ebook img

Single & Multivariable 6th Edition Hughes-Hallett Gleason McCallum et al. PDF

1244 Pages·2013·31.07 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Single & Multivariable 6th Edition Hughes-Hallett Gleason McCallum et al.

C a l c u l u s 6 Edition Single & Multivariable th Hughes-Hallett Gleason McCallum et al. CALCULUS SixthEdition CALCULUS SixthEdition ProducedbytheCalculusConsortiumandinitiallyfundedbyaNationalScienceFoundationGrant. DeborahHughes-Hallett WilliamG.McCallum AndrewM.Gleason UniversityofArizona UniversityofArizona HarvardUniversity EricConnally DavidLovelock CodyL.Patterson HarvardUniversityExtension UniversityofArizona UniversityofArizona DanielE.Flath GuadalupeI.Lozano DouglasQuinney MacalesterCollege UniversityofArizona UniversityofKeele SelinKalaycıog˘lu JerryMorris KarenRhea NewYorkUniversity SonomaStateUniversity UniversityofMichigan BrigitteLahme DavidMumford AdamH.Spiegler SonomaStateUniversity BrownUniversity LoyolaUniversityChicago PattiFrazerLock BradG.Osgood JeffTecosky-Feldman St.LawrenceUniversity StanfordUniversity HaverfordCollege DavidO.Lomen ThomasW.Tucker UniversityofArizona ColgateUniversity withtheassistanceof OttoK.Bretscher AdrianIovita DavidE.Sloane,MD ColbyCollege UniversityofWashington HarvardMedicalSchool Coordinatedby ElliotJ.Marks ACQUISITIONSEDITOR ShannonCorliss PUBLISHER LaurieRosatone SENIOREDITORIALASSISTANT JacquelineSinacori DEVELOPMENTALEDITOR AnneScanlan-Rohrer/TwoRavensEditorial MARKETINGMANAGER MelanieKurkjian SENIORPRODUCTDESIGNER TomKulesa OPERATIONSMANAGER MelissaEdwards ASSOCIATECONTENTEDITOR BethPearson SENIORPRODUCTIONEDITOR KenSantor COVERDESIGNER MadelynLesure COVERANDCHAPTEROPENINGPHOTO (cid:2)cPatrickZephyr/PatrickZephyrNaturePhotography ProblemsfromCalculus:TheAnalysisofFunctions,byPeterD.Taylor(Toronto:Wall&Emerson,Inc.,1992).Reprintedwithpermissionof thepublisher. ThisbookwassetinTimesRomanbytheConsortiumusingTEX,Mathematica,andthepackageASTEX,whichwaswrittenbyAlexKasman. ItwasprintedandboundbyR.R.Donnelley/JeffersonCity.ThecoverwasprintedbyR.R.Donnelley. Thisbookisprintedonacid-freepaper. Foundedin1807,JohnWiley&Sons,Inc.hasbeenavaluedsourceofknowledgeandunderstandingformorethan200years,helpingpeople aroundtheworldmeettheirneedsandfulfilltheiraspirations.Ourcompanyisbuiltonafoundationofprinciplesthatincluderesponsibilityto thecommunitiesweserveandwhereweliveandwork.In2008,welaunchedaCorporateCitizenshipInitiative,aglobalefforttoaddressthe environmental,social,economic,andethicalchallengeswefaceinourbusiness.Amongtheissuesweareaddressingarecarbonimpact,paper specificationsandprocurement,ethicalconductwithinourbusinessandamongourvendors,andcommunityandcharitablesupport.Formore information,pleasevisitourwebsite:www.wiley.com/go/citizenship. Copyright(cid:2)c2013,2009,2005,2001,and1998JohnWiley&Sons,Inc.Allrightsreserved. Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedinanyformorbyanymeans,electronic,mechanical, photocopying, recording, scanning orotherwise, except aspermitted under Sections 107or108ofthe 1976United States Copyright Act, withouteitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeetotheCopyright ClearanceCenter,222RosewoodDrive,Danvers,MA01923,(508)750-8400,fax(508)750-4470.RequeststothePublisherforpermission shouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201) 748-6008,E-Mail:[email protected]. Evaluationcopiesareprovidedtoqualifiedacademicsandprofessionalsforreviewpurposesonly,foruseintheircoursesduringthenext academicyear.Thesecopiesarelicensedandmaynotbesoldortransferredtoathirdparty.Uponcompletionofthereviewperiod,pleasereturn theevaluationcopytoWiley.Returninstructionsandafreeofchargereturnshippinglabelareavailableat:www.wiley.com/go/returnlabel.If youhavechosentoadoptthistextbookforuseinyourcourse,pleaseacceptthisbookasyourcomplimentarydeskcopy.OutsideoftheUnited States,pleasecontactyourlocalsalesrepresentative. ThismaterialisbaseduponworksupportedbytheNational