Single-mode squeezing in arbitrary spatial modes MarionSemmler1,2,StefanBerg-Johansen1,2, ,VanessaChille1,2, ∗ ChristianGabriel1,2,PeterBanzer1,2,3,AndreaAiello1,2, ChristophMarquardt1,2andGerdLeuchs1,2,3 1MaxPlanckInstitutefortheScienceofLight,Guenther-Scharowsky-Str.1/Bldg.24, 91058Erlangen,Germany 6 2InstituteforOptics,InformationandPhotonics,UniversityErlangen-Nuremberg, 1 Staudtstr.7/B2,91058Erlangen,Germany 0 3DepartmentofPhysics,UniversityofOttawa,25Templeton,Ottawa,Ontario,K1N6N5 Canada 2 ∗[email protected] n a J Abstract: As the generation of squeezed states of light has become a 5 standardtechniqueinlaboratories,attentionisincreasinglydirectedtowards 1 adapting the optical parameters of squeezed beams to the specific require- ] ments of individual applications. It is known that imaging, metrology, and h quantuminformationmaybenefitfromusingsqueezedlightwithatailored p transverse spatial mode. However, experiments have so far been limited to - t generating only a few squeezed spatial modes within a given setup. Here, n a wepresentthegenerationofsingle-modesqueezinginLaguerre-Gaussand u Bessel-Gauss modes, as well as an arbitrary intensity pattern, all from a q singlesetupusingaspatiallightmodulator(SLM).Thedegreeofsqueezing [ obtained is limited mainly by the initial squeezing and diffractive losses 1 introducedbytheSLM,whilenoexcessnoisefromtheSLMisdetectable v at the measured sideband. The experiment illustrates the single-mode 1 concept in quantum optics and demonstrates the viability of current SLMs 6 asflexibletoolsforthespatialreshapingofsqueezedlight. 9 3 © 2016 OpticalSocietyofAmerica 0 . OCIScodes:(270.6570)Squeezedstates;(230.6120)Spatiallightmodulators. 1 0 6 1 Referencesandlinks : 1. R.Loudon,“Thequantumtheoryoflight,”(OxfordUniversityPress,2000). v 2. G.Leuchs,“Squeezingthequantumfluctuationsoflight,”Contemp.Phys.29,299(1988). i X 3. L.Davidovich,“Sub-Poissonianprocessesinquantumoptics,”Rev.Mod.Phys.68,127(1996). 4. V. V. Dodonov, “Nonclassical states in quantum optics: a squeezed review of the first 75 years,” J. Opt. B: r QuantumSemiclass.Opt.4,R1(2002). a 5. R.Glauber,“TheQuantumTheoryofOpticalCoherence,”Phys.Rev.130,2529(1963). 6. D.Stoler,“EquivalenceClassesofMinimumUncertaintyPackets,”Phys.Rev.D1,3217(1970). 7. E.Y.C.Lu,“Newcoherentstatesoftheelectromagneticfield,”Lett.NuovoCimentoSeries22,1241(1971). 8. R.Slusher,L.Hollberg,B.Yurke,J.Mertz,andJ.Valley,“ObservationofSqueezedStatesGeneratedbyFour- WaveMixinginanOpticalCavity,”Phys.Rev.Lett.55,2409(1985). 9. C.M.Caves,“Quantum-mechanicalnoiseinaninterferometer,”Phys.Rev.D23,1693(1981). 10. H.Grote,K.Danzmann,K.L.Dooley,R.Schnabel,J.Slutsky,andH.Vahlbruch,“FirstLong-TermApplication ofSqueezedStatesofLightinaGravitational-WaveObservatory,”Phys.Rev.Lett.110,181101(2013). 11. S.L.BraunsteinandP.vanLoock,“Quantuminformationwithcontinuousvariables,”Rev.Mod.Phys.77,513 (2005). 12. M.Hillery,“Quantumcryptographywithsqueezedstates,”Phys.Rev.A61,022309(2000). 13. D.GottesmanandJ.Preskill,“Securequantumkeydistributionusingsqueezedstates,”Phys.Rev.A63,022309 (2001). 14. C.S.Jacobsen,L.S.Madsen,V.C.Usenko,R.Filip,andU.L.Andersen,“Eliminationofinformationleakage inquantuminformationchannels,”arXiv:1408.4566(2014). 