Single Event Effects in Aerospace IEEEPress 445HoesLane Piscataway,NJ08854 IEEEPress EditorialBoard LajosHanzo,EditorinChief R.Abhari M.El-Hawary O.P. Malik J.Anderson B-M.Haemmerli S. Nahavandi G.W.Arnold M.Lanzerotti T. Samad F.Canavero D.Jacobson G.Zobrist KennethMoore,DirectorofIEEEBookandInformationServices(BIS) Single Event Effects in Aerospace Edward Petersen IEEE PRESS A John Wiley & Sons, Inc., Publication Copyright©2011bytheInstituteofElectricalandElectronicsEngineers,Inc. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.Allrightsreserved. PublishedsimultaneouslyinCanada Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,without eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe appropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers, MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requeststo thePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley& Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat http://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontact ourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnited Statesat(317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitour websiteatwww.wiley.com. LibraryofCongressCataloging-in-PublicationDataisavailable. ISBN:978-0-470-76749-8 PrintedintheUnitedStatesofAmerica oBookISBN:978-1-118-08432-8 ePDFISBN:978-1-118-08430-1 ePubISBN:978-1-118-08431-1 10987654321 Peterson ftoc.tex V2-06/22/2011 8:00P.M. Pagev Contents 1. Introduction 1 1.1 Background, 1 1.2 Analysis of Single Event Experiments, 7 1.2.1 Analysis of Data Integrity and Initial Data Corrections, 7 1.2.2 Analysis of Charge Collection Experiments, 7 1.2.3 Analysis of Device Characteristics from Cross-Section Data, 7 1.2.4 Analysis of Parametric Studies of Device Sensitivity, 8 1.3 Modeling Space and Avionics See Rates, 8 1.3.1 Modeling the Radiation Environment at the Device, 8 1.3.2 Modeling the Charge Collection at the Device, 9 1.3.3 Modeling the Electrical Characteristic and Circuit Sensitivity for Upset, 9 1.4 Overview of this Book, 10 1.5 Scope of this Book, 11 2. Foundations of Single Event Analysis and Prediction 13 2.1 Overview of Single Particle Effects, 13 2.2 Particle Energy Deposition, 15 2.3 Single Event Environments, 18 2.3.1 The Solar Wind and the Solar Cycle, 19 2.3.2 The Magnetosphere, Cosmic Ray, and Trapped Particle Motion, 22 2.3.3 Galactic Cosmic Rays, 24 2.3.4 Protons Trapped by the Earth’s Magnetic Fields, 42 2.3.5 Solar Events, 46 v Peterson ftoc.tex V2-06/22/2011 8:00P.M. Pagevi vi Contents 2.3.6 Ionization in the Atmosphere, 48 2.4 Charge Collection and Upset, 58 2.5 Effective Let, 60 2.6 Charge Collection Volume and the Rectangular Parallelepiped (RPP), 61 2.7 Upset Cross Section Curves, 62 2.8 Critical Charge, 62 2.8.1 Critical Charge and LET Threshold, 63 2.8.2 Critical Charge of an Individual Transistor, Two Transistors in a Cell, 64 2.8.3 Critical Charge from Circuit Modeling Studies, 65 2.8.4 Sensitivity Distribution Across the Device, 65 2.8.5 Intracell Variation, 66 2.8.6 Summary Discussion of Critical Charge, 66 2.9 Upset Sensitivity and Feature Size, 67 2.10 Cross-Section Concepts, 67 2.10.1 Nuclear Physics Cross-Section Concepts, 67 2.10.2 Single Event