ScienceFoundationunderGrantNo.DUE-9352905.Opinions expressedarethoseoftheauthorsandnotnecessarilythose oftheFoundation. ISBN-13cloth978-0470-88861-2 ISBN-13binder-ready978-1118-23114-2 PrintedintheUnitedStatesofAmerica 10987654321 PREFACE Calculusisoneofthegreatestachievementsofthehumanintellect.Inspiredbyproblemsinastronomy, NewtonandLeibnizdevelopedtheideasofcalculus300yearsago.Sincethen,eachcenturyhasdemonstrated the power of calculus to illuminate questions in mathematics, the physical sciences, engineering, and the socialandbiologicalsciences. Calculushasbeensosuccessfulbothbecauseitscentraltheme—change—ispivotaltoananalysisofthe naturalworldandbecauseofitsextraordinarypowertoreducecomplicatedproblemstosimpleprocedures. Thereinliesthedangerinteachingcalculus:itispossibletoteachthesubjectasnothingbutprocedures— thereby losing sight of both the mathematicsand of its practical value.This edition of Calculus continues ourefforttopromotecoursesinwhichunderstandingandcomputationreinforceeachother. Mathematical ThinkingSupported byTheoryandModeling Thefirststageinthedevelopmentofmathematicalthinkingistheacquisitionofaclearintuitivepictureofthe centralideas.Inthenextstage,thestudentlearnstoreasonwiththeintuitiveideasinplainEnglish.Afterthis foundationhasbeenlaid,thereisachoiceofdirection.Allstudentsbenefitfromboththeoryandmodeling, butthebalancemaydifferfordifferentgroups.Somestudents,suchasmathematicsmajors,mayprefermore theory,whileothersmayprefermoremodeling.Forinstructorswishingtoemphasizetheconnectionbetween calculusandotherfields,thetextincludes: • Avarietyofproblemsfromthephysicalsciencesandengineering. • Examplesfromthebiologicalsciencesandeconomics. • Modelsfromthehealthsciencesandofpopulationgrowth. • Newproblemsonsustainability. • NewcasestudiesonmedicinebyDavidE.Sloane,MD. Originofthe Text Fromthebeginning,thistextbookgrewoutofacommunityofmathematicsinstructorseagertofindeffective ways for students to learn calculus. This Sixth Edition of Calculus reflects the many voices of users at researchuniversities,four-yearcolleges,communitycolleges,andsecondaryschools.Theirinputandthatof ourpartnerdisciplines,engineeringandthenaturalandsocialsciences,continuetoshapeourwork. ActiveLearning: GoodProblems As instructors ourselves, we know that interactive classrooms and well-crafted problems promote student learning.Sinceitsinception,thehallmarkofourtexthasbeenitsinnovativeandengagingproblems.These problemsprobestudentunderstandinginwaysoftentakenforgranted.Praisedfortheircreativityandvariety, theinfluenceoftheseproblemshasextendedfarbeyondtheusersofourtextbook. The Sixth Edition continues this tradition. Under our approach, which we called the “Rule of Four,” ideasarepresentedgraphically,numerically,symbolically,andverbally,therebyencouragingstudentswith avarietyoflearningstylestoexpandtheirknowledge.Thiseditionexpandsthetypesofproblemsavailable: • NewStrengthenYourUnderstanding problemsatthe endofeverysection.These problemsaskstu- dentstoreflectonwhattheyhavelearnedbydeciding“Whatiswrong?”withastatementandto“Give anexample”ofanidea. • ConcepTests promote active learning in the classroom. These can be used with or without clickers (personalresponsesystems),andhavebeenshowntodramaticallyimprovestudentlearning.Available inabookoronthewebatwww.wiley.com/college/hughes-hallett. v vi Preface • ClassWorksheetsallowinstructorstoengagestudentsinindividualorgroupclass-work.Samplesare availableintheInstructor’sManual,andallareonthewebatwww.wiley.com/college/hughes-hallett. • UpdatedDataandModels.Forexample,Section11.7followsthecurrentdebateonPeakOilProduc- tion, underscoring the importance of mathematics in understanding the world’s economic and social problems. • Projectsattheendofeachchapterprovideopportunitiesforasustainedinvestigation,oftenusingskills fromdifferentpartsofthecourse. • DrillExercisesbuildstudentskillandconfidence. • OnlineProblemsavailableinWileyPLUSorWeBWorK,forexample.Manyproblemsarerandomized, providingstudentswithexpandedopportunitiesforpracticewithimmediatefeedback. SymbolicManipulationandTechnology