15. L.Allen,M.W.Beijersbergen,R.Spreeuw,andJ.Woerdman,“Orbitalangularmomentumoflightandthe transformationofLaguerre-Gaussianlasermodes,”Phys.Rev.A45,8185(1992). 16. H.SasadaandM.Okamoto,“Transverse-modebeamsplitterofalightbeamanditsapplicationtoquantum cryptography,”Phys.Rev.A68,012323(2003). 17. S.Gro¨blacher,T.Jennewein,A.Vaziri,G.Weihs,andA.Zeilinger,“Experimentalquantumcryptographywith qutrits,”NewJ.Phys.8,75(2006). 18. S. Armstrong, J.-F. Morizur, J. Janousek, B. Hage, N. Treps, P. K. Lam, and H.-A. Bachor, “Programmable multimodequantumnetworks,”NatureCommun.3,1026(2012). 19. M.Kolobov,“Quantumimaging,”(Springer,2007). 20. G.Brida,M.Genovese,andI.RuoBerchera,“Experimentalrealizationofsub-shot-noisequantumimaging,” NaturePhoton.4,227(2010). 21. N.Treps,N.Grosse,W.P.Bowen,C.Fabre,H.-A.Bachor,andP.K.Lam,“Aquantumlaserpointer.”Science 301,940(2003). 22. M.Granata,C.Buy,R.Ward,andM.Barsuglia,“Higher-OrderLaguerre-GaussModeGenerationandInterfer- ometryforGravitationalWaveDetectors,”Phys.Rev.Lett.105,231102(2010). 23. P.Fulda,K.Kokeyama,S.Chelkowski,andA.Freise,“Experimentaldemonstrationofhigher-orderLaguerre- Gaussmodeinterferometry,”Phys.Rev.D82,012002(2010). 24. U.M.TitulaerandR.J.Glauber,“Densityoperatorsforcoherentfields,”Phys.Rev.145,1041(1966). 25. I.H.Deutsch,“Abasis-independentapproachtoquantumoptics,”Am.J.Phys.59,834(1991). 26. N.Treps,V.Delaubert,A.Maˆıtre,J.Courty,andC.Fabre,“Quantumnoiseinmultipixelimageprocessing,” Phys.Rev.A71,013820(2005). 27. B.J.SmithandM.G.Raymer,“Photonwavefunctions,wave-packetquantizationoflight,andcoherencetheory,” NewJ.Phys.9,414(2007). 28. S.Smolka,J.R.Ott,A.Huck,U.L.Andersen,andP.Lodahl,“Continuous-wavespatialquantumcorrelationsof lightinducedbymultiplescattering,”Phys.Rev.A86,033814(2012). 29. P.KumarandM.I.Kolobov,“Degeneratefour-wavemixingasasourceforspatially-broadbandsqueezedlight,” Opt.Commun.104,374(1994). 30. T.Opatrny,N.Korolkova,andG.Leuchs,“Modestructureandphotonnumbercorrelationsinsqueezedquantum pulses,”Phys.Rev.A66,053813(2002). 31. E.Brambilla,L.Caspani,O.Jedrkiewicz,L.Lugiato,andA.Gatti,“High-sensitivityimagingwithmulti-mode twinbeams,”Phys.Rev.A77,053807(2008). 32. L.Lopez,B.Chalopin,A.delaSouche`re,C.Fabre,A.Maˆıtre,andN.Treps,“Multimodequantumpropertiesof aself-imagingopticalparametricoscillator:SqueezedvacuumandEinstein-Podolsky-Rosen-beamsgeneration,” Phys.Rev.A80,043816(2009). 33. J.Janousek,K.Wagner,J.-F.Morizur,N.Treps,P.K.Lam,C.C.Harb,andH.-A.Bachor,“Opticalentanglement ofco-propagatingmodes,”NaturePhoton.3,399(2009). 34. N.Corzo,A.M.Marino,K.M.Jones,andP.D.Lett,“Multi-spatial-modesingle-beamquadraturesqueezed statesoflightfromfour-wavemixinginhotrubidiumvapor,”Opt.Express19,21358(2011). 35. N.Treps,N.Grosse,W.P.Bowen,M.T.L.Hsu,A.Maˆıtre,C.Fabre,H.-A.Bachor,andP.K.Lam,“Nano- displacementmeasurementsusingspatiallymultimodesqueezedlight,”J.Opt.B:QuantumSemiclass.Opt.6, 664(2004). 36. V.Delaubert,N.Treps,C.C.Harb,P.K.Lam,andH.-A.Bachor,“Quantummeasurementsofspatialconjugate variables:displacementandtiltofaGaussianbeam.”Opt.Lett.31,1537(2006). 37. C.Gabriel,A.Aiello,S.Berg-Johansen,C.Marquardt,andG.Leuchs,“Toolsfordetectingentanglementbe- tweendifferentdegreesoffreedominquadraturesqueezedcylindricallypolarizedmodes,”Eur.Phys.J.D66, 172(2012). 