Cross-Section Concepts, 72 3. Optimizing Heavy Ion Experiments for Analysis 77 3.1 Sample Heavy Ion Data, 78 3.2 Test Requirements, 78 3.3 Curve Parameters, 80 3.4 Angular Steps, 85 3.5 Stopping Data Accumulation When You Reach the Saturation Cross Section, 86 3.6 Device Shadowing Effects, 88 3.7 Choice of Ions, 89 3.8 Determining the LET in the Device, 91 3.9 Energy Loss Spread, 94 3.10 Data Requirements, 95 3.10.1 Desired Precision, 95 3.10.2 Desired Accuracy, 97 3.11 Experimental Statistics and Uncertainties, 97 3.12 Effect of Dual Thresholds, 98 3.13 Fitting Cross-Section Data, 99 3.14 Other Sources of Error and Uncertainties, 101 Peterson ftoc.tex V2-06/22/2011 8:00P.M. Pagevii Contents vii 4. Optimizing Proton Testing 103 4.1 Monitoring the Beam Intensity and Uniformity, 103 4.2 Total Dose Limitations on Testing, 104 4.3 Shape of the Cross-Section Curve, 105 5. Data Qualification and Interpretation 111 5.1 Data Characteristics, 111 5.1.1 Illegitimate, Systematic, and Random Errors, 111 5.1.2 Inherent Random Errors, 113 5.1.3 Fractional Standard Deviation of Your Data, 117 5.1.4 Rejection of Data, 119 5.2 Approaches to Problem Data, 121 5.2.1 Examination of Systematic Errors, 121 5.2.2 An Example of Voltage Variation, 134 5.2.3 Data Inconsistent with LET, 135 5.2.4 Beam Contamination, 135 5.2.5 No Event Observed, 138 5.2.6 Sloppy or Wrong Fits to the Data, 139 5.2.7 Experiment Monitoring and Planning, 141 5.3 Interpretation of Heavy Ion Experiments, 142 5.3.1 Modification of Effective LET by the Funnel, 142 5.3.2 Effects of True RPP Shape, 144 5.3.3 Fitting Data to Determine Depth and Funnel Length, 149 5.3.4 Deep Device Structures, 152 5.3.5 Cross-Section Curves on Rotated RPP Structures, 156 5.3.6 Charge Gain Effects on Cross Section, 157 5.4 Possible Problems with Least Square Fitting Using the Weibull Function, 158 5.4.1 Multiple Good Fits, 158 5.4.2 Reason for Inconsistent Weibull Fitting, 162 6. Analysis of Various Types of SEU Data 165 6.1 Critical Charge, 165 6.2 Depth and Critical Charge, 166 6.3 Charge Collection Mechanisms, 168 Peterson ftoc.tex V2-06/22/2011 8:00P.M. Pageviii viii Contents 6.3.1 Drift Process and Funneling, 168 6.3.2 Diffusion Process, 168 6.3.3 Plasma Wire Effect, 169 6.3.4 ALPHEN (Alpha-Particle–Source–Drain Penetration Effect), 169 6.3.5 Bipolar Transistor Effect, 169 6.3.6 Recombination Effects, 169 6.4 Charge Collection and the Cross-Section Curve, 170 6.4.1 CMOS, 170 6.4.2 Hardened CMOS, 171 6.4.3 Bipolar Devices, 171 6.4.4 CMOS-SOI, 172 6.4.5 NMOS–Depletion Load, 172 6.4.6 NMOS–Resistive Load, 172 6.4.7 GaAs HFETs, 173 6.4.8 GaAs C-Higfet, 173 6.4.9 VLSI Process Variation, 173 6.5 Efficacy (Variation of SEU Sensitivity within a Cell), 174 6.5.1 Cross-Section and Efficacy Curves, 174 6.5.2 SEU Efficacy as a Function of Area, 176 6.5.3 Efficacy and SEU Sensitivity Derived from a Pulsed Laser SEU Experiment, 178 6.6 Mixed-Mode Simulations, 185 6.6.1 Warren Approach, 186 6.6.2 Dodd Approach, 188 6.6.3 Hirose Approach, 189 6.6.4 Simplified Approach of Fulkerson, 189 6.6.5 The Imax, F (Tmax) Approach, 190 6.6.6 Circuit Level Simulation to Upset Rate Calculations, 194 6.6.7 Multiple Upset Regions, 194 6.6.8 Efficacy and SEU