Tousecalculuseffectively,studentsneedskillinbothsymbolicmanipulationandtheuseoftechnology.The balancebetweenthetwomayvary,dependingontheneedsofthestudentsandthewishesoftheinstructor. Thebookisadaptabletomanydifferentcombinations. Thebookdoesnotrequireanyspecificsoftwareortechnology.Ithasbeenusedwithgraphingcalcula- tors,graphingsoftware,andcomputeralgebrasystems.Anytechnologywiththeabilitytographfunctions andperformnumericalintegrationwillsuffice.Studentsareexpectedtousetheirownjudgmenttodetermine wheretechnologyisuseful. Content This content represents our vision of how calculus can be taught. It is flexible enough to accommodate individualcourseneedsandrequirements.Topicscaneasilybeaddedordeleted,ortheorderchanged. Changestothe textinthe SixthEditionarein italics. Inallchapters,manynewproblemswere added andotherswereupdated. Chapter1:ALibraryofFunctions This chapter introduces all the elementary functions to be used in the book. Although the functions are probablyfamiliar,thegraphical,numerical,verbal,andmodelingapproachtothemmaybenew.Weintroduce exponentialfunctionsattheearliestpossiblestage,sincetheyarefundamentaltotheunderstandingofreal- worldprocesses.The chapterconcludeswith a section onlimits, allowingfora discussionofcontinuityat a pointand onan interval.The sectionon limits is flexibleenoughto allow for a briefintroductionbefore derivativesorforamoreextensivetreatment. Chapter2:KeyConcept:TheDerivative The purposeof this chapter is to give the studenta practicalunderstandingof the definitionof the deriva- tive and its interpretationas an instantaneousrate of change.The powerrule is introduced;otherrules are introducedinChapter3. Chapter3:Short-CutstoDifferentiation ThederivativesofallthefunctionsinChapter1areintroduced,aswellastherulesfordifferentiatingprod- ucts;quotients;andcomposite,inverse,hyperbolic,andimplicitlydefinedfunctions. Chapter4:UsingtheDerivative The aim of this chapter is to enable the student to use the derivative in solving problems, including opti- mization,graphing,rates,parametricequations,andindeterminateforms.Itisnotnecessarytocoverallthe sectionsinthischapter. Toincreaseaccesstooptimization,manysectionsofthischapterhavebeenstreamlined.Optimization andModelingarenowinSection4.3,followedbyFamiliesofFunctionsandModelinginSection4.4.Upper andlowerboundshavebeenmovedtoSection4.2,andgeometricoptimizationisnowcombinedwithOpti- mizationandModeling.Section4.8onParametricEquationsislinkedto AppendixD, allowingdiscussion ofvelocityasavector. Preface vii Chapter5:KeyConcept:TheDefiniteIntegral Thepurposeofthischapteristogivethestudentapracticalunderstandingofthedefiniteintegralasalimit of Riemann sums and to bring out the connection between the derivative and the definite integral in the FundamentalTheoremofCalculus. Section5.3nowincludestheapplicationoftheFundamentalTheoremofCalculustothecomputationof definiteintegrals.TheuseofintegralstofindaveragesisnowinSection5.4. Chapter6:ConstructingAntiderivatives This chapter focuses on going backward from a derivative to the original function, first graphically and numerically,thenanalytically.ItintroducestheSecondFundamentalTheoremofCalculusandtheconcept ofadifferentialequation. Section6.3onDifferentialEquationsandMotioncontainsthematerialfromtheformerSection6.5. Chapter7:Integration This chapter includes several techniques of integration, including substitution, parts, partial fractions, and trigonometricsubstitutions;othersareincludedinthetableofintegrals.Therearediscussionsofnumerical methodsandofimproperintegrals. Section7.4nowincludestheuseoftrianglestohelpstudentsvisualizeatrigonometricsubstitution.The twoformersectionsonnumericalmethodshavebeencombinedintoSection7.5. Chapter8:UsingtheDefiniteIntegral This chapter emphasizesthe idea of subdividinga quantity to produceRiemann sums which, in the limit, yieldadefiniteintegral.Itshowshowtheintegralisusedingeometry,physics,economics,andprobability; polarcoordinatesareintroduced.Itisnotnecessarytocoverallthesectionsinthischapter. Chapter9:SequencesandSeries Thischapterfocusesonsequences,seriesofconstants,andconvergence.Itincludestheintegral,ratio,com- parison,limitcomparison,andalternatingseriestests.Italsointroducesgeometricseriesandgeneralpower series,includingtheirintervalsofconvergence. Chapter10:ApproximatingFunctions ThischapterintroducesTaylorSeriesandFourierSeriesusingtheideaofapproximatingfunctionsbysimpler functions. Chapter11:DifferentialEquations Thischapterintroducesdifferentialequations.Theemphasisisonqualitativesolutions,modeling,andinter- pretation. Section11.7onLogisticModels(formerlyonpopulationmodels)hasbeenrewrittenaroundthethought- provoking predictions of peak oil production. This section encourages students to use the skills learned earlierinthecoursetoanalyzeaproblemofglobalimportance.Sections11.10and11.11onSecondOrder DifferentialEquationsarenowonthewebatwww.wiley.com/college/hughes-hallett. Chapter12:FunctionsofSeveralVariables Thischapterintroducesfunctionsofmanyvariablesfromseveralpointsofview,usingsurfacegraphs,con- tour diagrams, and tables. We assume throughout that functions of two or more variables are defined on regionswithpiecewisesmoothboundaries.Weconcludewithasectiononcontinuity. Chapter13:AFundamentalTool:Vectors Thischapterintroducesvectorsgeometricallyandalgebraicallyanddiscussesthedotandcrossproduct. viii Preface Chapter14:DifferentiatingFunctionsofSeveralVariables Partial derivatives, directional derivatives, gradients, and local linearity are introduced. The chapter also discusseshigherorderpartialderivatives,quadraticTaylorapproximations,anddifferentiability. Chapter15:Optimization Theideasofthepreviouschapterareappliedtooptimizationproblems,bothconstrainedandunconstrained. Chapter16:IntegratingFunctionsofSeveralVariables ThischapterdiscussesdoubleandtripleintegralsinCartesian,polar,cylindrical,andsphericalcoordinates. TheformerSection16.7hasbeenmovedtothenewChapter21. Chapter17:ParameterizationandVectorFields Thischapterdiscussesparameterizedcurvesandmotion,vectorfieldsandflowlines. TheformerSection17.5hasbeenmovedtothenewChapter21. Chapter18:LineIntegrals Thischapterintroduceslineintegralsandshowshowtocalculatethemusingparameterizations.Conservative fields, gradientfields, the FundamentalTheorem of Calculus for Line Integrals, and Green’s Theorem are discussed. Chapter19:FluxIntegralsandDivergence This chapter introduces flux integrals and shows how to calculate them over surface graphs, portions of cylinders,andportionsofspheres.Thedivergenceisintroducedanditsrelationshiptofluxintegralsdiscussed intheDivergenceTheorem. ThisnewchaptercombinesSections19.1and19.2withSections20.1and20.2fromthefifthedition Chapter20:TheCurlandStokes’Theorem ThepurposeofthischapteristogivestudentsapracticalunderstandingofthecurlandofStokes’Theorem andtolayouttherelationshipbetweenthetheoremsofvectorcalculus. ThischapterconsistsofSections20.3–20.5fromthefifthedition. Chapter21:Parameters,Coordinates,andIntegrals Thisnewchaptercoversparameterizedsurfaces,thechangeofvariableformulainadoubleortripleintegral, andfluxthoughaparameterizedsurface. Appendices There are appendices on roots, accuracy, and bounds; complex numbers; Newton’s Method; and determi- nants. Projects TherearenewprojectsinChapter12:“Heathrow”;Chapter19:“SolidAngle”;andChapter20:“Magnetic fieldgeneratedbyacurrentinawire”. ChoiceofPaths: LeanorExpanded Forthosewhoprefertheleantopiclistofearliereditions,wehavekeptclearthemainconceptualpaths.For example, • TheKeyConceptchaptersonthederivativeandthedefiniteintegral(Chapters2and5)canbecovered attheoutsetofthecourse,rightafterChapter1.

Description:
Produced by the Calculus Consortium and initially funded by a National Science Foundation Grant. Deborah Hughes-Hallett. William G. McCallum.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.