38. J.-F.Morizur,S.Armstrong,N.Treps,J.Janousek,andH.-A.Bachor,“Spatialreshapingofasqueezedstateof light,”Eur.Phys.J.D61,237(2010). 39. M.Lassen,V.Delaubert,C.C.Harb,P.K.Lam,N.Treps,andH.-A.Bachor,“GenerationofSqueezinginHigher OrderHermite-GaussianModeswithanOpticalParametricAmplifier,”J.Eur.Opt.Soc.-Rapid1,06003(2006). 40. M.Lassen,G.Leuchs,andU.L.Andersen,“ContinuousVariableEntanglementandSqueezingofOrbitalAn- gularMomentumStates,”Phys.Rev.Lett.102,163602(2009). 41. C.Gabriel,A.Aiello,W.Zhong,T.Euser,N.Joly,P.Banzer,M.Fo¨rtsch,D.Elser,U.L.Andersen,C.Marquardt, P.S.Russell,andG.Leuchs,“EntanglingDifferentDegreesofFreedombyQuadratureSqueezingCylindrically PolarizedModes,”Phys.Rev.Lett.106,060502(2011). 42. S.Schmitt,J.Ficker,M.Wolff,F.Ko¨nig,A.Sizmann,andG.Leuchs,“Photon-NumberSqueezedSolitonsfrom anAsymmetricFiber-OpticSagnacInterferometer,”Phys.Rev.Lett.81,2446(1998). 43. L.Allen,M.Padgett,andM.Babiker,“TheOrbitalAngularMomentumofLight,”Prog.Opt.39,291(1999). 44. D.McGloinandK.Dholakia,“Besselbeams:Diffractioninanewlight,”Contemp.Phys.46,15(2005). 45. E.Bolduc,N.Bent,E.Santamato,E.Karimi,andR.W.Boyd,“Exactsolutiontosimultaneousintensityand phaseencryptionwithasinglephase-onlyhologram,”Opt.Lett.38,3546(2013). 1. Introduction Squeezed states of the electromagnetic field [1, 2, 3, 4] have been the subject of intense the- oretical and experimental study over the past four decades. As a generalisation of Glauber’s coherentstates[5]tominimumuncertaintystates[6,7],theirexperimentalrealisation[8]has providedastrikingconfirmationofthequantumtheoryoflight.Fromanappliedpointofview, squeezedstatesallowthelimitationsimposedbyquantumuncertaintiesontheaccuracyofop- ticalmeasurementstobeovercome.ItwaspointedoutearlyonbyCaves[9]thatthesensitivity ofgravitationalwaveinterferometerscanbeenhancedbysqueezingthevacuumstateentering theinterferometer’sunusedport.Inrecentyears,thisideabecamerealityintheGEO600inter- ferometer,wheresqueezingiscurrentlyusedtoenhancelong-termsensitivityby2.0dB[10].In quantuminformationscience,squeezedstatesarerelevantasaresourceforcontinuous-variable (CV)entanglement[11],aswellasCVquantumkeydistributionprotocols[12,13,14]. Meanwhile,therecognitionoflight’stransversespatialdegreesoffreedomasaninformation carrier[15]hasmadespatialmodesrelevantforopticalimplementationsofquantuminforma- tion protocols [16, 17, 18]. The consideration of the effects of quantum noise on the spatial statisticsofphotonsalsoledtothefieldofquantumimaging[19,20],anditwasfoundthatthe displacementandtiltofalaserbeamcanbemeasuredmoreaccuratelybyinterferingsqueezed lightwithhigher-orderspatialmodes[21].Finally,itwasshownthatthermalnoisefrommirror coatingsingravitationalwaveinterferometerscanbereducedbyusinghigher-orderLaguerre- Gauss (LG) modes instead of the fundamental mode, allowing for higher optical powers and thusanimprovedsignal-to-noiseratio[22,23].Combiningthistechniquewithsqueezedlight withinthestringentparameterregimerequiredbygravitationalwaveinterferometrypresentsa formidablechallenge,butwouldallowthephasesensitivitytoincreaseevenfurther. Here, we present a proof-of-principle experiment to generate amplitude squeezing in light beamswitharbitraryspatialintensitypatterns.Asademonstrationofthesetup’sversatility,we generatesqueezedLGandBessel-Gauss(BG)beamsofdifferentorders,aswellasacomplex patterncontaininghighspatialfrequencies.Allmodesaregeneratedwithoutmodificationsto the setup. The presented experiment showcases the possibility of generating practically arbi- trarytwo-dimensionalspatialmodesthataresingle-modesqueezed. Beforedetailingtheexperimentalsetup,wefirstreviewtherelationbetweenspatialmodes and quantum states of light, and describe some of the existing approaches for spatial mode squeezing. 1.1. Quantumstatesoflightandtransversespatialmodes In order to make more precise the relationship between spatial modes of the electromagnetic fieldandphotonstatistics,werecallthecanonicalquantisationofthetransverseelectromagnetic field,whichconsidersthemodesofafinitevolumewitheitherperiodicorreflectingboundaries (eventuallytobetakentoinfinity).Theelectricfieldoperatorcanbeexpandedas (cid:114) (cid:126)Eˆ((cid:126)r,t)=i∑ h¯ωk(cid:16)(cid:126)u ((cid:126)r,t)aˆ (cid:126)u ((cid:126)r,t)aˆ†(cid:17), (1) 2 k k− ∗k k k whereaˆandaˆ†arebosonicladderoperatorssatisfying[aˆ,aˆ†]=δ ,andthefunctions(cid:126)u denote i j ij k mutually orthogonal solutions of the Helmholtz equation that describe transverse oscillation ofthetransverseelectricfieldsandcanbedirectlyderivedfromclassicalMaxwellequations. However,thegeneraliseddefinitionofanopticalmodepermitssuperpositionsofsuchsolutions to be treated as a single-mode excitation as long as the field possesses first-order coherence [24,25,26,27].Thus,aslongastheconditionoffirst-ordercoherenceismet,abeamwitha complicatedspatialstructuremaybetreatedasasingle-modeexcitationofthefield. When a squeezed beam interacts with a diffractive optical element (such as an SLM in the presentwork),theresultingmodepatterncanbedeterminedfromtheclassicaltheoryofdiffrac- tionbyconsideringtheplanewavespectrum.Diffractiondoesnotaffectthequantumstatistics ofthemodeperse.Rather,weobserveareductionofthedegreeofsqueezingsinceweareno longerabletointegrateoverthefullplanewavespectrumwithourdetector(i.e.,highdiffrac- tion orders result in losses) [28]. The effect of such losses on the single-mode squeezing can then be found from the beam splitter relation to be Var =η Var +(1 η) Var . Here, out in vac · − · η is the efficiency, Var and Var represent the variances of the input and output beam of in out thesqueezedquadrature,andVar isthevacuumvariance(shot-noise).Apartfromlossesin- vac ducedbyimperfectreflectivityandabsorptiononealsohastotakeintoaccountpossiblesources of additional classical noise. If the diffractive element were to impose an unwanted temporal modulationatafrequency f (forexample,duetoelectronicflickernoiseinthecaseofaliquid N crystalSLM),thequantumnoiseofthedetectedlightmodewouldbemaskedbyexcessnoise attheopticalsidebandsat f f ,rapidlydegradingtheobservablesqueezing. 0 N ± Therearevariousstudiesofnonclassicalbeamsinamultimodesetting[29,30,31,32,33, 34].Here,weconcentrateonsingle-modesqueezing,whichisparticularlysuitedforapplica- tionssuchasquantum-enhancedinterferometry. 1.2. Existingexperimentalapproaches Twomainapproachestosqueezingasinglespatialmodehavebeendemonstratedsofar: (1) Reshaping, where a squeezed fundamental TEM mode is generated first and subse- 00 quentlyconvertedintothedesiredspatialmode.Anyconversionlossnecessarilyreduces thesqueezingfromtheinitialvalue.Thishasbeenachievedwithphaseplates[21,35,36], wherethewavelengthanddesignatedmodearefixed,orwithspecial-purposeliquidcrys- taldevices[37],whichallowmoreflexibilityinthechoiceofwavelengthandmodepa- rameters.Anotherapproachusesprogrammableadaptiveoptics,forwhich,althoughca- pableinprincipleofgeneratinganymode,squeezinghassofaronlybeendemonstrated in1DwithHermite-GaussHG modes[38]. n0 (2) Direct squeezing, where the nonlinear medium is either resonant for the desired spa- tial mode, or transmissive, as in the case of a traveling-wave, or single-pass scheme, a squeezed spatial mode can be generated directly. Examples include misaligned OPO cavities[39,40]andphotoniccrystalfibers[41].Themulti-modesqueezingmentioned abovecanbeachievedwiththisapproachwhenthenonlinearmediumdoesnotenforce aparticularspatialmode. Inthisworkwetakethereshapingapproach,usinganasymmetricfiberSagnacinterferometer asasqueezingsourceforTEM modes[42]andaspatiallightmodulatorforthesubsequent 00 modeconversion. 2. Experimentalsetup 2.1. Squeezing Our light source is a shot-noise limited laser (Origami, Onefive GmbH) emitting linearly po- larisedlightin220fspulses,centeredatawavelengthofλ =1558nm.Fig.1showstheasym- 0 metricSagnacinterferometerusedtogenerateamplitudesqueezedlightintheinitialGaussian mode. The laser beam is split on an asymmetric beam splitter with a splitting ratio of 90:10. This results in a strong and a weak pulse counter-propagating in the polarisation-maintaining single-modefiber(FSPM7811by3M).Duetothefiber’snonlinearKerreffect,aquadrature squeezingisachievedinthebrightpulsethat,bymeansofthecounter-propagatingweakpulse, isadjustedtooccurintheamplitudequadrature[42]. 2.2. ModeConversion ThesqueezedGaussianbeam,havingawaistofw =1.32mm,isconvertedintoahigher-order 0 spatialmodebyareflectiveliquid-crystal-on-siliconspatiallightmodulator(LCoS-SLM,Pluto, Holoeye Photonics AG, 1920x1080 pixels, display optimised for 1550nm, no anti-reflection coating).ThisSLMisdesignedforphase-onlymodulationanddoesnotdirectlymodulatethe amplitude. The local refractive index is modulated due to the preferential alignment of the rod-shaped LC molecules with the electric field at each pixel. This affects only the polarisa- tion component along the long axis of the LC molecules, leaving the orthogonal polarisation componentunmodulated. WeprogramourSLMwithphasepatternsconsistingoffourcontributions:First,thetrans- versephasepatternofthetheoreticalmodefunctionofthedesiredmodeasdescribedlaterin this section. Second, a blazed grating phase which diffracts the modulated beam away from thezerothorderandtransferstheenergymostlyintothefirstdiffractionorder.Thisstepisre- quiredtospatiallyseparatethemodulatedlightfromtheapproximately20%ofincominglight whichtheSLMeffectivelydoesnotmodulateduetoitslimiteddiffractionefficiency.Thegrat- ingperiodof35px 8µm/px 180λ ischosenempiricallytomaximisediffractionintothe 0 × ≈ first order while enabling sufficient transverse separation from other diffraction orders in the detection plane at a distance of 45cm from the SLM (corresponding to 1/8th of the Rayleigh lengthbeforeconversion).Additionally,alensphaseisaddedtothehologram.Andfinally,a binarycircularaperturepatternismultipliedtotheentirehologram,restrictingmodulationto Fig. 1: Experimental setup. A femtosecond laser emits pulses of 220fs duration centered at λ =1558nm. For squeezed light generation, the pulses are split up on a 90:10 beam splitter 0 and launched into a Kerr fiber (χ(3) nonlinearity) of length 3.8m in a counter-propagating configuration.Theexitingpulsestypicallyexhibit 3.0dBofamplitudesqueezingpriortothe − SLM. A pair of folding mirrors (FM , FM ) allow the squeezer to be bypassed to obtain a a b coherentshotnoisereferenceforsqueezingmeasurements.Thebeamimpingesonareflective SLM. An iris aperture selects the 1. diffraction order (see text for details). Another folding mirror (FM ) is used to direct the beam either at a InGaAs camera for mode inspection or at c adetector,whose9MHzsidebandfluctuationsandDCamplitudearerespectivelyrecordedby anelectronicspectrumanalyserandavoltmeter. 2π e π as h p 0 (a) LGl=1 (b) BG (n=1) p=1 Fig.2:Examplephasepatterns.Basicphasepatternsforgenerating(a)aLaguerre-Gaussbeam and (b) a Bessel-Gauss beam. In addition, a blazed grating, kinoform lens and aperture are addedtoeachpattern(notshown,seetextfordetails). thecentralregiononly. AnSLM’simportantadvantageisthatitallowsforthegenerationofarbitrarypatterns,i.e.su- perpositionsofverymanybasismodeswithalmostanycombinationofcoefficients.Toshow the versatility of the setup, we generate amplitude squeezed Laguerre-Gauss beams, Bessel- Gauss beams as well as an arbitrary pattern. Laguerre-Gauss (LG) modes are of particular interest as they represent a natural basis for optical orbital angular momentum [43]. Fig. 2(a) showsthephasepatternrequiredtogenerateanLGbeamwithradialindex p=1andhelical indexl=1,whereeachphotoncarriesanorbitalangularmomentumofh¯.Besselbeams,too, exhibitremarkablefeatures:theyarenon-diffractiveandself-healing[44].Theseidealbeams extendtransverselytoinfinityandcontainaninfiniteamountofenergy,similartoplanewaves. InarealsettingitishenceonlypossibletogenerateBessel-Gauss(BG)beams,forwhichthe idealmodefunctionismultipliedbyaGaussianenvelope,while,however,retainingsomeofits favourableproperties.Fig.2(b)displaysthephasepatternusedtogenerateaBGbeamoforder n=1. The two-dimensional spatial Fourier transform of the desired beam is used as the phase patternontheSLM.ThepatternsemployedtogeneratebothBGandLGbeamsaredominated by their mode functions’ defining polynomials, i.e. the generalized Laguerre polynomial [15] and the nth-order Bessel function of the first kind [44]. Every zero in the radial direction of thepolynomialdefiningthemodesresultsinaphasediscontinuityofπ ofthephasemask(see Fig.2).Theazimuthalphaseconsistsinarepeatedcontinuousgradientfrom0to2π. 2.3. Measurements The generated modes are analysed with respect to the quality of the spatial modes and the quantumnoisereduction.Thetransverseintensitydistributionsoftheexperimentallygenerated modesarerecordedwithaXenicsXS-1.7-320InGaAscamera.Asameasureofmodequality, theintensitydistributionasinferredfromthetheoreticalmodefunctionisfittedtoalinesection ofthemeasuredmode. The amplitude squeezing is measured by direct photodetection at a sideband frequency of 9MHzusinganelectronicspectrumanalyserwithresolutionbandwidth1MHzandvideoband- width 3kHz. The shot-noise reference level is determined by measuring the fluctuations of a coherentbeamofthesamecontinuous-waveequivalentopticalpowerinthesamespatialmode. Thefinalsqueezingfigureisdeterminedbyformingthedifferencebetweentherespectivetime- averagedvalues. Foreachmodepattern,squeezingismeasuredinthiswaybothpriortothemodeconversion andinthefinalconvertedmode.Themodeconversionefficiencyη isestimatedbycomparing [mm] l=1 l=2 l=3 -1.5 0 1.5 1 p=1 n=0 u.] a. r, a e p=2 n=1 n [li 2 | E | ∝ p=3 n=2 0 (a) Laguerre-Gauss (LGl) (b) Bessel-Gauss p ( 1.31 0.31)dB squeezing ( 1.17 0.31)dB squeezing − ± − ± (c) arbitrary pattern ( 0.4 0.3)dB squeezing − ± Fig. 3: Squeezed spatial modes. The average measured amplitude squeezing for each family ofmodesisshownbelowthepanels.Eachpanelrepresentsa3 3mm2 regioninthecamera × plane.Relativeintensitybetweenpanelsisarbitrary. thecontinuous-waveequivalentpowerofeachdiffractedbeambehindtheSLMtothatofthe squeezedGaussianinputbeambeforetheSLM.Theobservedreductioninsqueezingiscom- pared to the expected reduction from the variance relation in Sec. 1.1. Agreement of the two valueswithintheirexperimentalerrorindicatesthatanyexcessnoisepoweraddedbytheSLM atthemeasuredsidebandliesbelowthedetectablethreshold. 3. ResultsandDiscussion 3.1. Qualityofthegeneratedspatialmodes The observed intensity distributions for LG modes with p,l 1,2,3 and BG modes with ∈{ } n=0,1,2 are shown in Fig. 3(a) and (b), respectively. The intensity distributions are in very goodagreementwiththeexpectedbeamprofiles.Forthesamemodes,Fig.4(a)and(b)show thecross-sectionalintensitydistributions(blackdots)andcorrespondingfittedcurves(redline). The fitted curves, derived from the theoretical mode functions, generally agree well with the observed line sections. However, for LG modes with larger values of p the overlap decreases [mm] l=1 l=2 l=3 -2.4 0 2.4 u.] p=1 [a. n=0 2 E| | p=2 n=1 p=3 n=2 (a) Laguerre-Gauss (b) Bessel-Gauss Fig.4:Modequality.Measuredcross-sectionalintensitydistributions(dots)withfittedtheoret- icalcurves(lines)for(a)Laguerre-Gaussbeamsand(b)Bessel-Gaussbeams. duetotheorderoftheradialLaguerrepolynomialgrowingwith pandbecomingincreasingly hardtoapproximatebyphase-onlymodulation.Amethodforamplitudeandphasemodulation via a single phase-only SLM has been demonstrated by Bolduc et al. [45], based on careful spatial modulation of the blazed grating depth while compensating the resulting phase aber- rations. However, the technique introduces some additional loss, so that the suitable trade-off betweenmodequalityandsqueezingmustbefoundinaccordancewiththerequirementsofa givenapplication.Moregenerally,itmaybepossibletoachieveanimprovementbymeasuring andcompensatingforanymechanicaldistortionsinthesiliconbackplaneoftheSLM. 3.2. Opticalconversionlosses Wefindη =0.90(3)forthediffractionefficiencyandη =0.61(2)forthereflectivityofthe d r SLM.Thegratingefficiencywasfoundtobeη =0.91(3)inthefirstorder,leadingtoatotal g efficiency of η =η η η =0.50(3) with no phase pattern applied. As shown in tables 1 and d r g 2,thetotalefficiencyisreducedfurtherbyafewpercentformodeswithhighorders.Forthe arbitrarypattern,theefficiencywas0.15. 3.3. Squeezinginthegeneratedhigher-ordermodes BeforetheSLM,wetypicallyobserveVar =( 3.0 0.3)dBofamplitudesqueezinginthe in − ± fundamental Gauss beam. The procedure described in 2.3 to quantify squeezing is demon- strated by example of an LG1 mode in Fig. 5. Here, a noise reduction of ( 1.30 0.30)dB 1 − ± belowtheshot-noiselevelcanbeseen.Tables1and2showacompletelistofsqueezingvalues for the LG and BG beams, respectively. For the arbitrary mode pattern, a noise reduction of ( 0.4 0.3)dBbelowshotnoisewasobserved.Tables1and2showthatforlower-ordermodes − ± theefficienciesaremuchhigher( 50%),allowingatypicalsqueezingof( 1.3 0.3)dB.All ≈ − ± quoted squeezing figures were verified by attenuation measurements to result from quantum m] −52.5 B d [ 53.0 e − c n a 53.5 ri − a v 54.0 se − ∆ = -1.30 dB oi n 54.5 de − u.] mplitu −55.0 2E[a.| a −55.50.0 0.2 0.4 0.6 0.8 1.0 |-1.5 -0.75 0 0.75 1.5 time [s] [mm] Fig.5:Amplitudesqueezing.Noisetraceshowingtypicalamplitudesqueezingat9MHzinthe LG1beam.Shadedareascorrespondtoonestandarddeviation. 1 noise reduction. For each mode, the measured squeezing matches the expected value corre- spondingtothemeasuredtotalefficiencyη oftheSLMfortherespectivemodetowithinthe experimental accuracy. In other words, the upper bound for excess noise at this frequency is lowerthantheerrorbarsofthemeasurement.Weconcludethatnodetectableexcessnoisewas addedbytheSLMinthemodeconversionprocessatthe9MHzsideband. Radialindex Helicalindex Efficiency Squeezing p l η ∆ 1 1 52.0% ( 1.34 0.32)dB − ± 1 2 51.3% ( 1.32 0.31)dB − ± 1 3 50.1% ( 1.34 0.31)dB − ± 2 1 51.2% ( 1.34 0.30)dB − ± 2 2 51.2% ( 1.31 0.32)dB − ± 2 3 51.0% ( 1.27 0.32)dB − ± 3 1 50.3% ( 1.30 0.30)dB − ± 3 2 50.0% ( 1.30 0.31)dB − ± 3 3 50.0% ( 1.28 0.31)dB − ± Table1:ExperimentalconversionefficiencyandmeasuredsqueezinginLGl beams. p Order Efficiency Squeezing n η ∆ 0 47.0% ( 1.17 0.31)dB − ± 1 47.3% ( 1.17 0.31)dB − ± 2 47.5% ( 1.17 0.31)dB − ± Table2:ExperimentalconversionefficiencyandmeasuredsqueezinginBGbeams. 4. Summary WehaveshownthatacommerciallyavailableSLMcanbeusedtotransfersqueezingfromthe fundamental transverse mode of an optical field into arbitrary higher-order modes. With this approach,differentspatialmodescanbegeneratedsimplybyapplyingadifferentphasepattern to the SLM with no further modifications to the setup. In principle, the range of achievable spatial modes is unlimited (up to the resolution of the SLM), but there is a trade-off between mode quality and conversion efficiency, which ultimately affects the observable squeezing in the output mode. In all cases, the observed reduction of squeezing was consistent with linear losses, ruling out excess noise from the SLM at the 9MHz sideband investigated. Our work provides a direct illustration of the generalised single-mode concept in quantum optics and shows that applications requiring squeezed light in tailored spatial modes are within reach of commerciallyavailabletechnology.