Threshold, 195 6.6.9 From Efficacy to Upset Rates, 197 6.7 Parametric Studies of Device Sensitivity, 198 6.7.1 Data Display and Fitting, 198 6.7.2 Device Parameters and SEU Sensitivity, 202 6.8 Influence of Ion Species and Energy, 215 6.9 Device Geometry and the Limiting Cross Section, 218 6.9.1 Bulk CMOS, 218 Peterson ftoc.tex V2-06/22/2011 8:00P.M. Pageix Contents ix 6.9.2 CMOS/SOI, 218 6.9.3 SRAMs, 219 6.10 Track Size Effects, 220 6.11 Cross-Section Curves and the Charge Collection Processes, 221 6.11.1 Efficacy Curves and the Charge-Collection Process, 222 6.11.2 Inverse LET Plots and Diffusion, 225 6.12 Single Event Multiple-Bit Upset, 226 6.12.1 Strictly Geometrical MBUs, 227 6.12.2 Proton Induced Multibit Upsets, 230 6.12.3 Dual Hits for Single-Bit Upset, 231 6.12.4 MBU Due to Diffusion in DRAMs, 231 6.12.5 Hits to Adjacent Sensitive Regions, 236 6.12.6 Multibit Upset in FPGAs, 236 6.12.7 Calculation of Upset Rate for Diffusion MBUs, 237 6.12.8 Geometrical MBE Rates in EDAC Words, 238 6.12.9 Statistical MBE Rates in the Space Environment, 240 6.12.10Impact of Geometrical Errors on System Performance, 243 6.12.11Statistical MBUs in a Test Environment, 246 6.13 SEU in Logic Systems, 246 6.14 Transient Pulses, 249 7. Cosmic Ray Single Event Rate Calculations 251 7.1 Introduction to Rate Prediction Methods, 252 7.2 The RPP Approach to Heavy Ion Upset Rates, 252 7.3 The Integral RPP Approach, 260 7.4 Shape of the Cross-Section Curve, 264 7.4.1 The Weibull Distribution, 264 7.4.2 Lognormal Distributions, 266 7.4.3 Exponential Distributions, 267 7.5 Assumptions Behind the RPP and IRPP Methods, 270 7.5.1 Device Interaction Models, 270 7.5.2 Critical Charge, 270 7.5.3 Mathematical Basis of Rate Equations, 271 7.5.4 Chord Length Models, 274 7.5.5 Bradford Formulation, 276 Peterson ftoc.tex V2-06/22/2011 8:00P.M. Pagex x Contents 7.5.6 Pickel Formulation, 279 7.5.7 Adams Formulation, 280 7.5.8 Formulation of Integral RPP Approach, 282 7.5.9 HICCUP Model, 284 7.5.10 Requirements for Use of IRPP, 285 7.6 Effective Flux Approach, 285 7.7 Upper Bound Approaches, 287 7.8 Figure of Merit Upset Rate Equations, 288 7.9 Generalized Figure of Merit, 290 7.9.1 Correlation of the FOM with Geosynchronous Upset Rates, 291 7.9.2 Determination of Device Parameters, 294 7.9.3 Calculation of the Figure of Merit from Tabulated Parts Characteristics, 295 7.9.4 Rate Coefficient Behind Shielding, 298 7.10 The FOM and the LOG Normal Distribution, 299 7.11 Monte Carlo Approaches, 300 7.11.1 IBM Code, 300 7.11.2 GEANT4, 300 7.11.3 Neutron Induced, 301 7.12 PRIVIT, 302 7.13 Integral Flux Method, 302 8. Proton Single Event Rate Calculations 305 8.1 Nuclear Reaction Analysis, 306 8.1.1 Monte Carlo Calculations, 310 8.1.2 Predictions of Proton Upset Cross Sections Based on Heavy Ion Data, 311 8.2 Semiempirical Approaches and the Integral Cross-Section Calculation, 313 8.3 Relationship of Proton and Heavy Ion Upsets, 316 8.4 Correlation of the FOM with Proton Upset Cross Sections, 317 8.5 Upsets Due to Rare High Energy Proton Reactions, 318 8.6 Upset Due to Ionization by Stopping Protons, Helium Ions, and Iron Ions, 320 9. Neutron Induced Upset 329 9.1 Neutron Upsets in Avionics, 330
Description: