiallyfundedbyaNationalScienceFoundationGrant. DeborahHughes-Hallett WilliamG.McCallum AndrewM.Gleason UniversityofArizona UniversityofArizona HarvardUniversity EricConnally DavidLovelock CodyL.Patterson HarvardUniversityExtension UniversityofArizona UniversityofArizona DanielE.Flath GuadalupeI.Lozano DouglasQuinney MacalesterCollege UniversityofArizona UniversityofKeele SelinKalaycıog˘lu JerryMorris KarenRhea NewYorkUniversity SonomaStateUniversity UniversityofMichigan BrigitteLahme DavidMumford AdamH.Spiegler SonomaStateUniversity BrownUniversity LoyolaUniversityChicago PattiFrazerLock BradG.Osgood JeffTecosky-Feldman St.LawrenceUniversity StanfordUniversity HaverfordCollege DavidO.Lomen ThomasW.Tucker UniversityofArizona ColgateUniversity withtheassistanceof OttoK.Bretscher AdrianIovita DavidE.Sloane,MD ColbyCollege UniversityofWashington HarvardMedicalSchool Coordinatedby ElliotJ.Marks ACQUISITIONSEDITOR ShannonCorliss PUBLISHER LaurieRosatone SENIOREDITORIALASSISTANT JacquelineSinacori DEVELOPMENTALEDITOR AnneScanlan-Rohrer/TwoRavensEditorial MARKETINGMANAGER MelanieKurkjian SENIORPRODUCTDESIGNER TomKulesa OPERATIONSMANAGER MelissaEdwards ASSOCIATECONTENTEDITOR BethPearson SENIORPRODUCTIONEDITOR KenSantor COVERDESIGNER MadelynLesure COVERANDCHAPTEROPENINGPHOTO (cid:2)cPatrickZephyr/PatrickZephyrNaturePhotography ProblemsfromCalculus:TheAnalysisofFunctions,byPeterD.Taylor(Toronto:Wall&Emerson,Inc.,1992).Reprintedwithpermissionof thepublisher. ThisbookwassetinTimesRomanbytheConsortiumusingTEX,Mathematica,andthepackageASTEX,whichwaswrittenbyAlexKasman. ItwasprintedandboundbyR.R.Donnelley/JeffersonCity.ThecoverwasprintedbyR.R.Donnelley. Thisbookisprintedonacid-freepaper. Foundedin1807,JohnWiley&Sons,Inc.hasbeenavaluedsourceofknowledgeandunderstandingformorethan200years,helpingpeople aroundtheworldmeettheirneedsandfulfilltheiraspirations.Ourcompanyisbuiltonafoundationofprinciplesthatincluderesponsibilityto thecommunitiesweserveandwhereweliveandwork.In2008,welaunchedaCorporateCitizenshipInitiative,aglobalefforttoaddressthe environmental,social,economic,andethicalchallengeswefaceinourbusiness.Amongtheissuesweareaddressingarecarbonimpact,paper specificationsandprocurement,ethicalconductwithinourbusinessandamongourvendors,andcommunityandcharitablesupport.Formore information,pleasevisitourwebsite:www.wiley.com/go/citizenship. Copyright(cid:2)c2013,2009,2005,2001,and1998JohnWiley&Sons,Inc.Allrightsreserved. Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedinanyformorbyanymeans,electronic,mechanical, photocopying, recording, scanning orotherwise, except aspermitted under Sections 107or108ofthe 1976United States Copyright Act, withouteitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeetotheCopyright ClearanceCenter,222RosewoodDrive,Danvers,MA01923,(508)750-8400,fax(508)750-4470.RequeststothePublisherforpermission shouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201) 748-6008,E-Mail:[email protected]. Evaluationcopiesareprovidedtoqualifiedacademicsandprofessionalsforreviewpurposesonly,foruseintheircoursesduringthenext academicyear.Thesecopiesarelicensedandmaynotbesoldortransferredtoathirdparty.Uponcompletionofthereviewperiod,pleasereturn theevaluationcopytoWiley.Returninstructionsandafreeofchargereturnshippinglabelareavailableat:www.wiley.com/go/returnlabel.If youhavechosentoadoptthistextbookforuseinyourcourse,pleaseacceptthisbookasyourcomplimentarydeskcopy.OutsideoftheUnited States,pleasecontactyourlocalsalesrepresentative. ThismaterialisbaseduponworksupportedbytheNational ScienceFoundationunderGrantNo.DUE-9352905.Opinions expressedarethoseoftheauthorsandnotnecessarilythose oftheFoundation. ISBN-13cloth978-0470-88861-2 ISBN-13binder-ready978-1118-23114-2 PrintedintheUnitedStatesofAmerica 10987654321 PREFACE Calculusisoneofthegreatestachievementsofthehumanintellect.Inspiredbyproblemsinastronomy, NewtonandLeibnizdevelopedtheideasofcalculus300yearsago.Sincethen,eachcenturyhasdemonstrated the power of calculus to illuminate questions in mathematics, the physical sciences, engineering, and the socialandbiologicalsciences. Calculushasbeensosuccessfulbothbecauseitscentraltheme—change—ispivotaltoananalysisofthe naturalworldandbecauseofitsextraordinarypowertoreducecomplicatedproblemstosimpleprocedures. Thereinliesthedangerinteachingcalculus:itispossibletoteachthesubjectasnothingbutprocedures— thereby losing sight of both the mathematicsand of its practical value.This edition of Calculus continues ourefforttopromotecoursesinwhichunderstandingandcomputationreinforceeachother. Mathematical ThinkingSupported byTheoryandModeling Thefirststageinthedevelopmentofmathematicalthinkingistheacquisitionofaclearintuitivepictureofthe centralideas.Inthenextstage,thestudentlearnstoreasonwiththeintuitiveideasinplainEnglish.Afterthis foundationhasbeenlaid,thereisachoiceofdirection.Allstudentsbenefitfromboththeoryandmodeling, butthebalancemaydifferfordifferentgroups.Somestudents,suchasmathematicsmajors,mayprefermore theory,whileothersmayprefermoremodeling.Forinstructorswishingtoemphasizetheconnectionbetween calculusandotherfields,thetextincludes: • Avarietyofproblemsfromthephysicalsciencesandengineering. • Examplesfromthebiologicalsciencesandeconomics. • Modelsfromthehealthsciencesandofpopulationgrowth. • Newproblemsonsustainability. • NewcasestudiesonmedicinebyDavidE.Sloane,MD. Originofthe Text Fromthebeginning,thistextbookgrewoutofacommunityofmathematicsinstructorseagertofindeffective ways for students to learn calculus. This Sixth Edition of Calculus reflects the many voices of users at researchuniversities,four-yearcolleges,communitycolleges,andsecondaryschools.Theirinputandthatof ourpartnerdisciplines,engineeringandthenaturalandsocialsciences,continuetoshapeourwork. ActiveLearning: GoodProblems As instructors ourselves, we know that interactive classrooms and well-crafted problems promote student learning.Sinceitsinception,thehallmarkofourtexthasbeenitsinnovativeandengagingproblems.These problemsprobestudentunderstandinginwaysoftentakenforgranted.Praisedfortheircreativityandvariety, theinfluenceoftheseproblemshasextendedfarbeyondtheusersofourtextbook. The Sixth Edition continues this tradition. Under our approach, which we called the “Rule of Four,” ideasarepresentedgraphically,numerically,symbolically,andverbally,therebyencouragingstudentswith avarietyoflearningstylestoexpandtheirknowledge.Thiseditionexpandsthetypesofproblemsavailable: • NewStrengthenYourUnderstanding problemsatthe endofeverysection.These problemsaskstu- dentstoreflectonwhattheyhavelearnedbydeciding“Whatiswrong?”withastatementandto“Give anexample”ofanidea. • ConcepTests promote active learning in the classroom. These can be used with or without clickers (personalresponsesystems),andhavebeenshowntodramaticallyimprovestudentlearning.Available inabookoronthewebatwww.wiley.com/college/hughes-hallett. v vi Preface • ClassWorksheetsallowinstructorstoengagestudentsinindividualorgroupclass-work.Samplesare availableintheInstructor’sManual,andallareonthewebatwww.wiley.com/college/hughes-hallett. • UpdatedDataandModels.Forexample,Section11.7followsthecurrentdebateonPeakOilProduc- tion, underscoring the importance of mathematics in understanding the world’s economic and social problems. • Projectsattheendofeachchapterprovideopportunitiesforasustainedinvestigation,oftenusingskills fromdifferentpartsofthecourse. • DrillExercisesbuildstudentskillandconfidence. • OnlineProblemsavailableinWileyPLUSorWeBWorK,forexample.Manyproblemsarerandomized, providingstudentswithexpandedopportunitiesforpracticewithimmediatefeedback. SymbolicManipulationandTechnology Tousecalculuseffectively,studentsneedskillinbothsymbolicmanipulationandtheuseoftechnology.The balancebetweenthetwomayvary,dependingontheneedsofthestudentsandthewishesoftheinstructor. Thebookisadaptabletomanydifferentcombinations. Thebookdoesnotrequireanyspecificsoftwareortechnology.Ithasbeenusedwithgraphingcalcula- tors,graphingsoftware,andcomputeralgebrasystems.Anytechnologywiththeabilitytographfunctions andperformnumericalintegrationwillsuffice.Studentsareexpectedtousetheirownjudgmenttodetermine wheretechnologyisuseful. Content This content represents our vision of how calculus can be taught. It is flexible enough to accommodate individualcourseneedsandrequirements.Topicscaneasilybeaddedordeleted,ortheorderchanged. Changestothe textinthe SixthEditionarein italics. Inallchapters,manynewproblemswere added andotherswereupdated. Chapter1:ALibraryofFunctions This chapter introduces all the elementary functions to be used in the book. Although the functions are probablyfamiliar,thegraphical,numerical,verbal,andmodelingapproachtothemmaybenew.Weintroduce exponentialfunctionsattheearliestpossiblestage,sincetheyarefundamentaltotheunderstandingofreal- worldprocesses.The chapterconcludeswith a section onlimits, allowingfora discussionofcontinuityat a pointand onan interval.The sectionon limits is flexibleenoughto allow for a briefintroductionbefore derivativesorforamoreextensivetreatment. Chapter2:KeyConcept:TheDerivative The purposeof this chapter is to give the studenta practicalunderstandingof the definitionof the deriva- tive and its interpretationas an instantaneousrate of change.The powerrule is introduced;otherrules are introducedinChapter3. Chapter3:Short-CutstoDifferentiation ThederivativesofallthefunctionsinChapter1areintroduced,aswellastherulesfordifferentiatingprod- ucts;quotients;andcomposite,inverse,hyperbolic,andimplicitlydefinedfunctions. Chapter4:UsingtheDerivative The aim of this chapter is to enable the student to use the derivative in solving problems, including opti- mization,graphing,rates,parametricequations,andindeterminateforms.Itisnotnecessarytocoverallthe sectionsinthischapter. Toincreaseaccesstooptimization,manysectionsofthischapterhavebeenstreamlined.Optimization andModelingarenowinSection4.3,followedbyFamiliesofFunctionsandModelinginSection4.4.Upper andlowerboundshavebeenmovedtoSection4.2,andgeometricoptimizationisnowcombinedwithOpti- mizationandModeling.Section4.8onParametricEquationsislinkedto AppendixD, allowingdiscussion ofvelocityasavector. Preface vii Chapter5:KeyConcept:TheDefiniteIntegral Thepurposeofthischapteristogivethestudentapracticalunderstandingofthedefiniteintegralasalimit of Riemann sums and to bring out the connection between the derivative and the definite integral in the FundamentalTheoremofCalculus. Section5.3nowincludestheapplicationoftheFundamentalTheoremofCalculustothecomputationof definiteintegrals.TheuseofintegralstofindaveragesisnowinSection5.4. Chapter6:ConstructingAntiderivatives This chapter focuses on going backward from a derivative to the original function, first graphically and numerically,thenanalytically.ItintroducestheSecondFundamentalTheoremofCalculusandtheconcept ofadifferentialequation. Section6.3onDifferentialEquationsandMotioncontainsthematerialfromtheformerSection6.5. Chapter7:Integration This chapter includes several techniques of integration, including substitution, parts, partial fractions, and trigonometricsubstitutions;othersareincludedinthetableofintegrals.Therearediscussionsofnumerical methodsandofimproperintegrals. Section7.4nowincludestheuseoftrianglestohelpstudentsvisualizeatrigonometricsubstitution.The twoformersectionsonnumericalmethodshavebeencombinedintoSection7.5. Chapter8:UsingtheDefiniteIntegral This chapter emphasizesthe idea of subdividinga quantity to produceRiemann sums which, in the limit, yieldadefiniteintegral.Itshowshowtheintegralisusedingeometry,physics,economics,andprobability; polarcoordinatesareintroduced.Itisnotnecessarytocoverallthesectionsinthischapter. Chapter9:SequencesandSeries Thischapterfocusesonsequences,seriesofconstants,andconvergence.Itincludestheintegral,ratio,com- parison,limitcomparison,andalternatingseriestests.Italsointroducesgeometricseriesandgeneralpower series,includingtheirintervalsofconvergence. Chapter10:ApproximatingFunctions ThischapterintroducesTaylorSeriesandFourierSeriesusingtheideaofapproximatingfunctionsbysimpler functions. Chapter11:DifferentialEquations Thischapterintroducesdifferentialequations.Theemphasisisonqualitativesolutions,modeling,andinter- pretation. Section11.7onLogisticModels(formerlyonpopulationmodels)hasbeenrewrittenaroundthethought- provoking predictions of peak oil production. This section encourages students to use the skills learned earlierinthecoursetoanalyzeaproblemofglobalimportance.Sections11.10and11.11onSecondOrder DifferentialEquationsarenowonthewebatwww.wiley.com/college/hughes-hallett. Chapter12:FunctionsofSeveralVariables Thischapterintroducesfunctionsofmanyvariablesfromseveralpointsofview,usingsurfacegraphs,con- tour diagrams, and tables. We assume throughout that functions of two or more variables are defined on regionswithpiecewisesmoothboundaries.Weconcludewithasectiononcontinuity. Chapter13:AFundamentalTool:Vectors Thischapterintroducesvectorsgeometricallyandalgebraicallyanddiscussesthedotandcrossproduct. viii Preface Chapter14:DifferentiatingFunctionsofSeveralVariables Partial derivatives, directional derivatives, gradients, and local linearity are introduced. The chapter also discusseshigherorderpartialderivatives,quadraticTaylorapproximations,anddifferentiability. Chapter15:Optimization Theideasofthepreviouschapterareappliedtooptimizationproblems,bothconstrainedandunconstrained. Chapter16:IntegratingFunctionsofSeveralVariables ThischapterdiscussesdoubleandtripleintegralsinCartesian,polar,cylindrical,andsphericalcoordinates. TheformerSection16.7hasbeenmovedtothenewChapter21. Chapter17:ParameterizationandVectorFields Thischapterdiscussesparameterizedcurvesandmotion,vectorfieldsandflowlines. TheformerSection17.5hasbeenmovedtothenewChapter21. Chapter18:LineIntegrals Thischapterintroduceslineintegralsandshowshowtocalculatethemusingparameterizations.Conservative fields, gradientfields, the FundamentalTheorem of Calculus for Line Integrals, and Green’s Theorem are discussed. Chapter19:FluxIntegralsandDivergence This chapter introduces flux integrals and shows how to calculate them over surface graphs, portions of cylinders,andportionsofspheres.Thedivergenceisintroducedanditsrelationshiptofluxintegralsdiscussed intheDivergenceTheorem. ThisnewchaptercombinesSections19.1and19.2withSections20.1and20.2fromthefifthedition Chapter20:TheCurlandStokes’Theorem ThepurposeofthischapteristogivestudentsapracticalunderstandingofthecurlandofStokes’Theorem andtolayouttherelationshipbetweenthetheoremsofvectorcalculus. ThischapterconsistsofSections20.3–20.5fromthefifthedition. Chapter21:Parameters,Coordinates,andIntegrals Thisnewchaptercoversparameterizedsurfaces,thechangeofvariableformulainadoubleortripleintegral, andfluxthoughaparameterizedsurface. Appendices There are appendices on roots, accuracy, and bounds; complex numbers; Newton’s Method; and determi- nants. Projects TherearenewprojectsinChapter12:“Heathrow”;Chapter19:“SolidAngle”;andChapter20:“Magnetic fieldgeneratedbyacurrentinawire”. ChoiceofPaths: LeanorExpanded Forthosewhoprefertheleantopiclistofearliereditions,wehavekeptclearthemainconceptualpaths.For example, • TheKeyConceptchaptersonthederivativeandthedefiniteintegral(Chapters2and5)canbecovered attheoutsetofthecourse,rightafterChapter1.
Description: